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Abstract. Prandtl’s boundary value problem on a flat plate for a system of bound-
ary layer equations is quasilinear. The solution of such a problem has complicated be-
haviour. Ezxperience in constructing satisfactory numerical methods for problems with
a parabolic boundary layer allows us to develop a “natural” special finite difference
scheme for the Prandtl problem; if it is assumed that the coefficients multiplying the
derivatives in the transport equation for Prandtl’s problem are known, then we have a
linear transport equation, and under appropriate conditions on these coefficients, the
scheme for Prandtl’s problem converges e-uniformly, where ¢ = Re™!, and Re is the
Reynolds number. It should be noted that at present e-uniformly convergent difference
schemes for Prandtl’s problem are unknown. Nevertheless, it is of great interest to
study numerically the above-mentioned special scheme. Numerical experiments indi-
cate e-uniform convergence, with respect to both the number of grid nodes and the
number of iterations required for convergence of the iterative process, of both the nu-
merical solution and its discrete derivatives, outside a neighbourhood of the leading
edge of the plate.
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1 Introduction

In this paper we discuss the steady laminar flow of an incompressible fluid on both
sides of a thin flat semi-infinite plate P = {(z,0) € R? : z > 0}. Our goal is to
model the flow for all Reynolds numbers for which the flow remains laminar and
no separation occurs on the plate. In what follows we determine numerical values
of the flow variables and their scaled derivatives. We show, by means of extensive
numerical experiments, that our numerical approximations are pointwise accurate
and that they satisfy pointwise error estimates that are uniform with respect to the
Reynolds number.

Incompressible flow past the plate P in the domain D = R? \ P is governed by
the Navier—Stokes equations. In this case they can be written in the form

)

Find uxs = (uns, vns), Pns such that for all (z,y) € D,
—éAUNs + uns - Vuns = _%VPNS
(PNS) V *UNSs = 0

uns(z,0) =0 forallz >0

[ limjy o0 Uns(2,y) = limg, o Uns(2,Y) = (U, 0), forallz € R

where uo, is a constant. This is a nonlinear system of three equations for the three
unknowns uys, pns. The approach of Prandtl [5], which is described in [1], simplifies
(Pxs) to the following Prandtl problem in the domain D.

;

Find up = (up, vp) such that for all (z,y) € D

i 62'U'P (.73, y)

TRe P +up - Vup(z,y) =0

v 'llp(.'f,y) =0

up(z,0) =0 forallz >0

| limpy Lo up(z,y) = limp o up(2,y) = (80, 0), forallz €R

This is a nonlinear system of two equations for the two unknown components up, vp
of the velocity up. The first differential equation in (Pp) is a parabolic equation,
in contrast to the elliptic equation in (Pxs). From Prandtl’s work it is known that
the solution of (Pp) is a good approximation to the solution of (Pys) in a subdomain
excluding the leading edge region, provided that the flow remains laminar and that no
separation occurs. Because of the parabolic nature of the problem (Pp), the solution
at all points in the open half plane to the left of the leading edge is up = (uwo, 0).
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2 Blasius’ solution

The classical approach of Blasius [2], which is described in [6], shows that in the open
quarter plane {(z,y) : ¢ > 0,y > 0} a self-similar solution ug = (ug, vg) of (Pp) can
be written in the form

us(,y) = oo f'(n) (1a)
on(,4) = 3/ =220 (n) = F() (11)

where
N = y\/ uRe/2x (1c)

and the function f is the solution of the Blasius problem

Findf € C3([0, 00)) such that for all 5 € (0, 00)

(Pe)q f"(n)+ f(m)f"(n) =0

£(0) = £/(0) =0, limy oo f'(n) = 1.

In what follows we refer to ug as the Blasius solution of (Pp). In [3] the Blasius
problem (Pg) is solved numerically for the function f, and the relations 1a and 1b are
then used to construct the Blasius solution ug of (Pp). The approach in [3] differs
from the standard one in that Re—uniform analytic approximations are constructed
with guaranteed accuracy to the solution up of (Pp) and its scaled first derivatives
for all values of Re at all points of the domain 2. This computed Blasius solution
Ug is used in subsequent sections to estimate errors in the numerical method used in
this paper.

