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Abstract. In this paper we consider discrete approximations of a Dirichlet problem
for the quasilinear parabolic equation L(u(z,t)) = {€0?/0z? — u(x,t)0/0z — 0/0t —
c(z,t)}u(z,t) = f(=z,t), that is, the viscous Burgers equation. The singular pertur-
bation parameter e takes arbitrary values from the half-interval (0,1]. The initial
condition has a discontinuity of the first kind at the point S* = (0,0) such that
0o(4+0) — wo(—0) > 0, where u(z,0) = @o(z); thus, we have the Riemann problem.
For such a problem we construct special finite difference schemes controlled by the
parameter € and by the type of the singularities, which the solution u(z,t) exhibits.
The discrete solution for this problem is shown to converge uniformly with respect

to the parameter ¢ in a uniform grid metric.

Introduction

The smoothness of solutions to singularly perturbed boundary value problems deteriorates
as the singular perturbation parameter ¢ decreases. Reducing the smoothness of the
boundary conditions also leads to a decreasing smoothness of the solution. The numerical
solution of such problems gives rise to difficulties even in the linear case. Thus, the need
arises for the development of special numerical methods whose solutions are convergent
uniformly with respect to the parameter ¢ (see, for example, [1]-[6]).

Note that, as for the numerical approximation of linear boundary value problems for
singularly perturbed parabolic equations, two approaches have generally been taken to
construct special finite difference schemes: (a) an approach based on special difference
approximations of differential operators on arbitrary (in particular, uniform) grids (the
resulting schemes are called fitted operator schemes, see, e.g., [2], [3], [6]); (b) an approach
that employs standard finite difference approximations of differential operators on special
condensing grids, which guarantees the e-uniform convergence of the difference scheme

(these methods are called fitted mesh, or condensing mesh, methods, see, e.g., [1], [4]-[6])-
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The present paper deals with the construction of grid approximations of singularly
perturbed boundary value problem for a quasilinear parabolic equation. The initial con-
dition has a discontinuity of the first kind. When the parameter equals zero, the parabolic
equation reduces to a quasilinear hyperbolic one. The problem describes the decay of an
initial discontinuity due to convection accompanied by slow diffusion (low viscosity) in the
case when the rate of the convection is determined by the concentration of the substance
(see, e.g., [7]-[9] and the references cited therein).

The construction of special schemes for linear singularly perturbed parabolic equations
with a discontinuous initial condition was considered in [10]-[12]. Both approaches men-
tioned above were used in [10], [11] to construct the difference schemes. In [12], only the
approach based on the fitted operator method was applied that considerably simplified
the finite difference scheme.

Finite difference schemes that converge uniformly with respect to the parameter have
been constructed in [13] for a quasilinear parabolic equation with a transient layer, where
continuous boundary value conditions were considered. Special meshes condensing in a
neighbourhood of the transient layer were used to construct these schemes.

In this work both the approaches are employed to construct the finite difference scheme.
Special condensing meshes are used in a neighbourhood of the point of discontinuity.
Fitted operators similar to those described in [12] are applied only in the nearest neigh-
bourhood of the point of discontinuity. The distribution of the mesh points and also the
appropriate difference approximations are determined by the value of the perturbation
parameter € and by the character of singularities of the exact solution.

1 Statement of the problem

On the interval
Dayy={z: |z| <1} (1.1)

we consider the Dirichlet problem for a quasilinear parabolic equation, with a small pa-

rameter multiplying the highest-order derivative

L(1.2) (U(iE,t)) = f(f,t), (I: t) € Ga (123‘)

u(z,t) = (1), (z,t) € S. (1.2b)

Here G=Dx (0,T], T>0, S=S(G)=G\G, S=SUS;, So={(z,t): |z] <1,
t = 0} is the lower boundary of the set G,

L1.9) (u(x,t)) = {5% - u(m,t)% - % - c(m,t)} u(z, t),



o(z,t) = o(x,0) = po(z) for (z,t) € Sy. The parameter € takes arbitrary values from the
half-interval (0,1]. The coefficient c(z,t) and the function f(z,t) are sufficiently smooth
on G, and c(z,t) > 0, (z,t) € G. The boundary function ¢(z,t) has a discontinuity of the
first kind at the point S*, S* = (0,0). The function ¢(z,t) is sufficiently smooth outside
of the set S*.

The notation Ly (D), fik), Mjx)) implies that this operator (set, function or
constant) is introduced in the formula (j.k).

By a solution of problem (1.2) is meant a function u € C(G\ S*)NC%!(G) that satisfies
equation (1.2a) on G supplemented with boundary condition (1.2b) on S\ S*.

The existence and uniqueness of solutions for regular quasilinear problems with contin-
uous boundary conditions, as well as some a priori estimates, are considered in [14], [15].

We now define the data of problem (1.2), (1.1) more exactly. The boundary function
©(z,t) satisfies the condition:

[©o(x)] >0, (z,t)€S%, (1.3)

and also the condition:

(A) the function @§(z) is sufficiently smooth, and also (d/dz)pj(x) > 0, x € D; here
oi(x) = o) — [0 (0)]x(z), x(x) =2"'sgnz, where [v(z,1)]is the jump of the function
v(z,t): [v(z,t)] =v(x+0,t) —v(x —0,t), v(r+0,t) = SJ%TEEO v(z £ s,1t).

When ¢ > 0 and ¢(z,t) = f(z,t) = 0, equation (1.2a) reduces to the Burgers equation
(the viscous Burgers equation for ¢ > 0). When ¢ = 0, equation (1.2a) is the hyperbolic
equation

Loy (ul@,t)) = f(z,1), (z,t) € H, (1.4a)
where H = D x (0,77,
L4 (u(x t)) =< —u(z t)2 _9 —c(z,t) pu(z,t)
R Y Y 8;6 8t Y Y Y
with the initial condition

u(z,t) = @o(z), (x,t) €Sy, (1.4b)

where S = S{{(H)=H\ H.

We assume that the following conditions hold:

(B) the characteristics of the reduced equation (1.4a) (on the set G), which respond
to condition (1.4b), do not intersect with each other and leave the set G crossing its lateral
boundary S; at nonzero angles;

(C) the solution of problem (1.2) is nondecreasing with respect to .

The generalized solution of problem (1.4) is the limit of the solutions to problem (1.2)
as ¢ = 0. Under condition (1.3) the solution of the hyperbolic equation is continuous for



t > 0; thus, the discontinuity decays.

