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Abstract. In this article we consider grid approximations of a boundary value
problem for boundary layer equations for a flat plate outside of a neighbourhood
of its leading edge. The perturbation parameter € = Re ™' multiplying the highest
derivative can take arbitrary values from the half-interval (0,1]; here Re is the
Reynolds number. We consider the case when the solution of this problem is
self-similar. For this Prandtl problem by using piecewise uniform meshes, which
are refined in the neighbourhood of a parabolic boundary layer, we construct a
finite difference scheme that converges e—uniformly. We present the technique
for experimental substantiation of e —uniform convergence of both the grid solution
itself and its normalized difference derivatives, which are considered outside of a
neighbourhood of the leading edge of the plate. We study also the applicability of
fitted operator methods for the numerical approximation of the Prandtl problem.
It is shown that the use of meshes condensing in the parabolic boundary layer
region s necessary for achieving e—uniform convergence.

1 Introduction

Mathematical modelling of laminar flows of incompressible fluid for large
Reynolds numbers Re often leads to a study of boundary value problems for
boundary layer equations. These quasilinear equations are singularly perturbed,
with the perturbation parameter ¢ defined by ¢ = Re~!. The presence of
parabolic boundary layers, i.e., layers described by parabolic equations, is typical
for such problems [1, 2].
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The difficulties arising in the numerical solution even of linear singularly per-
turbed boundary value problems are well known. So, the application of numerical
methods that were developed for regular boundary value problems (see, for ex-
ample, [3, 4]) to the above problems yield error bounds which depend on the
perturbation parameter €. For small values of £, the errors of such numerical
methods may be comparable to, or even much larger than the solution of the
boundary value problem. This behaviour of the approximate solutions creates
the problem of the development of numerical methods with errors that are inde-
pendent of the perturbation parameter ¢, i.e., e—uniformly convergent methods.
The presence of a nonlinearity in the equations makes it considerably more diffi-
cult to construct e—uniformly convergent numerical methods. For example, even
in the case of ordinary differential quasilinear equations, fitted operator methods
that converge e—uniformly (see, e.g., [5, 6]) do not exist. Note that in the case of
linear singularly perturbed problems with a parabolic boundary layer there are
also no ¢ uniformly convergent fitted schemes (see, for example, [7 9]). Thus,
the development of special e—uniform numerical methods for resolving boundary
layer equations is of considerable interest.

At present, special finite difference schemes convergent e-uniformly in the
maximum norm are developed and investigated for wide classes of linear singularly
perturbed boundary value problems, in particular, for problems with parabolic
boundary layers (see, for example, [8-12]). It often occurs that the proved (i.e.,
theoretical) orders of e-uniform convergence are quite low and would seem to
imply that the constructed schemes will yield errors too large for these schemes
to be of practical value. However, numerical (experimental) investigations of
such schemes show that the actual orders of e-uniform convergence are close to
those typical for regular boundary value problems (see, e.g., [13, 14]). Thus, the
experimental technique for a posteriori estimation of the parameters in e—uniform
error bounds seems to be crucial in the case of problems with rather complicated
behaviour of the solution.

It is of interest to apply the existing technique to the construction of e—
uniformly convergent schemes for boundary layer equations in that part of the
neighbourhood of the boundary where the boundary layer is parabolic. Note
that, because of the nonlinearity of the boundary layer equations, the existing
technique for justifying convergence of schemes and a priori estimates of the
exact solutions do not allow us theoretically to prove e—uniform convergence of
the grid solutions in the L,,—norm. In this connection, for the boundary layer
equations we are forced to use only the alternative a posteriori method to study
convergence, in particular, e-uniform convergence of the grid solutions.

In the present paper we consider grid approximations of a boundary value
problem for boundary layer equations for a flat plate outside of a neighbourhood
of its leading edge. The boundary layer in the considered domain is parabolic.
We consider the case when the solution of this Prandtl problem is self-similar.
We construct a finite difference scheme, which is a natural development of mono-



tone e—uniformly convergent schemes for linear boundary value problems with a
parabolic layer. For this we use classical grid approximations on piecewise uni-
form meshes, which are refined in the neighbourhood of the boundary layer. As
is shown, the use of this condensing-mesh technique is necessary to achieve -
uniform convergence. To justify convergence of the difference scheme constructed
in this paper, we apply the experimental technique for a posterior: estimation of
an error in the approximate solution.