3 Prandtl problem in a finite domain

We construct a numerical method to compute directly pointwise—accurate and
parameter—uniform numerical approximations to the solution of the Prandtl prob-
lem (Pp) in a finite rectangular domain 2 = (a, A) x (0, B) on one side of the plate,
which is a fixed distance to the right of the leading edge of the plate. By symmetry
this domain can be taken on either side of the plate and it can be as close to the lead-
ing edge and as large as desired, provided that its location and size are independent
of the Reynolds number. We denote the boundary by I' = I', UT'g U 't UT'g where
'L, T'r, I't and 'y denote, respectively the left-hand, right-hand, top and bottom
edges of (2. In our numerical computations we use the specific values

U =1.0, a=01, A=11, B=1 and Re€[l,00).
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We use the computed Blasius solution from [3] to give the required boundary condi-
tions on I't and inflow conditions on I'y,. Having found a numerical solution with this
direct method, we investigate its error by comparing it with the computed Blasius
solution Up obtained in [3].

It is convenient, in what follows, to introduce the notation ¢ = é, where small ¢
will now indicate high Reynolds number. We consider the following problem:

( Find u, = (u,, v.) such that for all (z,y) € Q

%ue(z,
—6% +u, - Vu(z,y) =0

V-ul(z,y) =0
u =20 on I'p
\ U =up on I'yUTI7

where up is the exact solution of (Pp). Since we take the boundary conditions in (P;)
to be the appropriate v_alues of up on I'y UT'r UT's and of vp on I'g, it follows that
on the finite rectangle Q the solution u, of (P.) is equal to the solution up of (Pp).

4 Nonlinear finite difference method

We now construct a direct numerical method for solving (P.). This comprises a s-
tandard upwind finite difference operator on an appropriate piecewise uniform fitted
mesh of the kind described in [4]. Because the computational domain is rectangu-
lar, the piecewise uniform fitted rectangular mesh QN is the tensor product of one
dimensional meshes. Since there is just one boundary layer in the solution, we can
take a uniform mesh in the direction of the time-like z—axis and a piecewise uniform
fitted mesh in the direction of the y—axis. Taking the tensor product of these meshes

we have ﬁsN = ﬁuN’” % 0. where N = (Nz, Ny), 0,

e « 15 a uniform mesh with N,
mesh intervals on the interval [a, A] of the z—axis, and ﬁivy is a piecewise uniform
fitted mesh with IV, mesh intervals on the interval [0, B] of the y—axis, such that the
subinterval [0,0] and the subinterval [o, B] are both subdivided into 1N, uniform
mesh intervals.

By analogy with the case of parabolic boundary layers arising in linear problems,

we define the transition parameter o to be
.1
o= m1n{§B, Veln N}

The choice here of /¢ can be motivated either from a priori estimates of the deriva-
tives of the solution u, or from the asymptotic analysis in [6].



Using the above piecewise uniform fitted mesh QN the problem (P.) is discretized
by the following nonlinear system of upwind finite difference equations for the ap-
proximate velocity components U, = (U, V;)

( Find U, = (U, V.) such that for all (z;,y;) € QN

_55§Us($i,yy‘) + (Ue : D_)Us(mi’yj) =0
(PN) 4

=)\ (DU (miy) =0
Us =0 on FB
(| U:=Uson TI'pUlm

where D~ = (D, D;’), D;, D, are standard backward difference operators, and 6,
is a standard central difference operator. We note that in (PN) we use the known
approximate boundary values Ug on I', UT't to replace the unknown exact boundary
values up, where Ug is the Blasius solution of the Prandtl problem (Pp).

Since (PN) is a nonlinear finite difference method, it is necessary to prescribe an e—
uniformly convergent nonlinear solver for computing its solution. We note that there
are no known theoretical error estimates for the pointwise errors (U, — u.)(z;, ;) in
the velocity components, because there are no known theoretical results concerning

the convergence of the solutions U, of (PN) to the solution u, of (P,).