When applied to problems (1.2) and (1.4), the condition [ p(z)] < 0, (z,t) € S* leads
to the appearance of an inner (transient) layer and to the discontinuity of the generalized
solution, respectively, i.e., to the development of a shock wave.

The boundary value problem (1.2) is a model problem for compressible viscous gas
flow in the case of a rarefaction wave [7]-[9].

We now discuss some difficulties which arise when the boundary value problem (1.2),
(1.1) is solved by numerical methods.

The solution of this problem exhibits a rather complex behavior. In a small neigh-
borhood of the point S* as compared to the parameter £, the solution of the boundary
value problem is approximated, for ¢ € (0, 1] and small values of ¢, by the solution of
a singularly perturbed heat equation with a discontinuous initial condition. For small
values of the parameter ¢ and at such distances from the point S* that are essentially
larger than the value of ¢, the solution of the boundary value problem (1.2) is close to the
solution of the reduced problem (1.4).

The derivatives of the solution to problem (1.2) tend to infinity as the point S* is
approached. When ¢ is sufficiently small, the derivatives of the solution vary sharply
in a neighborhood of the singular rays that pass through the points {S*, u = ¢y(—0)}
and {S*, u = ¢o(+0)}. These singular rays are the characteristics of (1.4a). The first
derivatives with respect to the space and time variables are of order ¢t ! between the
singular rays (for ¢ > €). As ¢ — 0, boundary layers appear in a neighborhood of the
lateral boundary S;.

The fact that the solution is nonsmooth at S* and its derivatives are characterized
by limited smoothness in the neighborhood of the singular rays, i.e., in weak transient
layers, and also the presence of boundary layers lead to large errors when problem (1.2),
(1.1) is solved by traditional numerical methods. Therefore, it is required to construct
a finite difference scheme that converges uniformly with respect to the parameter (or,
briefly, e-uniformly) at each mesh point on the set G~ = G \ S*.

Note that the construction of e-uniformly convergent finite difference schemes for quasi-
linear equations with boundary layers was considered in [16]. In this paper, we are pri-
marily interested in such special schemes which approximate the solution of boundary
value problem (1.2) e-uniformly in a neighborhood of the transient layers, namely, in a
neighborhood of the point S* and also on the set G for |z| < 1—m, where m is sufficiently
small number. For this reason, we assume for simplicity that the boundary conditions
are chosen in such a way that no boundary layers appear, and among singularities of the
boundary value problem are only weak transient layers as well as a discontinuity of the

solution at the point S*.



2 A prior: estimates of the solution and its derivatives

In this section we give the estimates for the solution and its derivatives, which are used
to construct and justify the difference schemes below.

For the solution of boundary value problem (1.2) we have the estimate

| u(z,?) | < My, (z,t) €G, (2.1)

where My1) = Tmaax|f(a:,t)| + mgx|g0(:v,t)|. This estimate is derived by using the
maximum principle, cf [14], [15].

Here and below by M, M; (m, m;) we denote sufficiently large (sufficiently small)
positive constants independent of the parameter €. In discrete problems, these constants
do not also depend on the disretisation parameters of the difference schemes used.

We complete a definition of the piecewise continuous function v(z,t), (x,t) € S, which
is continuous on S\ S*, at the point of discontinuity S* by the relation v(z,t) = 27! (v(z +
0,t) +v(z —0,¢)), (z,t) € S*

We introduce the auxiliary function wq(z,t) which is discontinuous on S*
wo(x,t) = 2792 eV 20t7V?),  (x,t) € G\ S, (2.2)

where

V() = erfé = 277 1/2 /OE exp(—a?)da

is the error function. The function wy(z,t) at t > 0 satisfies the homogeneous singularly

perturbed heat equation

[ 9 0
L(Q_g)wo(l',t) = 6@ — a ’LU()(CL',t) = 0, (23)
at ¢ = 0 the function wy(x,t) is piecewise continuous, and also [wg(z,t) | = 1, (z,t) € S*.

Using the majorising function technique, we obtain the estimate
u(z,t) — Wo(z,t) — @i(x)| < Me Y2412 (2,t) €G, (2.4)

where
WO(mat) = [(pO(O)]wﬂ(xat)' (25)

Let t; > 0. On the set G(t1) = {(z,t) : (z,t) € G, t > t1}, we consider the function
w(2.6)(x,t) that approximates the solution of problem (1.2). We construct the function

w(z, t) to satisfy the initial value problem

Loy (w(x,b) = fla,1), (z,t) € G(t),

(2.6)
w(:v,t) = W()(.’E,tl), (l’,t) ES()(tl),



where Sy(t1) = D x [t = t1]. The function w(z, t) is defined by its values on the boundary
Sl(tl), where Sl(tl) = S(tl) \ S()(tl), S(tl) = @(tl) \ G(tl)
It is not difficult to construct w(x,t) to satisfy the estimates

lu(z,t) —w(z,t)| < Me 212 (2,t) € Gty), (2.72)

k—+ko _
0 <M [6—k—2ko +(5t1)—k/2—ko] , (z,t) € G(t1), k+2ko <4. (2.7b)

o (1)

In order to get estimate (2.7b), we pass to the variables £ = e~'z, 7 = ¢7!¢ in equation
(2.6a) and condition (2.6b). Further, we use a priori estimates from [14], [15] to evaluate
the function v(&,7) = w(x(§),t(r)) and its derivatives.

Theorem 1 Let the boundary function ¢(x,t) satisfy condition (1.3), and assume
that conditions (A), (B), (C) are fulfilled. Then estimates (2.1), (2.4) and (2.7) hold for
the solution of problem (1.2).

3 A prior: estimates based on asymptotics

We now give some a prior: estimates related to the asymptotic behavior of the solution
for small values of the parameter.