We sketch an idea of experimentally studying e—uniform convergence of nu-
merical approximations for the Prandtl problem. Note that in the case of flow
past a flat semi—infinite plate the Prandtl problem has a self-similar solution
which can be expressed in terms of a solution of a quasilinear ordinary differen-
tial third-order equation, the so-called Blasius equation, defined on a semiaxis.
To evaluate errors in the grid solutions of the boundary layer equations, as an
approximation to the exact solution of the self-similar problem we use a linear in-
terpolant of the grid solution to the corresponding Blasius equation. We present
the technique how to study the behaviour of errors of the special difference scheme
for the boundary layer equations in accordance with both the parameter € and the
number of mesh points. This method is used to justify e—uniform convergence of
both the grid solution itself and its normalized derivatives, which are considered
outside of a neighbourhood of the leading edge of the plate.

We emphasize the growing interest in the performance of strong numerical
investigations of a boundary layer; see, for example, [15]. Note that, in the
neighbourhood of the parabolic boundary layer, the solutions of boundary layer
equations for large Re numbers are close to the solution of the Navier-Stokes
equations. The results obtained here and the research techniques can be used
in the analysis of numerical methods for solving Navier-Stokes equations at high
Reynolds numbers.

2 Problem formulation

In this section we give the problem formulation for boundary layer equations in
the case of a bounded domain. Let a flat semi infinite plate be represented by
the semiaxis P = {(z,y) : = > 0, y = 0}. The problem is considered to be
symmetric with respect to the plane y = 0; we discuss the steady flow of an
incompressible fluid on both sides of P, which is laminar and parallel to the plate
(no separation occurs on the plate). We shall consider the solution of the problem
on the bounded set

G, where G = {(z,y): = € (di,ds], y € (0,do)}, di>0. (2.1)

Let G° = {(z,y) : = € [d1,ds], y € (0,dg]}; note that G’ = G. Assume S =
G\G, S = us;, 7 = 0,1,2, where Sy = {(z,y) : = € [di,ds], y = 0},
S; = {(fﬂa?/) Dox =dy, Yy € (O,do]}, Sy = {(xay) S (dth], Yy = d()}a
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So = Sp; S® =G\ G° =S, On the set G, it is required to find the function
U(z,y) = (u(x,y),v(x,y)) as the solution of the following Prandtl problem:

L (U0) = eputry) — o) moula,y) -

—U(:E,y)(%u(x,y) =0, (z,y)€q, (2.2a)

LU(ey) = Dule,y) + Lola,y) =0, (z,y) € G, (2.2b)
ox oy

u(z,y) = o(z,9), (2,y) €S, v(z,y) =v(r,y), (v,y) €S (22)
Here ¢ = Re'; the parameter ¢ takes arbitrary values from the half-interval
(0,1].

The solution of problem (2.2), (2.1) exists in that case, when the functions
o(z,y), ¥(x,y) are sufficiently smooth and also satisfy the compatibility condi-
tions [2], respectively, on the sets S* = S; N {So U gz} (i.e., the set of the corner
points adjoining to the side S;) and S%* = S; N S°.

We now wish to define the functions ¢(z,y) and ¥(z,y) more exactly.
In the quarter plane

Q, where Q= {(z,y): z,y >0}, (2.3)

let us consider the Prandtl problem whose solution is self-similar [1]:

L'(U(z,y) = 0, (z,9) € Q,

L*U(x,y) = 0, (z,9) € Q\ P, (2.4
w(z,y) = Uso, z=0, y>0,
U(z,y) = (0,0), z,y) € P.

The solution of problem (2.4), (2.3) can be written in terms of some function
f(n) and its derivative

u(z,y) = usf'(n),

1/2 (2.5)
oayy) = &2 (2 uma™) " (nf () — 7)),
where o
n= g~1/? (2’]uoo 3:’1) / 1.
The function f(n) is the solution of the Blasius problem
L(fm) = ") + f(n) f"(n) =0, n € (0,00),
(2.6)

F(0) = f(0) =0, lim f'(n) =



The functions ¢(x,y), ¥(x,y) are defined by

QO(.T,I/) = U(2.5)($7y)7 (-T,U) ESa
w(fﬁﬂl) = U(2.5)($’y)a (xay) ESO;

note that o(z,y) =0, ¥(z,y) =0, (z,y) € S°.