5 Solution of the nonlinear finite difference
method

To find the solution U, of (PN) we need to solve a nonlinear system of finite difference
equations. We do this with a continuation algorithm, which replaces (PN) by a
sequence of linear systems. From now on, we will assume for simplicity that N, =
N, = N. The algorithm sweeps across the domain { from left to right, that is in the
same direction as the physical flow. At the i** stage of the sweep, we compute the
values of U, on X; = {(;,¥;),1 < j < N} assuming that values of U, are known
on X; 1. To achieve this we employ an iterative method to solve successively both a
nonlinear system for U, and a linear system for V.

For each i, 1 <1 < N, we linearise the nonlinear system for U, on X; by intro-
ducing the sequence of linear problems

(—e6;UM + (U - D) UM (@i, ;) =0, 1<j<N-1

where {U™(z;,y;), 1 < j < N — 1} are the unknown values of the m'" iterate and
{U™Y(z;,y;), 1 < j < N—1} are the known values of the (m — 1) iterate. In order
to solve this system on X; we need values of U, on X,_;, boundary values for U® at



points of I'g U 'y and an initial guess U? on X;. The required values on I'g U 't are
taken to be the given boundary conditions for U, on I'gs UT'r, and in general, we take
as the initial guess U? on X; the value of the final iterate on X;_;. The initial guess
U? on X is taken to be the prescribed boundary conditions for U, on I'y, and V7 is
taken to be zero.

Having solved the tridiagonal system for U, on X;, we then find V, by solving the
linear system

for the unknown values {V.(z;,y;), 1 < j < N}, where we take V. = 0 on I'g. Note
that this requires only the given initial condition for V, on I'g.
We continue this process until the change between two successive iterates for the

scaled velocity (U, %VE’”) is less than a specified tolerance tol, that is

max(|UEm — U;m_l‘QéV, — ‘/Emil‘gé\l S tol

1 m
%‘Vvs

where we take tol = 107%. We denote by M the value of m for which this occurs.
When this tolerance is achieved, we proceed to the next X; and use the solution UM



as the initial guess there. The resulting algorithm may be written as:

( With UEJM = UB on FL,
for each X;,1 < i < N, use the initial guess U%|x, = U¥|x, |

and for m=1,... , M solve the following
two point boundary value problem for U™(z;, y;)

(—ed; + U -D)UMwi,y) =0, z€X;
with U* = Ug on I's UT'y,

=y and V?|x, = 0.

Also solve the initial value problem for V*(z;, y;)
(D~ - UF)(2i,y5) =0,

with V* =0 on I'p.

Continue to iterate between the equations for U until m = M,
where M is such that

max(|U}M — UsM71|§£’a VM- VeM_l‘ﬁg’) < tol.

=
NG

\

For notational simplicity, we suppress explicit mention of the iteration superscript
M in what follows, and we write simply U, for the solution of (AYN). Graphs of the
solution U, of the direct method (AY) with N = 32 for ¢ = 1, 0.01 and ¢ = 0.00001
respectively are shown in Figs. 1, 2 and 3. In the next section we show computation-
ally that this direct algorithm gives pointwise-accurate parameter—uniform approxi-
mations to the scaled velocity (u, %ue) and its scaled derivatives.

. . o ou Ju ov
We also approximate the scaled partial derivatives —, ¢/2—= and ¢ /2-=

ox dy ox
by the correspondingly scaled discrete derivatives D, U,, ¢/ ’D, U, and e 2DV,
Oou,  Ov,
or
discrete derivatives are given for N = 32 and two values of € in Figs. 4, 5, and 6.
It is also of interest to investigate whether or not the number of iterations required
for convergence of the nonlinear solver is independent of . We note from Table 1
that the number of iterations per time-like level X; tends to just a few iterations for ¢

noting that and D, U, = —D, V. . Graphs of these computed scaled
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Figure 2: Graphs of (U.,e7/2V;) given by (AN) for ¢ = 0.01 and N = 32.

large, which means that the method becomes equivalent essentially to a direct rather
than an iterative method.