Let o) (x) and ¢7)(z), + € R be sufficiently smooth functions that satisfy the
relations: o) (z) = @o(z), 0 < z < 1; I (z) = @o(x), =1 < = < 0, and also
(d/dx)p®)(z) > 0, x+ € R. We extend the functions c¢(x,t) and f(z,t) to the strip
H = R x [0,7T] in a smooth way. We denote by U*)(x,t) and U(")(z,t) the solutions of
the Cauchy problem for the hyperbolic equation

s (09(0) = { =005 = = el U 0,0) = fort)
(z,t) € H, U (z,0) = oF(z), ze€R. (3.1)

If the functions ¢(t)(x) and ¢(=)(z) satisfy the condition (d/dz)¢™® (x) > 0 in a neigh-
bourhood of the set D, then for ¢ < &y, where §, > 0 is a sufficiently small number, it
follows that

alc-l—ko

EREws U (z,t)

< M, a%U<i>(x,t)zo, (z,t) €G, t€[0,60). (3.2

The functions U™ (z,t) and U (z,t) are assumed to satisfy the conditions

8k+k0 n
ppETn US) (z,1)| < M, (3.3a)
(%U&)(x, H>0, (1.t €T (3.3b)



In case condition (3.3) is true, the function u(z,t) satisfies the estimates

‘u(w,t) —U(+)(3:,t)‘ <M [s—i—xflt], x > Me,
(3.4)

u(@,t) = U (2,1)| < M[e+ 2| 't], z<-Me, (z,)€C.

The functions U*)(z,t) and U (x,t) approximate the solution of the boundary value
problem, respectively, on the sets x > 0 and = < 0 for sufficiently small values of the
parameter ¢ and the magnitude |z|~'¢.

Let V(z,t), (z,t) € H be the solution of the Cauchy problem

0? 0o 0
L(3.5) (V(.T),t)) = {6@ - V(l‘,t)% — &} V(-T,t) = 0, (l‘,t) S H:

V(z,t) =¢(z), z€R, t=0, (3.5)

where " {900(+0)a v >0
xT) =
wo(—0), x<0, z€R.

Taking into account estimates (3.4) and the explicit form of the function V(x,t) [8],
we establish the inequality

lu(z,t) — V(z, t)| < M[£+t1/2], (z,t) € G, |z| < Mt'/2, (3.6)

When the values of ¢ are small, the function V(z,t) approximates the solution of the
boundary value problem in the parabolic sector ¢ > ma?.

The following estimate holds for the function V' (z,t):

V(x,t) — Vio(z, t)| < Me¥3t72/3, (3.7)
Where QOO(_O)a x S QDO(_O)ta
Vo(z,t) =< at 1, wo(=0)t < z < @o(+0)t,

@o(+0),  po(+0)t < =
is the solution of the Cauchy problem (3.5) for ¢ = 0:

Las (Vi) = { Vel 3 - 2 A Voled) =0, (@0 e H
Vo(z,0) = ¢(z), z € R. (3.8)

In the variables ¢, t, where £ = &(z,t) = xt ', the function V(£,t) = V(z(£,1),t)

obeys the equation

- N 92
L(3.9) (V(&,t)) = {6t_28—§-2

~ [Vt - €] a%‘ %} V(g ) =0,

EeR, t>0.



The function ‘N/(f , 1) satisfies the estimates

é?;%vﬁﬁ)Sﬁﬂ1+§+6%fﬂ+§+6t5%h (ER, t>0;
‘ggk (&) < MyA0/2 oxp (—my*1/2 ({: — gpo('f‘O)) ) , &€ > @o(+0), (3.10)
k
‘ 885,6 (&) < M2 exp (mu (6= 0p(=0)) ), € < po(—0),

EER, t> Me,
where v = ¢7't, m = m.10) < 1, the constant m3.19) can be chosen arbitrarily close to 1.
By virtue of estimates (3.4), (3.6) for to > 0, where ¢, > 0 is an arbitrary number, a
piecewise continuous function @(z, %) can be found such that

0
6_x¢($’t0) >0, ze€D.

Let @¢(z,t) be a smooth function which approximates @(z,t) and satisfies the conditions

0
u(z, to) — B, to) | < Mtg?, ‘a—Q(x,to) < Mgt
T

u(x,tp) — Polx,1)| < (1)+5+1E,
u(x, to) — Bo(z,t0)| < M [t + ("2 + 8,)t5" |

)
< Mty (e? + 6,) 1, a—dso(x,to) >0, z€D, k=1,23.
xr

Here §; > 0 is a sufficiently small value. Then, for ¢ € [y, ty + g |, where §p > 0 is also

‘—@0 Z, t()

sufficiently small, the solution of the problem

Ly (Z(@. 1) = f(z,1), (2.t)€G, t€ (to,to+0d],

(3.11)
Z(fl:, to) = QO(CC, to),
exists and satisfies the relations
lu(z,t) — Z(z,t)| < M[t* + (% +6,)t5 ], (3.12a)
okt —1/.1/2 1—k—ko
WZ(.’I),I?) < Mto (8 + 61) s (312b)
0
a—xZ(:v t)y >0, (z,t)€G, te]ty,to+ ] (3.12¢)
The estimate (3.12a) for ¢ty = €'/3, §; = 0 implies the inequality
u(z, ) — Z(z,t)| < Me®, (x,t) € G, te[e' e’ 44,
where, generally speaking, 09 = d¢(¢). The function wug(z,t) defined by
U z,t), = < —Mt'/?,
(.9 U (x,t), x> Mt/ (3.13)
uo(z, t) = i
’ Viz,t), |o| < M#Y2, <3,
Z(z,t), x €D, t>el/3,

8



is the main term in the asymptotic expansion of the solution u(z,t) of the boundary value
problem (1.2):

lu(z,t) — ug(z,t)] < Me'®, (x,t) € G, t<e'®+6,. (3.14)

Theorem 2 Let the assumptions of Theorem 1 hold. Then the auxiliary functions
UN (z,t), U (z,t), V(z,t) and Z(x,t), which are the solutions of problem (3.1), (3.5)
and (3.11), satisfy the estimates (3.2), (3.7), (3.10) and (3.12b), (3.12c), respectively. For
the function u(z,t), i.e., the solution of boundary value problem (1.2), the estimates (3.4),
(3.6), (3.12a), (3.14) are valid.

Remark. The estimates (3.4), (3.6) are valid for ¢ € [ty,T']. Assume the relations
(3.12b), (3.12c) are fulfilled for ¢ € [t9,T']. Then, for ¢ € [ty,T], the estimates (3.12a),
(3.14) hold. Tt is not difficult to satisfy the relations (3.12b), (3.12c) for t € [to, T'], for

example, with c¢(z,t), f(z,t) = 0 (see also discussions in the subsection 3 of Section 7).