In the case of problem (2.2), (2.7), (2.1), as € tends to zero, a parabolic
boundary layer appears in a neighbourhood of the set S°.

To solve problem (2.2), (2.7), (2.1) numerically, we will construct a finite
difference scheme which converges e—uniformly.

2.7)

3 Difference scheme for problem (2.2), (2.7),
(2.1)

Assume that we know the “coefficients” multiplying the derivatives (0/0z)u(x,y)
and (0/0y)u(z,y) in the operator L%z.z)Q let these be some functions ug(x,y) and
vo(x,y). In this case the transport equation takes the form

I, 9) = {e 0 — ol ) o — wla ) o bua) =0, (@y) € G (31

u(z,y) =e=—= —uo(z,y)=— —vo(z,y)=— pu(z,y) = T, 1 i :
'Y 6’1/2 o\Z,Y or o\T, Y 81/ 'Y ) Y

The function uy(z,y) outside of an me neighbourhood of the set S° satisfies the
condition [1]

uo(x,y) > my, for (z,y)€G and r ((x,y),SO) > me, (3.2a)

and also B
uo(z,y) > 0, for (z,y)e G and y >0, (3.2b)

where 7 ((z,y), S?) is the distance from the point (z,y) to the set S°. By virtue
of condition (3.2b) the operator L) is monotone [4].
For the function vg(z,y) the following estimate [1] is valid:

0 < wo(z,y) < Me'?, (x,y) €G. (3.2¢)

This means that the product e~'/?vy(x, ) (i.e., the normalized component) is of
order O(1), that is, bounded e-uniformly. Thus, in virtue of bounds (3.2) the
singular part of the solution of (3.1) behaves similarly to the singular part of the
singularly perturbed heat equation
0 0
Lu(z,y) = {68—1/2 — O_x} u(z,y) = 0. (3.3)

Here and below we denote by M (or m) sufficiently large (small) positive constants which
do not depend on the value of the parameter € and on the discretization parameters.
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In the case of a boundary value problem for the singularly perturbed equation
(3.3), special finite difference schemes on piecewise uniform meshes that converge
e—uniformly were developed and studied (see, e.g., [8, 9]). We shall use such
meshes in the construction of e—uniformly convergent schemes for problem (2.2),
(2.7), (2.1).

To solve the boundary value problem (2.2), (2.7), (2.1) numerically, we use a
classical finite difference scheme. At first we introduce the rectangular grid on
the set G-

G =Wy X Wo, (3.4)

where @; and @y are meshes on the segments [dy,dy] and [0, do], respectively;
W) = {Ii, 1 = 0,...,N1,ZL'0 = d],.’l?Nl = dg}, Wy = {yj, _] = 0,...,N2,y0 =
0,y = do}; N1+ 1 and Ny + 1 are the number of nodes in the meshes w;
and Wy. Define At = z*t! — 2t 2%, 2 € Wy, A = /T —gf, oI, P € Wy,
hi = max; b, hy = max; hg, h = max[hy,hy]. We assume that h < MN',
where N = min [ Ny, No].

We approximate the boundary value problem by the finite difference scheme

A (UMay) = edgpul(z,y) — v, y)dzu" (z,y) -

—v"(z,y)05u (v, y) =0, (z,y) € Gy, (3.5a)
NUMz,y) = bzul(z,y) + 050 (z,y) =0, (2,9) €G), ©>di,
(3.5)
AU (@, y) = pul(m,y) + 650" (2, y) =0, (2,y) € S
M, y) = e(z,y),  (x,y) € Sh, (3.5¢)
Mz, y) = P(z,y), (z,y) € Sh. (3.5d)

Here 0.5 2(z,y) and 6, z(z,y), ..., 07 2(7,y) are the second and first (forward and
backward) difference derivatives (the bar denotes the backward difference):

. -1
57 2(T,y) =2 (h% 'y h%) (0y 2(z,y) — 05 2(z,y)),
o\ —1 .
0z z(z,y) = (hzl) (z(:p”l, y) — z(z, y)) e
-1 - .
dya(my) = (M) (2(2,9) — 2(z,977"), (z,y) = (=", y').
The difference scheme (3.5), (3.4) approximates problem (2.2), (2.1).
In that case when the “coefficients” multiplying the differences dz and dy in
the operator A! are known (let these be the functions u?(x,y) and v?(x,v)), and

they satisfy the condition

’Uzg(lb,y), U(,)l(,fb,’l/) 2 07 (ZE,U) € Gh,



the operator A' is monotone [4].
Let us introduce a piecewise uniform mesh, which is refined in a neighbour-
hood of the set S°. On the set G, we consider the grid

