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Abstract. In this paper we briefly review the basic theory of shock waves in relativistic hydrody-
namics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then
present an overview of the theory of particle acceleration at such shocks describing the methods
used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-
relativistic shocks are discussed

1 Introduction

Two recent observational developments have renewed interest in the subject of par-
ticle acceleration at relativistic shocks. The first concerns the strong variability of
certain active galaxies in very high energy gamma-rays [1]. Secondly fireball mod-
els of gamma-ray bursts invoke the existence of relativistic shock waves to explain
the burst and it’s afterglow [2]. There has also been some speculation that accel-
eration at ultra relativistic shock fronts in fireballe models of GRBs may account
for the ultra high energy cosmic rays - UHECRs ([3]). In light of these, and other
theoretical, developments we present in this paper a review of the theory of particle
acceleration at relativistic shocks. In section (2) we discuss hydrodynamic and mag-
netohydrodynamic shocks and particularly those factors (e.g. magnetic field strength
in a relativistic shock) which influence the compression ratio which is the most impor-
tant hydrodynamic quantity in the acceleration process. Energetic particle scattering
and acceleration at relativistic shocks is described in section (3) while Monte Carlo
simulations are covered in section (4) and a brief discussion of UHECR acceleration
in ultra-relativistic shocks is contained in section (5). Much of the detail omitted from
this short article is contained in a recent review [4] (henceforth referred to as KD99).

2 Relativistic shocks

The relativistic shock problem was solved by Taub [5] and, before turning to the MHD
case, we will recall this theory. In the absence of external forces and energy sources, the
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Fig. 1. The compression ratio of a strong oblique fast-mode shock front (®_ = 45°) propagating into

a magnetised plasma. Various Alfvén Mach numbers M are shown, together with the hydrodynamic
approximation (dotted line).

equations of relativistic hydrodynamics can be formulated as the vanishing divergence
of the stress-energy tensor associated with the fluid:

v, T" = 0 (1)

Neglecting dissipative effects, the stress-energy tensor is diagonal in the local plasma
rest frame, and is given by T#” = wufu” + pg"”. Here u* is the four velocity of the
fluid (u = 0,1,2,3), and ¢g" the metric tensor, for which we adopt the convention
—+++. The scalars w and p are the proper enthalpy density and pressure, i.e., those
measured in the rest frame of the fluid, in which u#* = (1,0,0,0). The problem of
solving the Rankine-Hugoniot relations to find the jump conditions across a shock
front requires one to use an equation of state to find the quantity p/p, given the
quantity e/p. For a dissipation free ideal gas, the Synge equation is appropriate, and
it is necessary to solve this numerically. A popular short-cut is to define a parameter
4 via the equation p = (¥ — 1)(e — p). In the non-relativistic case 4 = 5/3 and can
be identified as the ratio of specific heats of the gas. For a gas whose pressure is
dominated by a relativistic component, one has 4 = 4/3 (a fully relativistic gas has,



in addition, e > p). Together with equation (1) the number conservation law,
vu (niu”) =0 (2)

determines the jump conditions across a plane parallel shock. Defining the Lorentz
scalars v_ and v; to be the shock speed measured in the upstream and downstream
rest frames respectively and Ty = (1 —v2)~!/2 we have the conservation of mass,
momentum and energy across the shock,

Fpv. = Tipyoy 3)
MPwv’ +p. = Tiwivl +py (4)
MPw_ov. = Dwivy (5)

Given v_ and the upstream state, e_/p_, these equations are to be solved for the
downstream state v, e /p— and the proper compression ratio R = p/p—. In general,
this entails a numerical procedure, which is described in KD99 but it interesting to
mention the special case of a shock in a relativistic gas in which p = ¢/3 (both
upstream and downstream) where one finds the simple relation v_v; = 1/3. Moreover,
in the ultra-relativistic limit, I'_ — o0, the upstream pressure (p_) may be neglected
in Eq. (4). If, in addition, the downstream particles are ultra-relativistic, in the sense
that ey > p4, one may combine Egs. (4), (5) to find vy - 4 —1 = 1/3 and
Tt = T_ /(2 —4)/4 = T_/v/2 These relations are independent of the equations of
state upstream and downstream and hold whether or not particles are conserved at
the shock, provided only that the downstream particles are ultra-relativistic.