4 Difference scheme convergent for bounded values of ¢

When constructing the scheme, we assume that the estimates of Theorem 1 hold.
On the set G we introduce the grid

Gp =W X wy. (4.1a)

Here @ and @, are uniform grids on the intervals [—1,1] and [0, 7], respectively. We
denote by h and hg the steps of the grids @ and @,, respectively, h = 2N~!, hg = TNy ',
where N and N, are the numbers of intervals in the grids @ and @y, respectively. Assume
Gr = G NGy, S, =SNG On the set S; = S* N Gy, the boundary function ¢(z,t) is
defined by ¢(z,t) = 2 (p(z +0,t) + p(xz — 0,t)), (z,t) € S§. We represent the domain
G as a sum of the subdomains

G = G, U Gy, (4.1b)
where Gy ={(z,t): x € D,0 <t < t,}, Go=G\ Gy, t;=min{e3/3[N"1+N;']>/°, T}. On

the set Gy, to approximate equation (1.2a) we use the classical finite difference scheme

A(4_2)(2($,t)) = f(.’L',t), (.’L’,t) € GQha (4.2)

where
A(4.2) (Z(l’, t)) = {55505 - Z+(.Z', t)éf - zi(m: t)5$ - 55 - C(QZ, t) } Z(CC, t):

2t (x, t)=2(x, t)+|2(z,t)], 27 (x,t) =2(x, t)—|2(x, )|, 07 2(x, t) and 07 z(x, t), 0,7 z(x, t) are
the classical first and second difference derivatives on uniform grids Wy and @, respectively,

Gsh = Gs n éh, S = 1, 2, @h = éh(él.la)- (41C)

9



On the set G, we approximate equation (1.2a) by the fitted finite difference scheme

Az (2(z,1)) = f(=,1),  (2,t) € G, (4.3a)

where
A3 (z(x, t)) = {67(%’, t)0pz — 21 (2,1)05 — 2 (2,1)0; — 07 — c(w, 1) } z(z,t).

The fitting coefficient y(z,t) is chosen according to the fitted operator principle [2], [3]
so that the function wo(z,t) = wo.2)(x,t) must be the solution of the homogeneous

difference equation which approximates the singularly perturbed heat equation
Auagywo(z,t) = {ey(z,t)0pz — S5two(z,t) =0, (z,t) € G- (4.4)

It is convenient to choose the function y(z,¢) such that the equation Ay4yv(z,t) =0,
(z,t) € G}, is satisfied with the function v(z,t) = wo(z,t) + ue(z,t), where ug(z,t) is any

smooth solution of the homogeneous equation L syu(z,t) =0, (z,t) € G, for example,

uo(z,t) = ugus) (z,t) = —2® — 6ewt, (x,t) € G. (4.5)
Then w02, £) + b g (2, 1)
WolT + oz up(x
. 4.
V(@) = €057 Wo (@, t) + £0y7 uo(z, 1)’ v#0 (4.3b)
Assume
y(z,t) =1 for x=0. (4.3¢)

Note that, for ug(z,t) = 0, the function 7(z,t) is very sensitive to computing er-
rors, because of the quick exponential convergence of ¢,z wo(z,t) to zero as the value of
e~1/22t=1/? increases.

To solve problem (1.2), we use the difference scheme

Aue)(2(z,t) = f(z,t), (x,1) € Gh, (4.6)
z2(z,t) = ¢(z,t), (z,t) € Sp.

Here Aasy (2(a, 1)) = { 43)(2(z,1), (1) € G,
Auogy(2(z,1)), (2,t) € Gap-

The quasilinear difference scheme (4.6), (4.1) is monotone, and, just as for problem
(1.2), the maximum principle [17] holds.

We assume that, for the considered data of problem (1.2), the solution of the discrete
problem exists and satisfies a condition similar to (C):

(D) the discrete solution is nondecreasing with respect to the variable z.

When evaluating the error of the solution z(z,t) —u(x,t), we use the majorant function
technique (see, e.g., [16]). Taking into account the estimates for v(z,t), v(z,t) — 1, and

also the a priori estimates for the solution of the boundary value problem, we find

10



u(z, t) — 2(2,8)| < M{N,’N + e [N + N |7}, (,1) € Gy

Under the condition
Ny B < o(N Y (4.7)

we have

1'% (a,t) € G (4.8)

u(z,t) — 2(2,t)] < Me™/*[N~" 4+ Ny!

Thus, in the case of condition (4.7), the difference scheme (4.6), (4.1) converges for
e [N+ No‘l]l/5 — 0, (4.9)

in particular, for the fixed finite value of the parameter ¢.

Theorem 3 Assume that conditions (A)—(D) are fulfilled, and let the estimates of
Theorem 1 hold for the solution of the boundary value problem (1.2). Then, under condi-
tions (4.7) and (4.9), the solution of the finite difference scheme (4.6), (4.1) converges to
the solution of problem (1.2). The discrete solution satisfies (4.8).

5 Difference scheme convergent for small values of &

In this section, for small values of the parameter €, we construct a difference scheme using
the domain decomposition method for boundary value problem (1.2).

1. First we introduce the domain decomposition method. We cover the domain G
by a system of subdomains, in each of them we construct a suitable grid approximation
for problem (1.2). The size and form of these subdomains depend on the value of the
parameter £ and the number of mesh points in the space and time grids, which are used

for constructing the mesh discretisations in the subdomains. Assume
4
i=1

where GlzGﬂ{O <t< tl}, Gi:Gﬂ{ti_l <t< ti}, 1=2,3,4,0< t; <tp <ty=T,

1 < k. We represent each set G;, i=1,2,3 as a sum of the subdomains:
3 .
Gi= G, i=1,2,3, (5.1b)
j=1
where
G%:Glﬂ{‘fﬂ <2l1}, G%:Glﬁ{$< —ll}, G?:Glﬂ{$>ll},
G = Gon{|z| < 2:pt}, G2 =GyN{x < —aot}, G3=GyN{x > st}

G = Gsn{|z| < 2x3t}, G3=G3N{x < —ast}, G3=G3n{x > a3t}

11



2y =Lt @3 =1y, 0 <y, ly <1; the values of Iy, Iy, t1, to, t3 will be defined below.

For convenience in the sequel we introduce a new numbering of the subdomains. Assume
G*=GI!, where k=3>i—-1)+7j; k=1,2,...,10, (5.1¢)

here G, = Gj.

