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Abstract

The standard evaluation of the partition function Z of Schwarz’s topological
field theory results in the Ray—Singer analytic torsion. Here we present an
alternative evaluation which results in Z = 1. Mathematically, this amounts to
a novel perspective on analytic torsion: it can be formaly written as a ratio of
volumes of spaces of differential forms which is formally equal to 1 by Hodge
duality. An analogous result for Reidemeister combinatorial torsion is also

obtained.

1 Introduction

Analytic torsion [1] arises in a quantum field theoretic context as (the square of)
the partition function of Schwarz’s topological field theory [2, 3, 4]. This has turned
out to be an important result in topological quantum field theory; for example it
is used to evaluate the semiclassical approximation for the Chern—Simons partition
function [5, 6], which gives a QFT-predicted formula for an asymptotic limit of the
Witten—Reshetikhin—Turaev 3-manifold invariant [7] since this invariant arises as the
partition function of the Chern—Simons gauge theory on the 3-manifold [5]. (See also
[8] for a review of Schwarz’s topological field theory in a general context, and [9] for

some explicit results in the case of hyperbolic 3-manifolds.)

The partition function, Z , of Scwarz’s topological field theory is a priori a formal,
mathematically ill-defined quantity and its evaluation [2, 3, 4] is by formal manipu-
lations which in the end lead to a mathematically meaningful result: Z = 7'/2 where
7 is the analytic torsion of the background manifold. In this paper we show (§2)

that there is an alternative formal evaluation of the partition function which results
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in the trivial answer Z = 1. This result amounts to a novel perspective on analytic
torsion: we find that it can be formally written as a certain ratio of volumes of spaces

of differential forms which is formally equal to 1 by Hodge duality.

Reidemeister combinatorial torsion (R-torsion) [10, 1] arises as the partition func-
tion of a discrete version of Schwarz’s topological field theory [11, 12]. This is of
potential interest if one attempts to capture the invariants of topological QFT in a
discrete, i.e. combinatorial, setting. In §3 an analogue of the above-mentioned result

of §2 is derived for combinatorial torsion.

2 Schwarz’s topological field theory and analytic torsion

We begin by recalling the evaluation of the partition function
Z = 1 /'Dw e 5w (2.1)
V

of Schwarz’s topological field theory [2, 3, 4]. Here V is a normalisation factor to
be specified below. The background manifold (“spacetime”) M is closed, oriented,
riemannian, and has odd dimension n = 2m + 1. For simplicity we assume m is odd;
then the following variant of Schwarz’s topological field theory can be considered
[4]: The field w € Q™(M, E) is an m-form on M with values in some flat O(N)

vectorbundle E over M. The action functional is

S(w) = /Mw Adpw . (2.2)

Here d, : QF — QFtl (P = QP(M, E)) is the exterior derivative twisted by a flat
connection on E (which we surpress in the notation) and a sum over vector indices
is implied in (2.2) '. A choice of metric on M determines an inner product in each

QP  given in terms of the Hodge operator * by

(w,w) = /Mw A *w' (2.3)

!Note that (2.2) vanishes if m is even.



Using this the action (2.2) can be written as S(w) = (w, *d,w). Let ker(S) denote
the radical of the quadratic functional S and ker(d,) the nullspace of d,. Then
ker(S) = ker(d,,), and after decomposing the integration space in (2.1) as Q™ =
ker(S) @ ker(S)* the partition function can be formally evaluated to get

V (ker(S)) —1/4 _ V (ker(S5))
V V

(we are ignoring certain phase and scaling factors; see [13] for these). Here V' (ker(S5))

Z = det’((xd,)?) det’(d?,dp) 4/ (2.4)

denotes the formal volume of ker(S). The obvious normalisation choice, V' = V (ker(S)) ,
does not preserve a certain symmetry property which the partition function has when
S is non-degenerate [4]; therefore we do not use this but instead proceed, following
Schwarz, by introducing a resolvent for S. For simplicity we assume that the coho-
mology of d vanishes, i.e. Im(d,) = ker(d,;) for all p (Im(d,) is the image of dp).
Then S has the resolvent

0— Q0 doy 0t 4y 5 ml I ker(S) — 0 (2.5)
which we use in the following to formally rewrite V' (ker(S)). The orthogonal decom-
positions

QP = ker(d,) @ ker(d,)" (2.6)
give the formal relations
V() = V(ker(d,)) V (ker(d,) ™) . (2.7)

The maps d,, restrict to isomorphisms d,, : ker(d,)* = ker(d,;1), giving the formal

relations
V (ker(dps1)) = | det (dy)| V (ker(d,) ") (2.8)
Combining (2.7)—(2.8) we get
V(ker(dps1)) = det’(d3d,) > V(QP) V (ker(d,)) ™" . (2.9)