In ideal, relativistic MHD, it is assumed that the plasma, is dissipation free and
that in the local rest frame the electric field vanishes. In this case, the electromagnetic
field is specified by the magnetic field alone, so that the source-free Maxwell equations
become

V, (B*u’ —utB") = 0. (6)

In the rest frame of the plasma B* = (0, B) where B is the magnetic field three vector
in that frame. In the following, B is taken to denote the magnetic field strength in
the local plasma rest frame which satisfies B*B,, = B?. The components of B* in
a frame where the plasma is moving with four velocity u# can be derived from the
appropriate Lorentz transformation in terms of B. The energy momentum tensor of
the system consisting of electromagnetic fields and fluid is

B? B? B*BY
Tw  — = W, v = pv o _ .
<w+4ﬁ)u u +<p+87r)g in (7

and the equations of relativistic MHD consist of the vanishing divergence of this
tensor, together with (6) and, of course, an equation of state for the fluid. The jump
equations follow from these conservation laws ([6], [7], [8])- As in the hydrodynamical
case, there are some interesting limiting cases for MHD shocks. These include the cases
of a weak dynamically unimportant magnetic field and ultra-relativistic perpendicular
shocks (KD99). Of general importance to the acceleration problem is the fact that the
compression which can be obtained in a relativistic shock decreases as the magnetic
field becomes more and more important dynamically. This is illustrated in figure 1.




Fig. 2. The pitch-angle distribution of accelerated particles at a parallel relativistic shock front with

v— = 0.9, and vy = 0.37, as a function of the cosine p of the pitch angle measured in the rest

frame of the downstream plasma. Isotropic pitch-angle diffusion is assumed and the normalisation

of f is arbitrary. The depletion of particles with u & 1, (those which move almost along the shock

normal into the downstream plasma) arises because particles which move into the upstream plasma
are overtaken again by the shock before undergoing substantial deflection [9].

3 Particle acceleration

In the absence of scattering, or if the particle mean free path is much smaller than
the shock thickness, energetic particles will not undergo multiple crossings of the
shock. They will, however, be compressed in passing from upstream to downstream.
A simple model for such shock-drift acceleration is briefly presented in section 3.1.
In the presence of pitch angle diffusion off MHD trubulence particles can cross the
shock many times before being advected downstream . This first-order Fermi process
produces a spectrum of energetic particles which, as in non-relativistic shocks, depends
on the shock compression. However, the precise form of the pitch angle diffusion
coefficient also plays a role in determining the spectral index. This is discussed in
section 3.2.



3.1 Shock-drift acceleration

The dramatic increase in surface brightness which can be produced by a relativistic
shock front merely as a result of the ‘compression’ of the electrons was pointed out by
P. Scheuer [10]. A gas of relativistic electrons with an isotropic distribution function
in the local fluid frame achieves isotropy by experiencing elastic scattering by slowly
moving, low-frequency MHD waves, which may be self-excited. Consider energetic
particles in a fluid element flowing into an MHD shock where the phase space density
of particles is given by f(p) = C_p~* between a lower and an upper cut off: ppmin <
P < Pmax- When the scattering events are so rapid that the length scale over which
they isotropise the electrons is much shorter than the length scale characterising the
thickness of the shock, then the relativistic electrons react adiabatically. Particles are
compressed according to pp~1/3 = constant where p is the proper fluid density so that
downstream of the shock front one has

fr) = f-lplps/p-)'"?]

- ()

In the absence of scattering, and with conservation of the particle’s magnetic moment,
the same qualitative result is found namely that although particles are accelerated in
the shock-drift process the spectral index of the incoming distribution is unchanged.

3.2 First-order Fermi acceleration

In the case of test particles at a parallel shock, in the presence of pitch angle diffusion
described by the coefficient D,,, but neglecting as usual diffusion in energy, the
equation to be solved is

Fi(1+vip)?9—{+l“i(vi+u)g—£ = % uug_lft , (9)
where we have assumed the Lorentz factor of the particles is much larger than that of
the flow and have accordingly replaced their velocity with the speed of light (= 1). The
relatively simple form of (9) is a consequence of a mixed coordinate system in which
the cosine of the pitch angle y is measured in the local rest frame of the plasma, but
the space-time coordinates « and ¢ refer to the rest frame of the shock front. Seeking
stationary solutions one assumes a characteristic power law spectrum, f o< p~—* (where
s is to be determined), and imposes the boundary conditions that the distribution
vanishes far upstream while remaining finite at large distances downstream. There
is a further, internal, boundary condition at the shock front itself which is situated
at x = 0. Physically particles do not undergo a sudden change in momentum at the
shock so that the distribution function remains continuous there,