We now construct the alternating Schwartz method for the differential problem. On
the subdomains G*, G7 we pass from the variables x, ¢ to the new variables £, ¢, where
£ =&(x,t) = xt7'. In terms of £ and ¢, equation (1.2a) takes the form

L(5.2) (’IZ(S, t)) = f(gvt)’ (67 t) € é? (52)

where

L2 (u(§,t)) e
0(E ) =v(@(& 1) 1), GO={(&1): E€=¢&,1), (0,1) € G}, a(6,t) =&,

G is an image of the set G°, G° is a subset of the set G, and v(z,t) is any one of the
functions u(z,t), c(z,t), f(z,1t).
Let u%(z,t), (z,t) € G be an arbitrary function satisfing condition (1.2b). Assume

5 0? i~ 0 0 _
fer o - e - 0% - 5 - elen e,

Ls3)(u H%(x ) =0, (z,t) € gla (5.3)
urE (z,t) = u'(z,t), (x,t) € G\ Gk
Lisa(u % (z,1) = 0, (z,t) € G*, k#£1,4,7,K,
L3y (@™ (€,1) = 0, (&,1) € GF, k=4,1,
Wtk (z,t) = wtR (n,t), (2,6) € G\GF, k=2, .., K—1;
L) (u(z,t) = 0, (z,1) € G,
Wz, t) = uE (2,0), (z,t) e G\GX; r=0,1,2,....
Here K =10,

Lis3)(u(z,t) = Lag (u(z,t) — f(z,t), (z,t) € GF,
k=1,... K, k#4,T:
L(5.3) (’lj(g, t)) = L(5 2) (ﬁ(f,t)) - .]F(gat)ﬂ (55 t) € ék fO’I" k= 4; 7;
Wt K (z,t) = g (&(z,t),t)  for k=4,T;

r is the number of iteration, r = 0,1,2, .. Each function w % (z,t), (z,t) € G is the

solution of the Dirichlet problem on the set G"

Ls.3)(u ’"*ﬂx t) =0, (z,t) € G,
T (2,t) = utR (2,t), (5,t)e€SF, k=1,...,K, k#A4,T;

L(53( tR(EL) = 0, (€,t) € GF,
AR (6 ) = aTTR(6,1),  (6,1) € Sk, k=47



and coincides with the function u™*'% (z,t), (z,t) € G on the set G \ G¥; here SF =
G" \ G*. Tt is required to find the sequence of functions u"(z,t), (x,t) € G, r =1,2,...,
which are components of the solution to problem (5.3), (5.1). This is the alternating
Schwartz method.

Using the comparison theorems [14], [15], we establish the estimate

lu(z,t) —u"(z,t)| < Q(e,9) (¢(¢,0))", (z,t) € G. (5.4)
Here

_ : ) 1 2 1 yall 2 valil
q(e,0) <1, 6= i’(wll,Ttl){I(le,t) pi ((x 1), (z ,t)) . (e, edy, (2°t) e G,

(',1), @) ¢ {G NGV}, ij=1,23,
Gy] is the union of the subdomains G}, G2, G2 excluding the set G’

GV =G, k=1,2,3, k#j
k

pi((z',t), (2%, ¢)) is the distance between the points (z',¢) and (z?,¢) from the set G;(.1).
We consider such a method for solving problem (1.2) as the domain decomposition

method in the case of nonempty intersection of the subsets. It is required to find the

functions u*(z,t), (z,t) € G, k=1,..., K (K = 10) which satisfy the relations

Lis.3)(u*(z,t)) = 0, (z,t) €G*, k=1,....K, k#4717, (5.5a)
L.z (@*(€,1) = 0, (€, t) e Gk, k=4,T, (5.5b)
ub(z,t) = u(z,t), (2,t)eG\G*, k=1,...,K, (5.5¢)

where u*~1(z,t) = u¥(x,t) for k=1.

The following relation holds for the domain decomposition method (5.5), (5.1):
uf(z,t) = u(zx,t), (z,t)€G, k=1,... K, (5.6)

where u(x,t) is the solution of problem (1.2). In (5.5), (5.6) the upper index k shows the
number of that subdomain G where the auxiliary problem is considered.

Taking into account relations (5.4), (5.6), the alternating Schwartz method (5.3), (5.1)
for solving problem (1.2), (1.1) can be interpreted as an iterative method for the solution of
problem (5.5), (5.1) (that is, the domain decomposition method for problem (1.2), (1.1)).

2. In this subsection we construct mesh approximations for the domain decomposition
method (5.5), (5.1).

On the chosen domains G’(“M) we construct the grids. For simplicity, when constructing

the grids in each of the subdomains (if it is nonempty), we use N + 1 and Ny + 1 nodes
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with respect to the space and time variables, respectively. We define the values of ¢, %o,

t3, l1, ly, assuming

t, = 5N;10/63, ty = min [5Nf/7,T] , t3 = max [81/3 + N;1/3,t2] ,

ho=eN, Y%, 1y =21 (1+ max{ po(-0)[, lpo(+0)]}), (5.7)

where N, = min[N, Ny|. Note that the domains G*, k = 5,6,8,9 are not rectangles. We
construct the grids G¥, k =1,...,10, k # 4,7 and é}f, k = 4,7 on the basis of rectangular

grids, as follows:

Gr=G*N{@* x@}, k=1,...,10, k#47,
GE=G*N{E" xwl}, k=41 (5.82)

All the grids %, &", Wk, besides the grid %", are uniform grids. The distribution of the
nodes for the mesh & =& (o) is piecewise-uniform: the nodes of & (') are condensed
in a neighborhood of the points £ = &, &, where & = o(—0) and & = ¢o(+0); o
is a parameter depending on N, and N. The mesh 57(0) is constructed to be uniform
on each of the intervals [ =&y, & — o, [& — 0,6+ 0], [&+ 0,6 — 0], [& —0,& + 0],
[& 4 0,& |, where & = 4(1 + max {|po(—0)], |o(+0)] }), the number of nodes in each of

these intervals is 57N + 1. The value of ¢ is given by the relation
0 =0"=0(N,,N) =min [47, 47 (o(+0) — ¢o(—0)), N;/*In N} . (5.8b)

On the boundaries S* and S*, the meshes (5.8a) define the sets of the boundary nodes
Sk and SF (see, e.g., [17]) in a natural way. The sets S and S} consist of the points
which are formed by intersection of the lines t = t°, t* € wf with the boundaries S* and
Sk respectively, and also the points wkkx {wk\ wk} and 3" x {wk \ wk}, which belong

to the lower bases of the sets @k and 5 . Assume
—k —k ~ ~
G, :G’gUS’,f, G, :G,fUS,f. (5.8¢)
_ —k
On the grids G and G, it is required to find the grid functions 2*(z,t) and ¥ (¢, ).