6 Computed error estimates using the Blasius so-
lution

In this section we estimate the error in the numerical approximations (Ug, v/ ReV;)
given by the method (AN). We begin by observing that

|U:€_uP|QéV = |UE_UB|Q£’
Us — Uslay + |Us — uslay (2)
8_1/2|V;-—UB\Q§

eV, — VBlay + eV — vB|ax, (3)

IN

V Re|V, — UP|Q§

IN

where U, = (U, V,) is the solution generated by the direct algorithm (AX) on the
mesh QN with N = (N, N), ugp = (ug,vs) is the exact solution of the Prandtl
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) for e = 0.00001 and N = 32.

N
€

Figure 3: Graphs of (U,,e~'/2V}) given by (4

1.0 and 0.00001

~U. given by (AY) with N = 32 and ¢

Figure 4: Graph of D

respectively.

(UB, VB) iS
on a mesh with 8192

problem constructed from the Blasius formulae 1a and 1b, and Ug

3]

(

the numerical solution of the Blasius equation obtained in

can be estimated by

)

—(3

)

2

(

it follows that we can obtain experimental estimates for the

Since the terms on the right-hand side of

intervals.

)

numerical experiments

) to the solutions of (P.),

N
€

errors in the numerical approximations generated by (A

even though at present no theoretical error analysis is available for this numerical

method.

€

Q

oV These quantities are easy to determine numerically from the
found in the previous section and the solution Ug computed in

¥

|
AN

(

[3]. The results are given in Tables 2 and 3 respectively for various values of £ and N.

We now consider the relative magnitude of the two terms on the right-hand side of
of

(2) and (3). The first terms are the scaled maximum pointwise differences ||U. —Usg||s~

and e V2|V, — Vi

solution U,

The other terms on the right—hand sides of (2)—(3) are the scaled maximum pointwise

errors |Ug — ug|oy and e 2|V — vg|oy. We know from

the right—hand side of both (2) and

3] that the first term on

[

(3) dominates the second term, and thus the first

term on the right-hand side of (2)—(3) may be taken to approximate the true error



i
e

Figure 5: Graph of /2D, U, given by (AY) with N = 32 and ¢ = 1.0 and 0.00001
respectively.

Figure 6: Graph of ¢ Y/2D_V, given by (AN) with N = 32 and ¢ = 1.0 and 0.00001
respectively.

at least to experimental accuracy. Graphs of these first terms are shown in Figs. 7,
8 and 9 for N = 32 and € = 1.0,0.01 and 0.00001, respectively.

We now estimate the order of convergence of the numerical approximations U,,
by introducing the computed orders of convergence p,.,,, and pX..,

UY — Uslgy
UZN — Usg|gen

N —
ps,comp - 10g2 |

max, |UN — Uslay

N

=lo
pcomp 82 max, |U52N _ UB|QgN
for the first component, with corresponding definitions for the scaled second compo-
nent. The values of the pY.,., and pf,, for the scaled components of U, are given
in Tables 4 and 5 respectively. These tables suggest an e-uniform order of at least 0.8
and 0.7, respectively.
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Table 1: Number of one dimensional linear solves per level X; for convergence of (AN)
for various values of ¢ and N.
€ 8 16 32 64 128 256 512
20 7 8 9 10 10 10 9
2-2 17 16 16 14 13 12 11
274 34 24 19 16 15 13 12
26 36 28 23 19 16 14 12
28 35 28 23 19 16 14 13
2-10 35 28 23 19 16 14 13
2712 36 28 23 19 16 14 13
2714 36 28 23 19 16 14 13
2716 36 29 23 19 16 14 13
2-18 36 29 23 19 16 14 13
2720 36 29 23 19 16 14 13

0.003
0.0025
0.002
0.0015
0.001
0.0005

\\\\\“k

\“.~

-0.0005

Figure 7: Graphs of U, — Ug and e~ /2(V, — V) where U, = (U,, V;) is given by (AN)
for e = 1.0 and N = 32.