G, =w X w5, (3.6)

where @, is a uniform mesh on [dy, ds], @5 = @, (0) is a special piecewise uniform
mesh depending on the parameter o and on the value N,. The mesh w; is
constructed as follows. We divide the segment [0, dp] in two parts [0, 0] and
[0, dp]. The step-size of the mesh @ is constant on the segments [0, o] and [o, dy],
and equal to hg) = 20N, " and th) = 2(dy — 0)N; !, respectively. The value of
o is defined by the relation

0 = min [2_]d0, mglnNQ] ,

where m is an arbitrary positive number.

In the case of the boundary value problem (2.2), (2.7), (2.1), it is required to
study whether the solutions of the finite difference scheme (3.5), (3.6) converge
to the exact solution. We mention certain difficulties that arise in the analysis of
convergence.

Note that the difference scheme (3.5), (3.6), as well as the boundary value
problem (2.2), (2.1), is nonlinear. To find an approximate solution of this scheme,
we must construct a proper iterative method. It is of interest to investigate
the influence of the parameter ¢ upon the number of iterations in the iterative
numerical method, required for its convergence.

In the case of e—uniformly convergent difference schemes for linear singular
perturbation problems, techniques are well developed to determine numerically
the parameters involved in the error bounds (orders of convergence and error
constants for fixed values of ¢ and e—uniformly), see, e.g., [14]. In these techniques,
e—uniform convergence is ascertained due to theoretical investigations. Formally
the above mentioned techniques are inapplicable to problem (2.2), (2.7), (2.1)
because the e—uniform convergence of the finite difference scheme (3.5), (3.6) is
not proved. Nevertheless, the results of such investigations of error bounds seem
to be interesting from a practical viewpoint.

The pointwise comparison of the exact solutions of problem (2.2), (2.7), (2.1)
with the solutions of the finite difference scheme (3.5), (3.6) could give us the
most complete knowledge about the behaviour of the error bounds. To find the
exact solutions of Prandtl’s problem, we shall use the Blasius solution of problem
(2.6). Note that the numerical solution of the Blasius problem yields its own
additional errors. As for scheme (3.5), (3.6), it is of great interest to study errors
for computation of which we use the “exact” solutions of the Prandtl problem
obtained on the basis of the discrete solutions of Blasius’ problem.



4 TIterative difference scheme for the Prandtl
problem

Note that (2.2a) is a parabolic equation in which the variable z plays the role
of time. The problem (3.5), (3.4) is solved on levels with respect to the variable
2! € w,. To find the discrete solution at the level 2’ > d;, we use an iterative
method.

In order to define the iterative difference scheme we must specify the boundary
function o(z,y), (z,y) € Sp, (Y(z,y) =0, (z,y) € S}). The function p(z,y) has
no analytical representation. Instead of the function ¢(z,y), we use a function
©"(x,y) which can be found by using the grid solution of the Blasius problem.

Let us describe an iterative process used in the computation of the discrete
solution at the level z?*! for x%© > d;. Assume that the solution of the grid
problem (or its approximation) is known for = z%. The function U"(x,y) for
x =zt y € W, is the solution of the nonlinear system of algebraic equations. To
compute a new iteration for the component u},(z,y), z = 2", we use (3.5a) in
which we replace the coefficients multiplying the discrete derivatives dzul!,; and
d7up ., by the known components uj and v} from the previous iteration. The
component vp,(z,y), = z is computed from (3.5b) by using the known
component uj_ ;. We continue these iterations until the difference between the
functions uf (z, %), e~'/2v(x, y) for r = 20*' | y € @, at the neighboring iterations
becomes less than some prescribed sufficiently small value § > 0, which defines
the desirable accuracy of the iterative solution. As an initial guess, namely, for
the function U (z,y), z = z%*', we use the known solution at the level z = z.

For z = % = 20 = d', to compute the grid solution at x = z*! we use the
above-described iteration process in which we choose, as an initial guess Ué’ (z,),
x = xF" | the function Ul(z,y) = (ug(x,u) = o"(z,y), vl(x,y) = ¥(z,y) = 0),
x =2z y € Wy.