On the sets G¥ and GJ, these functions satisfy the following discrete equations which

approximate equations (5.5a) and (5.5b)

0, (z,0)€GY, k=1,....K, k#4,7, (5.92)
0, (6,1)eGF, k=41

A(5_9) (Zk(.’E, t))
A(5-9)(gk(§’ t))

Here
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Aoy (2" (2, 1)) = Aayy (2* (2, 1)) — f(2,1),  (x,t) € G, k=1,
Aoy (o,) = e85 — (#(@.0) 0 — ((2,1) b
. c(a:,t)} HFa,t) - f(z1), (a1) € G,
z=a', k=1,...,10, k#1,4,7,
Aoy (256 1) = {5t25gg —t [(z’“(g, t)—€) 6 + (Z5(.t) —€) 5,5] _
- 5-TE 0} MED - 6D, (1) € G,
E=¢, k=47,

(v(z, )" = v(2,1), (v(z,1))" = v (2,1), 052" (z,t) and G5zZ"(&, ) are the second
difference derivatives on nonuniform grids.

We write out conditions imposed on the functions z¥(x,t) and Z¥(&,t) on the sets S¥
and S respectively. Set 2% (z,t) = 2 (£(x, ), 1), (x,1) € 5:, k=4,7, where G° = {(z,1):
z = z(£,1), (£,t) € G}, G is one of the sets SF or GF; 5: = GFuUSk k=4,7. By
zk(z,t), (x,t) € G'te wk for k=2,...,10, we denote the functions constructed by linear

interpolation with respect to x from the values of the grid functions 2*(z,t), (z,t) € @,’:

—=k —
and 2*(z,1), (z,t) € G, . The function z'(z,t), (z,t) € G, t € @] is constructed by

7'z, 1) = {[2' (@) = Wops (@, 1)] (& — o)+
+ [ (@' 1) = Woes) (@', 1) | (2 — 27") } (@ = 2"7) " + Wogs) (=, 1),
g€, @ L1, (@) eG, tew, t>0; (5.9b)

z(x,0) = @o(x), xz € D,

where z't! = ¢+ h!, h'is the step-size of the grid @®.

Let us introduce the function Z(z,t), (z,t) € G, t € W, where

78 = { @ Uwt Ul Uwr® }- (5.9¢)

Assume

tews, s, k=1,...,10, s#k; (5.9d)
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We define the functions z¥(z,t) and z¥(&(x,t),t) = 2¥(2,t) on the sets S¥ and SF by the

relations

Zk(x,t) = gO(:L',t), (xat) € S}’fﬂsa
2 (x,t) = Z(z, 1), (z,t) € SF\ S, te b
Fa,t) =25z, t), (1) € {SF\ S} {UGS} L tewk, k#£4,7;
R i (5.9¢)
Ek(m,t) = ¢(z,1), (z,t) € S/fms,
7k (z,t) = Z(x, 1), (z,t) € SF\ S, te b,

25z, 1) = 2% (z, 1), (x,t)e{g,f\s}ﬂ{U§s}, tewk, k=47,

where s, k=1,...,10, s#k, 0% =wk\ k.

The finite difference scheme (5.9), (5.8) is the difference scheme based on domain
decomposition that approximates problem (5.5), (5.1).

Consider that the steps of the grid G, satisfy the condition h(h})=3/2 — 0 for
N, Ny — oo, where h' and h; are, respectively, the steps of the grids w' and w, that
generate the grid @;; h! = 411(5_7)]\7 , hi = = t1(s. 7)N . Thus, under the condition

NP < oY, (5.10)
we have the following estimate for the finite difference scheme (5.9), (5.8):
lu(z,t) —Z(z,t)| < M (51/6 + [N+ No—l]5/63) , (r,t) €G, tewl, (5.11)

that is, scheme (5.9), (5.8), (5.10) converges as ¢ — 0 and N, Ny — oc.

The estimate (5.11) is derived by using the majorant function technique (see, e.g.,
[14], [18]). When the values of € are small, the derivatives of the solution to the boundary
value problem are sufficiently large on the sets @1, G"'and G'. The convergence of the
difference scheme on G is provided by using the fitted difference operator. On the set
G* with sufficiently small amount, the convergence is achieved by means of an especially
small step of the grld with respect to the variables £ and t. To approximate the boundary
value problem on G we use the special grid condensmg in a nelghborhood of the intervals
€ = @o(—0) and & = @o(+0). On the other sets G’ , G’ , G’ , G®and G , the solution of
the boundary value problem is relatively smooth; the convergence of the difference scheme
on these sets is provided by natural decrease of the mesh widths in space and time as
N, Ny — oo. The existence of the solution to nonlinear problem (5.9), (5.8) follows
from convergence of the solutions of the iterative grid process based on the alternating
Schwartz method (see, e.g., [19]), which approximates the finite difference scheme (5.9),
(5.8).
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Theorem 4 Assume that conditions (A)—(D) are valid, and let the solution of the
boundary value problem (1.2) satisfy the estimates from Theorem 2 and the remark fol-
lowing it. Then, under condition (5.10) and for e — 0, N, Ny — oo, the solution of
the finite difference scheme (5.9), (5.8) converges to the solution of problem (1.2). The

discrete solution satisfies (5.11).