Now a simple induction argument based on (2.9) and starting with V'(ker(S)) =
V (ker(d,,)) gives the formal relation

V(ker(S)) = nﬁ (det’(d;dp)lﬂ V(Qp))(*l)"

p=0

(2.10)
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A natural choice of normalisation is now 2
m—1
V=T vo)evr. (2.11)
p=0
Substituting (2.10)—(2.11) in (2.4) gives

m—1
11 det'(d;d,,)%<—1>p] det’(d*, dp) "M% (2.12)

p=0

7 =

These determinants can be given well-defined meaning via zeta-regularisation [1],
resulting in a mathematically meaningful expression for the partition function. As a
simple consequence of Hodge duality we have det’ (dd,) = det’(d}; ,  dn_p—1) Which

allows to rewrite (2.12) as
Z =1(M,d)"? (2.13)
where
n—1 L
(M ,d) = ][ det'(d}d,)2"" (2.14)
p=0

is the Ray—Singer analytic torsion [1]; it is independent of the metric, depending only
on M and d. This variant of Schwarz’s result is taken from [4]; it has the advantage
that the resolvent (2.5) is relatively simple. The cases where m need not be odd, and
the cohomology of d need not vanish, are covered in [2, 3] (see also [4] for the latter
case). Everything we do in the following has a straightforward extension to these

more general settings, but for the sake of simplicity and brevity we have omitted this.

We now proceed to derive a different answer for Z to the one above. Our starting
point is (2.13)-(2.14) which we consider as a formal expression for Z, i.e. we do
not carry out the zeta regularisation of the determinants. Instead, we use (2.8) to

formally write

1/2 _ V (ker(dp1))

det'(dydy)'/* = V (ker(d,)L)

(2.15)

2This choice can be motivated by the fact that, in an analogous finite-dimensional setting, the
partition function then continues to exhibit a certain symmetry property which it has when S is

non-degenerate [4].



Substituting this in (2.14) and using (2.7) we find ®

VEQHV(Q3)...V(Q)

M, d) = 2.16
T4 = ronyvr) . v (2.16)

Formally, the ratio of volumes on the r.h.s. equals 1 due to
V() =V (Q"P). (2.17)

This is a formal consequence of the Hodge star operator being an orthogonal isomor-
phism from QP to Q" P. (Recall (+w,*w') = (w,w’) for all w,w’ € QP.) This implies
Z =1 due to (2.13).

The formal relation (2.16) shows that analytic torsion can be considered as a
“volume ratio anomaly”: The ratio of the volumes on the r.h.s. of (2.16) is formally
equal to 1, but when 7(M ,d) is given well-defined meaning via zeta regularisation of

(2.14) a non-trivial value results in general.

It is also interesting to consider the case where n is even: In this case, using

(2.7)-(2.8) we get in place of (2.16) the formal relation

VOO V@) V@)
V(QY) V(3) ... V() _pr_[o det ()27 =1 (219)

The last equality is an easy consequence of Hodge duality and continues to hold after
the determinants are given well-defined meaning via zeta regularisation [1]. On the
other hand, the ratio of volumes on the l.h.s. is no longer formally equal to 1 by

Hodge duality.

3 The discrete analogue

Given a simplicial complex K triangulating M a discrete version of Scwarz’s topolog-
ical field theory can be constructed which captures the topological quantities of the
continuum theory [11, 12]. The discrete theory uses K , the cell decomposition dual

to K, as well as K itself. This necessitates a field doubling in the continuum theory

3This relation is obtained without any restriction on m, i.e. for arbitrary odd n.
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prior to discretisation. An additional field w' is introduced and the original action

S(w) = (w, *d,,w) is replaced by the doubled action,

S(w,w') = < (:)/) , <*2m *(é ) (w) —2/ W' A dpw (3.1)

This theory (known as the abelian BF theory [8]) has the same topological content
as the original one; in particular its partition function, 7, can be evaluated in an

analogous way to get Z = Z> = 7(M,d). The discretisation prescription is [11, 12]

(w, ') = (a,0!) € C™K) x C™(K) o (3.2)
o) = S0 =((3) (g ") () e

Here C?(K) = CP(K, F) is the space of p-cochains on K with values in the flat O(N)
vectorbundle E ; dff : CP(K) — CP*'(K) is the coboundary operator twisted by a
flat connection on E ; C’q(f(\ ) and df are the corresponding objects for K o K
C?(K) — C*?(K) and WK CYK) — C" %K) are the duality operators induced
by the duality between p-cells of K and (n—p)-cells of K. The p-cells of K and K
determine canonical inner products in C?(K) and C?(K) for each p, and with respect
to these the duality operators are orthogonal maps. (The definitions and background
can be found in [14]; see also [1] and [11].) As in §2 we are assuming that m is odd
and that the cohomology of the flat connection on E vanishes: H*(M, E) = 0. Then
the partition function of the discrete theory, denoted Zy , can be evaluated by formal