We now apply the same argument as above to estimate the maximum pointwise
error in the scaled discrete derivatives of U,. As before we examine the relative
magnitude of both terms on the right—hand side of the analogous expressions to (2)—
(3). We show the values of the computed discrete derivatives ||D, U, — D UB)||ﬁ

and /¢||D,; U, — D UB”—N in Tables 6 and 7 for various values of ¢ and N. Agam

the values of ||D, U, — D, +Us)|lg are identical to those of || D, V. — D,Vz)||g and so
no separate table is required. From Tables 9 and 8 we see that the smallest value of
\/_||D U.—D UB)“—N is 0.139 x 1072 and of ||D,;U. — D UB)||—N is 0.178 x 10~L. The

corresponding computed orders of convergence pg’comp and pcomp for DU, and D, U,
are given in Tables 8 and 9 respectively. The entries indicate that the e—uniform
orders of convergence are at least 0.6 for all N > 32.

The qualitative behaviour of the error in the computed scaled discrete derivatives
can be seen from the graphs of D, U, — D,Us, v/e(D, U, — D,Ug) and ¢ */*(D_V, —
D,Vg) which are displayed in Figs. 10, 11 and 12. We see from the graph of
e Y2(D;V. — D,V3) in Fig. 12 and from the entries in Table 10 that there is
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Figure 8: Graphs of U, — Ug and e~ ¥/2(V, — Vi) where U, = (U,, V) is given by (AN)
for ¢ = 0.01 and N = 32.
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Figure 9: Graphs of U, — Ug and e~ Y/2(V, — V) where U, = (U,, V;) is given by (AN)
for € = 0.00001 and N = 32.

a singularity in 81/2% in a neighbourhood of the corner Cr;, = (0.1,1). This
T

singularity is not resolved by method (AN). However, in [3] further numerical results
are presented which indicate that the computed scaled discrete derivatives e~/2D;V,

. . o v
appear to converge e—uniformly to the corresponding scaled derivative ¢~/ 26—5

x
subdomains which exclude a sufficiently large neighbourhood of this corner.

In summary, we have shown experimentally that method (AY) produces e—uniform
approximations to the scaled components of up and its scaled derivatives.

References

[1] Acheson D. J. (1990). Elementary Fluid Dynamics. Oxford University Press.

[2] Blasius H. (1908). Grenzschichten in Fliissigkten mit Kleiner Reibung. Z. Math.
u. Phys., 56, 1-37; Engl. trans. in NACA TM 1256.

12



Table 2: Computed maximum pointwise difference ||U; — Ug||;~ where U is given by
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Table 4: Computed orders of convergence pl,.., and pf,, for U, — Ug where U, is
given by (AN) for various values of € and N.

£ 8 16 32 64 128 256

20 -0.13 068 078 0.89 1.00 1.09
272 1.03 1.00 099 1.00 099 0.98
27* 139 116 1.07 1.03 1.01 1.00
27% 094 090 092 1.07 1.03 1.01
2% 090 0.89 0.86 0.85 0.85 0.85
2720 0.88 0.88 0.86 0.85 0.85 0.85
Peomp 094 0.90 0.86 0.85 0.85 0.85

Table 5: Computed orders of convergence p,.,, and pf,, for e Y2(V, — V) where
V. is given by (AN) for various values of € and N.

€

8 16

32 64

128 256

20

N DN NN
o o kN

2720.

0.51 0.81
0.65 0.87
1.28 1.09
0.76 0.81
0.73 0.80

0.67 0.79

0.98
0.94
1.00
0.86
0.79

1.01
0.95
0.96
1.03
0.77

0.79 0.77

1.00
0.92
0.91
0.95
0.76

0.92
0.89
0.89
0.92
0.76

0.76 0.76

N
Pcomp

0.76 0.81

0.79 0.77

0.76 0.76

Table 6: Computed maximum pointwise difference || D, U. — D,Usl||gv where U is

given by (AN) for various values of € and N.

€ 8 16 32 64 128 256 512

20 0.614D+00 0.444D+00 0.256D+00 0.130D+00 0.668D-01  0.344D-01  0.178D-01
272 0.900D+00 0.633D+00 0.372D+00 0.201D+00 0.105D+00  0.556D-01  0.307D-01
2=% 0.189D+01 0.114D+01 0.650D+00 0.360D+00 0.194D+00 0.105D+00  0.573D-01
2% 0.198D+01 0.167D+01 0.121D+01 0.759D+00 0.397D+00 0.210D+00 0.113D+00
2% 0.197D+01 0.167D+01 0.121D+01 0.798D+00 0.496D+00 0.300D+00 0.180D+00
2720 0.195D+01 0.167D+01 0.121D+01 0.798D+00 0.496D+00 0.300D+00 0.180D+00
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Table 7: Computed maximum pointwise difference ||\/e(D,U; — D, Ug)||o~ where U,
is given by (AN) for various values of ¢ and N.