The function u”*(z,y) at the level z = 2% = d' is known according to the
problem formulation; the function v”(z,y) is computed from (3.5b).
Thus, we come to the following difference scheme

Al (U‘l};(m’ y)’ “2—1 (l’, y)7 UI’;—] (iC, y)) = 85@5“2(1‘7 y) o “2—1 (l‘, y)(sfu;cl(x7 y) o
_Ul’clf] (aj,y)égu;;(m, y) = 0) Y € wa,
A? (U]’gl(xa y)s U,]Z(CE, y)’ U’I;((mifl)(xiila y))E (IZ - xiil )71[11’2(3:’ y) - U’I;((mifl)(xiil y)}+

+6§’UZ(.T’U):O, er% U%Oa

up(z,y) = ¢"(z,y), y=0,do; vi(z,y)=0, y=0;



h i—1 i 2
U’K ri—1 (.’17 ay)a x Z x,
b, y) = { - .

. 4 (4.1)
O A
o Oa xi:xla Y € Wy, U%Oa

max v (z,y) — uk_(z,y)|, e/ max vl (z,y) — vi_(z,9)| <6,

YEW?2 [ISTD)

mae [max () ()], 2 max () ol ()] | >0
k<K | yews> YEW

for z=2' i=1,...,N, k=1,...,K, K= K(z");

A3 (oM@, ); ey (2',y)) = (@ = 2") 7 Ul (@) — " (2,9)] +
+5yvh(x7y):07 yer, y#oa
for z=2"=4d,.

The difference scheme (4.1), (3.6) permits us to compute the function
Uh(z,y) = (uh(:ﬂ, y), v (z, y)), (z,y) € Gy, namely, the components u’}((mi)(fv,y),
v’;((xi)(:c, y) for ¢ > x', y € Wy and the function v"(z,y) for 2* = 2° = d;, y € w,.
The function U"(z,y), (x,y) € Gj, which satisfies (4.1) is called the solution of
the iterative difference scheme (4.1), (3.6).

5 Approximation of the self-similar solution to
the Prandtl problem by using the Blasius
equation

In the case of scheme (4.1), (3.6), to analyze the approximation error for the
solutions of problem (2.2), (2.7), (2.1) and their derivatives, we use the self-
similar solution (2.5) defined by the solution of the Blasius’ problem (2.6).

For the boundary value problem (2.6) we must construct a finite difference
scheme that allows us to approximate both the Blasius solution and its derivatives
on the semi-axis 7 > 0. It is required to find “constructive” difference schemes,
i.e., difference schemes on meshes with a finite number of nodes.

We approximate problem (2.6) by the following differential problem on a finite
interval. Let f.(n), n € [0, L], where the length L of the interval is sufficiently
large, be the solution of the boundary value problem

L(fm)=£")+ fu(n)fl(m) =0, ne(0,L),
fo(0) = fi(0) =0,  fi(L)=1.

(5.1a)
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We complete a definition of the function f,(n) on the infinite interval (L, c0) by
setting
fem) = fu(L) + (n— L), forall n> L. (5.1b)

The continuous problem (5.1) is approximated by a discrete problem. For this
we introduce a uniform mesh on the interval [0, L] as follows:

w():{nz:lhazzoalaaNa T’O:O’ nN:L} (52)

with step-size h = LN~!, where N + 1 is the number of nodes in the mesh @j.
Assume L =In N. On the mesh @y, we approximate problem (5.1a) by the grid
problem

A (fh(n)) = 5T)ﬁﬁfh(77) + fh(n)577ﬁ fh("7) = 07 ne w()a n # 7707 7717 nNa

(5.3a)
10y =6, f"(0)=0, & f"(L)=1.