fo.pz=0) = f@,pz=0) (10)
where (P, i) are the momentum and pitch angle measured in the downstream frame
which are related to those measured in the upstream frame (p, u) by a Lorentz trans-
formation. This describes all of the physics of particle acceleration but obtaining
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Fig. 3. The spectral index as determined using the @Q; method (solid line) for a parallel relativistic

shock in plasma (25% helium) in full thermodynamic equilibrium. The dashed line corresponds to the

non-relativistic formula for the spectral index: s = 3r/(r — 1), where r = v_ /vy is the compression
ratio

the eigenvalues and eigenfunctions of the pitch angle distribution both upstream and
downstream (i.e. actually solving 9 in the steady state) requires a numerical proce-
dure. The technique for doing this, the () ; method, is described in KD99.

An example of the angular distribution at a relativistic shock, as seen from the
rest frame of the downstream plasma, is shown in Fig. 2. This figure was computed
using an isotropic pitch-angle diffusion coefficient D, oc 1—pu?. As well as confirming
that the the distribution is strongly pitch-angle dependent, Fig. 2 shows that very few
particles travel in the direction y = 1, i.e., along the shock normal into the downstream
region. The reason is that a particle which crosses into the upstream plasma undergoes
relatively little deflection before being caught again by the relativistically moving
shock. Significant deviations from a naive extrapolation of the non-relativistic formula
s = 3r/(r — 1) are found already at quite low speeds, as is shown in Fig. (3).

In contrast to the diffusive case, the value of the spectral index s for relativistic
shocks depends on the functional form of the pitch-angle diffusion coefficient D,,,.
This point has been investigated by Heavens and Drury [12] and by Kirk [11]. For
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Fig. 4. The effect of anisotropic pitch angle diffusion on the spectral index produced by a parallel
relativistic shock front. The full line (isotropic) and the short dashed line (anisotropic) show the
results of the Q; computation [11], with, for the latter, pitch angle diffusion given by equation (11).
The spectral index found by Heavens and Drury [12] is shown by the dotted line (isotropic) and
long dashed line (anisotropic). The pitch angle diffusion coefficient in the latter case is given by
equation (12). Note that [11] and [12] assume slightly different compositions for the plasma.

example, if pitch-angle scattering through the point u = 0 is severely restricted, the
spectrum is steepened. Figure 4 illustrates this for pitch-angle scattering given by
Dy, o (L—p*)p?  for |u| > e
D,, = constant  for |u| <e (11)
with € = 1/30 and the index ¢, which corresponds to the power-law spectrum of the

turbulent wave-energy in the quasi-linear theory equal, taken in this example to be
2. Heavens and Drury, on the other hand adopt the prescription

Dyu = (1—p) (i +0.01)"? (12)

which roughly corresponds to the quasi-linear result in the presence of Kolmogorov
turbulence.



To date, the method has been applied to shocks moving with a maximum Lorentz
factor I'_ = 5. Although the results in Fig. 4 seem to indicate a convergence to a value
around 4.2 — a result also found and commented upon by Heavens and Drury [12] -
there is no analytic guarantee that the asymptotic limit either exists or is approached
smoothly. Notwithstanding this, recent numerical results ([13, 9] — see below) also
find convergence to s = 4.2 for very large Lorentz factors.

4 Monte Carlo simulations

The basic idea of the Monte Carlo method is to find a way of constructing a stochastic
trajectory whose distribution obeys the desired transport equation. Then, by repeat-
ing the procedure a large number of times, the distribution itself can be constructed
approximately. The pitch-angle diffusion operator

_ 0. 9of
Clfw] = 8,uDW6,u (13)
results in a transport equation which is a second order differential equation, for exam-
ple that given in equation (9). This describes the continuous deflection of the particle
by an infinite succession of infinitesimally small changes in pitch angle (it is also pos-
sible to simulate large angle scattering which we consider to be qualitatively different
to the continuous effect of turbulence on a particle’s trajectory, KD99). The stochastic
trajectory with such a collision operator is found by proceeding from one point on the
trajectory (labelled by, say z;, ;) to the next. One must solve the transport equation
under the initial condition f(z, u,t = 0) = 6(x — x;)d(p — p;)- For small changes in x,
this can be done approximately by assuming that pu changes only slightly. Expanding
equation (9) in powers of u — p;, one finds

of of o2 3]