€ 8 16 32 64 128 256 512

20 0.703D-01  0.357D-01  0.180D-01 0.914D-02 0.471D-02 0.249D-02 0.139D-02
=2 0.193D+00 0.111D+00 0.603D-01 0.315D-01 0.162D-01 0.819D-02 0.414D-02
—4 0.266D+00 0.140D+00 0.703D-01 0.357D-01 0.180D-01 0.914D-02 0.471D-02
=6 0.279D+00 0.192D+00 0.118D+00 0.703D-01 0.357D-01 0.180D-01 0.914D-02
-8 0.279D+00 0.192D+00 0.118D+00 0.733D-01 0.432D-01 0.248D-01 0.141D-01

N DN NN

2720 0.279D+00 0.192D+00 0.118D+00 0.733D-01 0.432D-01 0.248D-01 0.141D-01

Table 8: Computed orders of convergence pl...,, and pY,,, for D, U, — D,Up where
U. is given by (AY) for various values of ¢ and N.
€ 8 16 32 64 128 256
20 047 0.79 098 0.96 0.96 0.95
2 051 0.76 0.89 0.94 092 0.86
4 073 0.81 0.85 0.89 0.89 0.87
—6 0.25 046 068 093 092 0.90
—8 0.24 046 060 069 0.72 0.74

N DN NN

2720 022 046 060 069 0.72 0.74
pé\f)mp 0.25 046 060 069 072 0.74

Table 9: Computed orders of convergence pl.,,,, and pX.. for \/e(D,; U, — D,Ug)

where U, is given by (AN) for various values of ¢ and N.

€ 8 16 32 64 128 256
O 098 099 098 096 092 0.85
“2 079 0.88 0.94 0.96 0.98 0.99
4

6

8

0.93 1.00 0.98 0.99 0.98 0.96
0.564 071 0.74 098 0.99 0.98
0.54 071 0.68 0.77 0.80 0.82

2720 054 0.71 0.68 0.77 0.80 0.82
Pomp 054 0.71 0.68 0.77 0.80 0.82
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Figure 10: Graphs of D, U. — D,Ug where U, is given by (AN) with N = 32 and
¢ = 1.0 and 0.00001 respectively.

Figure 11: Graphs of 1/e(D, U, — D,Us) where U, is given by (AY) with N = 32 and
¢ = 1.0 and 0.00001 respectively.

Table 10: Computed maximum pointwise difference ¢ 71/2|| D7V, — 9, V{5192 la™\ (x2ury)

where V is generated by method (AX) applied to problem (P,) for various values of

¢ and N.

€ 8 16 32 64 128 256 512

20 0.364D+01 0.406D+01 0.300D+01 0.180D+01 0.113D+01 0.886D+00 0. 922D+00
272 0.794D+01 0.647D+01 0.476D+01 0.328D-+01 0.232D-+01 0.191D+01 0.188D+01
2-% 0.278D+02 0.143D+02 0.989D+01 0.700D-+01 0.519D-+01 0.428D+01 0.396D+01
276 0.311D+02 0.281D+02 0.237D+02 .189D+02 0.130D+02 0.101D+02 0.875D+01
28 0.321D+02 0.282D+02 0.237D+02 0.202D+02 0.174D+02 0.158D+02 0.152D+02
2720 (.342D4+02 0.284D+02 0.237D+02 0.202D+02 0.174D+02 0.158D+02 0.152D+02

16



16
i .
i e

1
0.8
06 = =
g =
i =

0 &&-ézz&z};:&;;;ﬁg:‘:%% =
0.2 ......-:.«.‘-‘1":-.‘-:.:-.3'.;.:.3.:.:.:,:.:.;. .
-0.4 ==

o

Figure 12: Graph of 8_1/2(D;Vt5 —lDzVB)
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