Here 6,7 2(n) and d,77 2(n) are the second (central) and third difference deriva-
tives:

8 2(n) = B (85 2(n) — 85.2(n)), Sy 2(m) = h™" (83 2(n) — Sy 2( ")), m=17"
The function f"(n) on the interval (L, c0) is defined by

)= ML)+ (- L), ne (L, o). (5.3b)

The equations (5.3) allows us to find the function f"(n) for n € w, and
n € (L,00). To determine the components of the solution and their derivatives
for the Prandtl problem, we need derivatives of the function f*(n). Let 6 f*(n) =

O (55*‘ f"(n)), n € wy, n < nVF k> 1, be the k-th difference derivatives of
f"(n) on wo. Assume 0F f*(n) = 1 for k = 1, n = ™ and &f f"(n) = 0 for
k>2 n¢€w, Nk <n<nyVN. By fh(k)(n), n € [0, L], we denote the linear
interpolant constructed from the values of the functions 67 f*(n), n € wo, k > 0;
69 f*(n) = f™(n). The function e (n) is extended to the interval (L, oc) by the
definitions: fh(k) (n) = fh(n) for k=0, fh(k)(n) =1for k=1, 7h(k)(n) = 0 for
k> 2, né€ (L,oo). We shall call the function ?h(n) = ?h(kzo)(n), n € [0, 00),
defined in such a way, the solution of problem (5.3), (5.2), and the functions

fh(k) (n), k > 1, the derivatives (of order k) from the solution of problem (5.3),
(5.2).

The problem (5.3), (5.2) is nonlinear. Let us give an iterative difference
scheme that allows one to find the approximate solution of problem (5.3), (5.2).

10



On the mesh Wy(s.2), we find the function fR(n) by solving successively the
problems

A (fi‘(??), #—1(77)) = Gum fr () + f7_1 ()0 £ (0) = 0, n € @y,
n# 1m0, (5.4a)
fH0) =6, f1(0)=0, & fHL) =1, r=1,...,R,

where f(n) =n, n € Wy, R is a sufficiently large given number. For € (L, o)
we define the function f2(n) by setting

frm) = fr(L) + (n— L), n€ (L,o00). (5.4b)

The problem (5.4a), (5.2) is linear with respect to the function f’(n), n € w.

From the values of the function f2(n), similarly to the function fh(k)(n),
n € [0,00), we construct the function ?:(k) (n) = ?g(k) (n), n € [0,00), & > 0.
We shall call the function ff(n) = ff(k) (n), n € [0,00) for k£ = 0 the solution
of problem (5.4), (5.2), and the functions 7f(k) (n), k > 1 the derivatives of the
problem solution.

Note that the derivatives of the function ff *) (n) have a discontinuity of the
first kind at n = pV =% k > 2.

For

L=L(N)=M N, R=R(N)=MIuN, (5.5)

where M;, M, are sufficiently large numbers, the solution of problem (5.4), (5.2),

(5.5) together with its derivatives up to order K (where K is fixed) converges, as

N — o0, to the solution of problem (2.6) with the corresponding derivatives.
The theoretical and numerical analyses result in the estimates

£ =71 )

I

- ) = s = (w7 = )

(5.6)

o (1) =P m) < MN 7 pelo0), k=012

where v is some number (0 < v < 1). It follows from estimates (5.6) that the
difference scheme (5.4), (5.2), (5.5) in the case of Prandtl’s problem (2.2), (2.7),
(2.1) allows us to find the normalized components with the normalized (i.e.,
e-uniformly bounded) derivatives, namely, u(z,y), e ?v(x,y), (0/0x)u(z,y),
eV2(0/0y)u(z,y), e~1/?(0/0x)v(z,y), (8/0y)v(z,y), (z,y) € Go1), With guaran-
teed (controlled) e—uniform accuracy.

Thus, in the case of Prandtl’s problem (2.2), (2.7), (2.1) the components of
its solution with partial derivatives with respect to  and y, which are defined
by using the solutions of difference scheme (5.4), (5.2), (5.5) for Blasius’ problem
(2.6), permit us to form the boundary conditions (with controlled e-uniform
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accuracy) in the grid boundary value problem (4.1), (3.6). Moreover, the solutions
of scheme (5.4), (5.2), (5.5) allow us to analyze e—uniform convergence of special
finite difference schemes, in particular, the schemes (4.1), (3.6) and (3.5), (3.6).

By numerical experiments carried out according to the above techniques, in
[16] we show e—uniform convergence of the finite difference schemes (4.1), (3.6)
and (3.5), (3.6); also therein we find the parameters of e-uniform error bounds
for the numerical approximations to the solutions and derivatives for the Prandtl
problem (2.2), (2.7), (2.1).