manipulations analogous to those in §2 (see [11, 12]) and the resulting expression can

be written as either

Zx = 1(K,d¥) or  Zg=1(K,d¥) (3.4)
where
7(K,d*) = H det' (9 ,d)3 (3.5)

and 7(K, K ) is defined analogously. Here 9J, denotes the adjoint of dX (it can
be identified with the boundary operator on the (p+1)-chains of K). The quantities
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(K, d¥) and (K, dk ) coincide; in fact (3.5) is the Reidemeister combinatorial torsion
(also called the R-torsion) of M determined by the given flat connection on E, and is
the same for all cell decompositions K of M [10, 1]. (This is analogous to the metric-
independence of analytic torsion.) Moreover, the analytic and combinatorial torsions

coincide [15], so the discrete partition function in fact reproduces the continuum one:

Ix=2 (3.6)

We now present an analogue of the formal argument which led to Z = 1 in §2.

Consider
(K, d¥) (K, d¥) = H det (9K ,dX)3 -1 det (6 +1dK) 2 (D7 (3.7)

Using the analogues of (2.15) and (2.7) in the present setting,

V (ker(df; ) .

det(dyd,)"? = ——— 2L
et (dydy) V (ker(dX) 1)

and
V(CP(K)) = V(ker(df)) V(ker(df)L) , (3.9)
and the corresponding K relations, we find an analogue of the formal relation (2.16):

(K, d¥) (K, d¥)

V(CU(K)) V(C*(K)) ... V(CM(K)) V(Cl(Aff\))V(C?’(:)) V(CM(K))

V(CU(K)) V(CX(K)) ... V(CmH(K)) V(CU(K)) V(CX(K)) ...V (CrY(K))
(3.10)

Formally, the r.h.s. equals 1 due to
V(CP(K)) =V (C"?(K)). (3.11)

This is a formal consequence of the duality operator being an orthogonal isomorphism
from C?P(K) to C"P(K) (ie. (x5a,x/) = (a,d) for all a,o/ € CP(K)). This

implies that, formally,

Zx = [7(K,d¥) r(K,d5)|V? = 1. (3.12)
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Thus we see that combinatorial torsion can also be considered as a “volume ratio

anomaly” in an analogous way to analytic torsion.

Finally, in the n even case it is straightforward to find a combinatorial analogue

of the formal relation (2.18) —we leave this to the reader.

Acknowledgements. D.A. acknowledges the support of a postdoctoral fellowship

from the Australian Research Council.

References

[1] D. B. Ray and I. M. Singer, Adv. Math. 7 (1971) 145

[2] A. S. Schwarz, Lett. Math. Phys. 2 (1978) 247; Commun. Math. Phys. 67
(1979) 1

[3] A.S. Schwarz and Yu. Tyupkin, Nucl. Phys. B 242 (1984) 436
[4] D. H. Adams and S. Sen, hep-th/9503095
[5] E. Witten, Commun. Math. Phys. 121 (1989) 351

[6] D. Freed and R. Gompf, Commun. Math. Phys. 141 (1991) 79; L. Jeffrey,
Commun. Math. Phys. 147 (1992) 563; L. Rozansky, Commun. Math. Phys.
171 (1995) 279; D. H. Adams, Phys. Lett. B 417 (1998) 53

[7] N. Reshetikhin and V. Turaev, Invent. Math. 103 (1991) 547

[8] D. Birmingham, M. Blau, G. Thompson and M. Rakowski, Phys. Rep. 209
(1991) 129

[9] A. A. Bytsenko, L. Vanzo and S. Zerbini, Nucl. Phys. B 505 (1997) 641; hep-
th/9906092; A. A. Bytsenko, A. E. Goncalves and W. da Cruz, Mod. Phys.
Lett. A 13 (1998) 2453; A. A. Bytsenko, A. E. Goncalves, M. Simoes and F.
L. Williams, hep-th/9901054



[10] K. Reidemeister, Hamburger Abhandl. 11 (1935) 102; W. Franz, J. Reine
Angew. Math. 173 (1935) 245; J. Milnor, Bull. A.M.S. 72 (1966) 348

[11] D. H. Adams, hep-th/9612009
[12] D. H. Adams, Phys. Rev. Lett. 78 (1997) 4155
[13] D. H. Adams and S. Sen, Phys. Lett. B 353 (1995) 495

[14] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry — Meth-
ods and Applications: Part III Introduction to Homology Theory, Springer-
Verlag, New York (1990)

[15] J. Cheeger, Ann. Math. 109 (1979) 259; W. Miiller, Adv. Math. 28 (1978) 233