Fp(1+ viﬂi)a +Te(ve + Mi)% = Duu(ﬂi)a_ugf + D:m(”i)a_uf (14)
where D' = dD/du. The substitutions A = (¢t — ¢;)/[T+(1 + pve)], E = (z —
z;) /Il (v+ + p;)] and 5 = p— p; + D' A reduce this to the heat conduction equation,
and the solution is easily seen to be

(S(IB —X; — Fi(vi + ,u,)A)
V7D, A

€xp [—(N — Hi — DIWA)Z/(DWA)] (15)

The next point on the trajectory is found by setting a sufficiently small time step
A and choosing a new stochastic value of u from the Gaussian distribution of equa-
tion (15). This method, together with specialised techniques for enhancing the statis-
tical significance of the results (such as the ‘splitting’ technique) was applied to the
the acceleration problem for particles undergoing synchrotron losses in [14].
Monte-Carlo simulations have also been performed for highly relativistic shocks
by Bednarz & Ostrowski [13] for upstream Lorentz factors up to 240. They find the

flz,mt =t + T (1 4+ pvi)A]) =



spectral index of accelerated particle converges to the value s = 4.2, independent
of the orientation of the magnetic field, provided both pitch angle scattering and
cross-field diffusion are permitted. In this ultra-relativistic limit, a particle which
manages to cross a shock front from the downstream side into the upstream flow is
very rapidly overtaken again once it is deflected. In fact it, can perform only a small
fraction (~ 1/I"_) of a gyration about the magnetic field line, unless the direction of
the field is exactly along the shock normal [9]. In this case a combination of motion in
a uniform field, and diffusion in angle due to fluctuations in the field on length scales
much shorter than a gyro-radius arises. If the field fluctuates rapidly, one would expect
to recover the operator equation (13), where now the quantity p is interpreted not
as the cosine of the pitch angle, but as the cosine of the angle between the particle
velocity and the shock normal. Gallant et al [9] have extended the method to the ultra
relativistic limit ('~ — oo) and considered both the case of diffusion in angle and
scatter-free deflection by a uniform field. The corresponding power laws are s = 4.25
and 4.3 respectively, in reasonable agreement with Bednarz and Ostrowski, despite
differences found in the angular distribution of the particles. This result is particularly
encouraging for those theories of gamma-ray burst sources which use a relativistic
blast wave to accelerate the particles, since it is close to the index of the particle
spectrum required to produce afterglow spectra [15].

5 UHECRS and Ultra-Relativistic Shocks

There have been suggestions that ultra-relativistic shocks, particularly in the context
of the fireball model of GRBs, might be capable of producing the UHECRs ([3]).
Gallant and Achterberg [16] have studied this possibility by considering the first and
subsequent shock crossing of a high energy particle at an ultra-relativistic shocks.
Starting with an isotropic upstream distribution they find that a particle’s energy is
increased on average by a factor 'y for the first shock crossing. However, for phys-
ically realistic deflection processes, it can be shown that for all subsequent crossings
the energy is roughly doubled. While the shape of the spectrum is a power law with
f(p) < p~*2 (as discussed above) the maximum energy is limited by the modest en-
ergy gains on all but the first cycle. Imposing the requirement that the time to deflect
a particle upstream be less than the age of the fireball, Gallant and Achterberg find
that the maximum energy attainable at the external shock of a fireball is,

E=5x10"ZB_gn/*6*n5"% eV, (16)

where Z is the particle’s charge, £ = &s2 10%%erg is the fireball energy, and B =
B_5107%G and n = ng cm~2 are the surrounding medium magnetic field and density.
This rules out the acceleration of UHECRs by repeated shock crossings at the exter-
nal blast waves of GRB fireballs in galactic magnetic fields unless there are sufficently
energetic particles upstream so that the initial large boost in energy is sufficient. Even
in this instance one requires a medium composed predominantly of relativistic parti-
cles to reach the required efficiency for UHECR production. Gallant and Achterberg
have therefore suggested that UHECRs might be produced by the initial boost in



a relativistic fireball expanding into a pulsar wind bubble created by the progenitor
system.

6 Conclusions

We have briefly reviewed the basic theory of relativistic shock acceleration and first
reults which have now appeared for the first-order Fermi process at ultra-relativistic
shocks. The compression ratio at an ultra-relativistic shock is independent of the shock
speed. If, as the simulations suggest, the power-law index of accelerated particles turns
out also to be independent of the shock speed in the ultra-relativistic limit, modelling
of individual observational events will become simpler.
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