6 On fitted operator schemes for the Prandtl
problem

As was shown in [8, 17] (see also [7, 9]) for a singularly perturbed parabolic equa-
tion with parabolic boundary layers, there do not exist fitted operator schemes
on uniform meshes that converge e—uniformly. Note that the coefficients of the
terms with the first-order derivatives in time and the second-order derivatives in
space did not vanish in the equation that was considered in [8, 17]. As for the
case of the Prandtl problem, the coefficient multiplying the first derivative with
respect to the variable z, which plays the role of the time variable, vanishes on
the domain boundary for y = 0.

Unlike the problem that was studied in [8], where the boundary conditions
did not obey any restriction, besides the requirement of sufficient smoothness,
the problem (2.2), (2.7), (2.1) is essentially simpler. Its solution is defined only
by the one parameter u.,. In [18] an e-uniform fitted operator method was
constructed for a linear parabolic equation with a discontinuous initial condition
in the presence of a parabolic (transient) layer. Such fitted operator schemes have
been successfully constructed because all the variety of singular components of
the solution (their main parts) is defined, up to some multiplier, only by one
function. In view of the comparatively simple (depending on the one parameter
Us Only) representation of the solution for the Prandtl problem, it is not obvious
that for this problem there are no fitted schemes which converge e—uniformly. So
it is of interest to establish whether such fitted schemes on uniform meshes do
exist for the Prandtl problem.

We shall try to construct a fitted operator scheme starting from (3.5a) under
the assumption that the function v"(z,y) is known, and also v"(z,y) = v(x,y).
Let us consider the fitted operator scheme in such a form:

Al* (uh(x’ U)) = 57(2)6y§uh(x, U) - uh(xa y)6fuh(xa U) -
—yayw(z, y)dgu(z,y) =0,  (z,y) € Gy,  (6.1a)

uh(‘ray) = (p(xay)a ('ray) € Sh7
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where
G (6.2)

is a grid that is uniform with respect to both the variables, with steps hy and hs
in z and y respectively; the parameters

Y = Yo (@, Y3, by ha),  i=1,2 (6.1b)

are fitting coefficients.
The derivatives of the function u(x,y) can be represented as follows:

0
. — _2—1 —1 pn
5, (%) Uso ™ " (m)m,

0? _ _

P ia9) =4 ™ [ £ + 3870, 63)
o w(m,y) = 2R 2 ka2 ka2 ka2 plhkat) ()

ayk2 Y) = 00 o n),

ky < 4, n = Ne.s) (T, y;€),

and for the function v(x,y) we have the representation (2.5). Taking into account
the last representations in (6.3) and also the estimates for the derivatives of the
function f(n), we find

0
U(Q%U) (a - 55) U(%U) ‘ < Mhy, (93,?!) € Gp;
0” 2(.1/2 -2
9 63/5 — 8—y2 U(l‘, U) 2 th (5 / + hg) y (64)

_ o _
m772h2 (51/2 + hQ) ' < —v(z,y) <5§_ 8_2/> u(z,y) < M772h2 (81/2 + h2) 13

(z,y) € Gp, n < My, n=n(z,y;e).

From estimates (6.4) it follows that under the condition

Yy =Ye) =1 (6.5)

the error in approximating the solution of the boundary value problem is of order
1, for the terms of the equation which contain the y—derivatives, when n < M, and
the step-size hy is of order £'/2. The error for the term involving the derivatives
in z is e-uniformly small for small values of h; on the whole domain G.

Note that under condition (6.5) and for values of 1, somewhat less than M,
namely, for n < my, the main term of the truncation error is generated by errors
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caused by the numerical approximation of the second derivatives

82
487 s e hyr ™ min fP () < e (5@ - a—y2> u(@, y) <

< 487 'ule ™ hia ™ max f (), n(x,y) <mg,  (6.6)

where M, N2 € [77(33, yj_T)a n(xa yj_H) ]’ (I, U]) € Gh-

Taking into account estimates (6.4), (6.6), we establish, similarly to consider-
ations in [8], that there are no fitted operator schemes (6.1), (6.2) which converge
e—uniformly in the case of the Prandtl problem (2.2), (2.7), (2.1).

Theorem 1. In the class of finite difference schemes (6.1), (6.2) there do not
ezist schemes, whose solutions converge as N — oo to the solution of the boundary
value problem (2.2), (2.7), (2.1) e—uniformly.

Thus, from here it follows that to construct £ uniformly convergent schemes
in the case of the Prandtl problem (2.2), (2.7), (2.1), the use of meshes condensing
in the neighbourhood of the parabolic boundary layer is necessary.
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