3. To find the approximate solution for boundary value problem (1.2), which is con-
vergent uniformly with respect to the parameter, we use the following algorithm (we call
it algorithm A). If ¢ > [N~14 N;!]%?°, then the boundary value problem is approximated
by the finite difference scheme (4.6), (4.1). But if ¢ < [N~' 4+ N;!]%/?°, for the solution
of the boundary value problem we use the finite difference scheme (5.9), (5.8). On the

interval [0, 7], we introduce the mesh

w(? = 58(5.12): (5.12)

assuming Ws 19, :_w&s_gc) for scheme (5.9), (5.8), and W5 19y = Wo(a.14) for scheme (4.6),

(4.1). On the set G, t € Wys19), we define the function
Z(z,t) = Zp)(2,1),  (2,t) €G, tewy, (5.13)

where Z(5.13)(x,t) = Z(5.9q) for scheme (5.9), (5.8). In the case of scheme (4.6), (4.1) for
(z,t) € Gawp), t # t1, the function Z(z, ) is the linear interpolation in z from the values
of the grid function z(z,t), which is the solution of problem (4.6), (4.1). On the set
Gi(4.1p), the function Z(z,t) is constructed by (5.9b), where z'(z,¢) and 2*(z, ) is Z(z, t)
and z(z,t) respectively.

For the approximate solution we have the estimate

]1/29

u(z,t) —Z(@,t)] < M[N '+ N7, (mt)€G, temy, (5.14)

where Z(z,t) = Z(5.13)(v,1), @y = Wg(s.19)-

Theorem 5 Let the assumptions of Theorems 3 and 4 be fulfilled. Then, under con-
ditions (4.7), (5.10), the approzimate solution of boundary value problem (1.2), which is
constructed by the algorithm A, converges e—uniformly for N, Nog — oo. The discrete

solution satisfies estimate (5.14).

6 Grid approximations of the boundaries of a rarefaction wave

1. In this section we investigate the behavior of the boundaries of a rarefaction wave.
As e 't — oo, the solution of problem (3.5) converges to the solution of problem (3.8)

(see estimate (3.7)); the function Vy(z, t) is the main term in the asymptotic expansion of
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the solution of problem (3.5) for € = o(t). The function Vy(x,t) for (x,t) € G\ S* consists
of three smooth parts, divided by the rays z = ¢y(—0)t and = = ¢(40)¢, which are the
boundaries of a nonviscous rarefaction wave. We denote these boundaries by = = s; (¢),
x = s§(t) (the left and right boundaries of wave). In the case of problem (3.5) for ¢ = o(t),
it is possible to pick out three parts in the interval D, on each of them the first derivative
with respect to z (for fixed t) is almost constant except for the narrow transient layers
which divide these parts of the interval. The width of the transient layers goes to zero as
e— 0.

Note that |V (x,t) — Vo(x,t)| > m, © = s3(t), t = ¢ for any value of £ € (0,1]. This
means that the function Vy(z,t) does not approximate the solution of problem (3.5) in a
neighborhood of the point S* (for ¢ < O(¢)), when the parameter goes to zero.

We call the curves z = s7(t) and z = s*(¢) the boundaries of the ”viscous” rarefaction

wave in the case of problem (3.5), where the functions s~ (¢) and s*(¢) are defined by the

relations
O v, Svit o <« Zvism.0 = 2vist@). ) = 2~ max 2
5V (&55t), 5 V(@5 t) < - V(s™(t),t) = 5 V(s™(t),t) =2 max 55" (&:t);

ot <s(t), ¥ >st(t), te(0,T); s (t)=s"(t)=0, t=0.

On the left and right boundaries of the ”viscous” wave for each ¢ > 0, the first derivative
with respect to z is equal to the one-half of its maximum value. Taking account of (3.7),

we establish the following estimates for the functions s~(¢) and s*(¢):

|57 (1) = s (O], |s*(t) = sg ()] < M8, te[0,T],

that is, the functions s, (t), s

functions s~ (t), sT(t). Such behavior of s~ (¢) and s*(¢) is not contrary to the fact that
the function Vg(z,t) does not approximate the function V' (z,t) in a neighborhood of the
point S* as € — 0; both the functions s~ (¢), s™(¢) and the functions s, (¢), sg (¢) go to

zero as t — 0.

(t) are the main terms in the asymptotic expansions of the

It follows from estimate (3.14) that the function wgs.13)(2,?) is the main term in the
asymptotic expansion of the solution of problem (1.2). From estimate (3.7) it follows
that the function V(z,t) is approximated well by the function Vj(z,t) for sufficiently
small magnitudes of et~ !. For small values of € and ¢ the function V (z,t) is close to the
function Wy(x,t). The derivative (0/0x)u(x,t) satisfies the estimate

max 2u(x,t) > m'p l(t,e), te(0,4].
D Oz

Moreover,
0
8_.’L'U(x’ t) > m2 p_l(ta 8)7 S I:QOO(O)t - m3p(t7 8)7 (AOO(O)t + m3p(t: 6)] , € (O: 6]
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where p(t,e) = t'/2(e'/2 + t1/2).
In the case of problem (1.2) we define the curves z = s (t), x = s*(¢), i.e., the left
and right boundaries of the ”viscous” wave for ¢ € [0, ], where ¢ is a sufficiently small

number, by the relations

0 0 a o ., . 0
a—xu(x 1), e u(z?,t) < 8_a:u(8 (t),t) = 8_a:u(8 (t),t) =2~ mgx 2 u(z,t),
s (t), #*>st(t), te(0,T); s (t)=s"(t)=0, t=0. (6.1)

Here u(z,t) = u(1.9)(z,t) is the solution of problem (1.2), s*(¢) = 35_2’6_1)(15) = 3?%.1) (t).
Note that, for sufficiently small fixed ¢, the derivative (0/0x)u(z,t) in the nearest neigh-
borhood of the set [s~(¢), sT(¢)] strictly decreases when a distance to this set increases.
The value of ¢ is chosen such that the derivative (0/0x)u(x,t) outside a sufficiently small
neighborhood of the set [s™(t), s*(¢)] is essentially less than the value of (0/dz)u(s*(t),t)
for t € (0, 4].

In the case of problem (1.4), we denote the left and right boundaries of wave by

T =8y (t), z = s{ (t), where

sp (1) = 8(:)t(1.4,6.2) (t) = S(:)t(6.2) (t)- (6.2)

Such boundaries are the curves on G that separate the domains of smoothness of the
generalized solution.

We have the following estimate
[s7(t) —s0 ()], [sT(8) —sg(t)] < Me?, teo, 4],

that is, the functions s, (t), s§ (t) are the main terms in the asymptotic expansion of the
functions s~ (t) = s(5,)(t), s7(¢) = s?%_l)(t).

2. When constructing grid approximations of the functions s~ (¢), s™(t), t € [0, 9],
we use the approximate solution generated by the algorithm A. We define the functions
sh=(t), s"*(t) by the relations

i3 (xh, 1), 01322 t) < 6:F(sh(1),1) = 65 F(s"H (1), 1) = 2  max 65 F(, 1),

D

ot <sh7(t), 2% > "), t>0; ") =s"T(t) =0, t=0; tewl, t<4§, (6.3)

where Z(z,t) = Z(a3) (2, ), 0§ = w0512 §tv(z,t) = 271 (w(z+1,t) —v(z—1,t)), and

also
I = ligay(t,e, N, No) = M p(t,e) [N + No]7/*°. (6.4)

For the functions s"~(t) = 5?6’_3,6_4) (t), sh*(t) = 5(6+3 6.4)(t), which are defined by (6.3),

(6.4), we have the estimate

s~ (t) — " (1)], |sT(t) = s"F(t)| < M[N + No] V?°, tew, t<o. (6.5)
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Hence, the functions s"~(t), s"*(t) converge to the functions s=(t) = s (t), sT(t) =
3225.1) (t) uniformly with respect to the parameter. When we choose the value of [ in (6.3)

from the condition
L=l (t,e, N, No) = M (p(t, [N+ N e tl/?) , (6.6)
we obtain the following estimate
5o ()=, [ O @ <M (22 [V 8] ) reap 1<s (6)

that is, for ¢ — 0 and N, Ny — oo the functions s" (1) = s(z54¢)(t) and s"*(t) =
5?5376_6) (t), which are defined by (6.3), (6.6), converge to the functions sy (t) = sy (%),
50 (t) = S4(6.9)(t) that correspond to the limit (for e = 0) problem (1.4).

Theorem 6 Let the assumptions of Theorem 5 be fulfilled. Then the functions

ShG_.3,6.4)(t)7 5?g3,6.4)(t), t e 58(5_12), t < 60 converge, as N, Ny — oo, to the functions

), st (t) uniformly with respect to the parameter €; the functions sl t),
6.1) (6.1) (6.3,6.6)

h+

(
S(6.1
8(6_376_6)@), t € 58(5_12), t < & converge, as N, Ny — oo and € — 0, to the functions

So6.2)(8); 30+(6_2) (t). The estimates (6.5) and (6.7) hold, respectively, for the functions

8?6_.3,6.4) (t), 8?53,6.4) (t) and 8?6_.3,6.6) (t), 8?&3,6.6) (t).
7 Remarks and generalizations

1. Sufficiently intricate construction of the difference scheme is due to the behavior of
the singular part of the solution of the boundary value problem. For sufficiently small
values of the parameter, the solution of the problem for z, ¢t = O(g) is close to the
solution of the linear heat equation (¢0%/92% — 8/0t)u(z,t) = 0 with a discontinuous
initial condition u(z,0) = n(z), where n(z) is a step function, n(xz) = po(—0) for x < 0
and n(x) = ¢o(40) for x > 0. Natural variables for z, ¢t = o(e) are the scaling (self-similar)
variable ( = e~Y/22¢7'/2 and 7 = t. When z, t = O(g"), where v > 0 is a sufficiently small
number, the solution of the problem for ¢ > me is close to the generalized solution of the
quasilinear hyperbolic equation (—u(x,t)d/0x — d/0t)u(x,t) = 0 with a discontinuous
initial condition. Natural variables for ¢ = o(t), x, t = o(¢”) are the scaling variable
¢ = a2t ! and 7 = t. For finite and not too small values of the parameter, the singular
part of the solution is close to the solution of a singular perturbed heat equation with a
discontinuous initial condition if the value of ¢ is sufficiently small, ¢ = o(1).

2. If boundary layers are present in the solution, we use piecewise uniform grids
condensing by a special way in a neighborhood of the boundary layers (see, e.g., [16]).

3. We discuss the motivation of conditions (A)—(D) and (3.3), (3.12c), and the princi-
ples for a choice of the data to problem (1.2) that ensure the validity of these conditions.
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In the case of a discontinuous initial condition only the positive jump of the initial func-
tion (see condition (1.3)) initiates a rarefaction wave. For ¢(x,t) = f(x,t) =0, (z,t) € G,
if we choose a smooth function () strictly increasing on the parts of its continuity,
it is not difficult to satisfy conditions (A), (3.3), (3.12¢) for (z,t) € G (it is suitable to
extend the function ¢y(z) onto the z—axis and to consider equations (1.2a) and (1.4a) on
the strip H). The strict increasing, in z, of the solution of the reduced equation is kept
for sufficiently small values of time, if the functions c(z,t) and f(z,t) are bounded on G.
In this case the characteristics of equation (1.4a) satisfy condition (B). The existence of a
small viscosity is little manifested in a neighborhood of the smooth parts of the solution
to the reduced problem. The viscous solution keeps its increasing with respect to = for
small values of time, that is, the solution of problem (1.2) satisfies condition (C).

In that case when the solution of the discrete problem is nondecreasing with respect
to z (i.e., condition (D) holds), it converges e—uniformly to the solution of the boundary
value problem, which strictly increases with respect to = (for suitable data of problem
(1.2)). The constructed difference schemes are monotone (for both schemes (4.6), (4.1)
and (5.9), (5.8), just as for the boundary value problem in the form (1.2) and (5.5), (5.1)
under consideration, the appropriate variants of the maximum principle are valid). This
property of the schemes also ensures the applicability of the majorant function technique
to the analysis of their convergence. Therefore, condition (D) seems sufficiently natural.
The validity of this fact is easily controlled in the computing process. If conditions (A),
(C), (3.3b), (3.12c) are violated, the interior (transient) layers may appear, where the
solution varies by a finite quantity. In that case when such transient layers appear, the
statements of Theorem 3, and also Theorems 4 and 5 hold outside a sufficiently small
m-neighborhood (in the variables z, t) of these layers.

4. Note that all the above constructions of the special difference schemes are preserved

in the case of

L(u(x,t)) = {588—; — u(x,t)% — %} u(z,t) = g(z, t,u(z,t), (z,t) €G,

if the following condition holds:

0
™ (x,t,u)

5. The finite difference schemes (4.6), (4.1) and (5.9), (5.8) are nonlinear. To find
the solution of these schemes, it is possible to use iterative algorithms similar to those
developed in [17], [20].

6. To solve the discrete problem (5.9), (5.8), one can use the alternating Schwartz
method described in [18].

S Mla (il?,t) Eéa |U| S M2-
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