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Abstract. The derivatives of the solution of singularly perturbed differential equa-
tions become unbounded as the singular perturbation parameter € tends to zero. There-
fore to approximate such derivatives, it is required to scale the derivatives in such a
way that they are of order one for all values of the perturbation parameter. In prac-
tice, derivatives are related to the flur or drag and, hence, it is desirable to have -
uniform approximations to the scaled derivatives. In this paper, singularly perturbed
convection—diffusion problems are considered. The use of standard scaled discrete
derivatives to approrimate the scaled continuous derivatives of the solution of singu-
larly perturbed problems is examined. Standard scaled discrete derivatives gemerated
from exact numerical methods on a uniform mesh are shown to be not e—uniformly
convergent. On the other hand, standard scaled discrete derivatives computed from a
numerical method based on an appropriately fitted piecewise uniform mesh are shown
to be ¢ uniformly convergent. Numerical results are presented and discussed to illus-
trate the significance of these theoretical results.

1 Introduction

To illustrate the problem we consider the following singularly perturbed constant
coefficient problem

eu! +aul = f, x€(0,1), 0<e<l, (1a)
ue(0) =0, wu(l)=0 (1b)

where a and f are positive constants. In addition to finding an approximation to the
solution u, of a differential equation, an accurate approximation to the scaled first
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derivative eu. of the solution is often required. An obvious first choice is the scaled
discrete derivative e D1 U,. For problem (1) we have

f( e—ax/a )
! — L _
eu.(x) = ol Gl ey

and for any finite difference scheme, which is exact at the nodes, we have

f e=avile 1 _ =pi .
+ ) — L _ R .
eD U, (z;) = " (5 T pp—r ) )) with  p; = a(z;1 — ;) /e

where {U,(z;)} Y, is the solution of the finite difference scheme. Thus, on a uniform
mesh, the error in these scaled quantities at the point z = 0 is

1 e
e|DTU.(0) — ul(0)| = ] _'ﬁ_a/e (1- pe ), where p=a/Ne.

Taking e N = a, and letting N — oo we get,

lim ¢| DU, (0) — u.(0)| = fe=' #0.
N—o0

In other words, for this constant coefficient problem, using a uniform mesh, the scaled
discrete derivative e D*U, does not converge e—uniformly to cu’ as the mesh is refined,
even though the underlying numerical method is exact at the mesh points. Note also
that, on a non—uniform mesh

—azx;/e 1 — e P Tir1 — Tj
oD () — (o) = L (1 ) s oo
— e a/e Di e

and so if z; = ep(N), where »(N) — 0 as N — oo, the scaled discrete derivative
eD"u.(0) converges e—uniformly to eu’(0).

2 Convergence results

More generally, we now consider the following class of singularly perturbed problems

Lou, =eu! + a(z)ul = f(z) z€Q=(0,1), (2a)
us(0) = A, wu.(1) =B, (2b)
a,f € C*Q), alz) >a>0, zc. (2¢)

The solution of any such problem can be decomposed into a sum of smooth and
singular components of the form

Ue = Ve + W,



where v, is the solution of
Leve = f, 0:(0) = vo(0) +ev1(0), ve(1) = ue(1) (3a)

with avy = f, v(1) = u.(1), av] = —vj, vi(1) = 0 and consequently w, is the
solution of the homogeneous problem

Lewe =0, w.(0) = u.(0) — v.(0), w.(1) = 0. (3b)

The components v, w, and their derivatives satisfy the bounds (see, for example, [1])

W < Cc1+&%), k=0,1,2,3, (4a)
w®(z)] < Ce e /s, £ =0,1,2,3, z €. (4b)

To solve problem (2) we use numerical methods of the form

LNU, = e8?U, + a(x;) DU, = f(x;), x; € QY (5a)
U.(0) = u.(0), U.(1) =u.(1), (5b)

where ﬁév is the piecewise uniform fitted mesh defined by

QY = {zi|zi = ih, i < N/2; z; = 351 + H, N/2 < i} (5¢)

with h =20/N, H =2(1 — 0)/N and
0 = mi {l ElnN} (5d)
My o .

We note that h < N=', H < 2N~'. Just as the solution u, of the continuous problem
(2) can be decomposed, the discrete solution U, of (5) can be decomposed into the
sum U, = V. + W,, where V, and W, are the solutions of the problems

Lév‘/s = f(mz)a ZT; € Qéva ‘/5(0) = Us(o)7 ‘/;(1) = Us(l)a (6&)
LYW, =0, 2;€QV,  W.(0) =w.(0), W.(1)=0. (6b)

The error in the numerical solutions can then be written in the form U, — u, =

(Ve —v.) + (We — w,).

Lemma 1 At each mesh point z; € QY the smooth component of the error satisfies
the estimate

(Ve —ve) ()| < CNTH(1 — )

where v. and V., respectively, is the solution of (3a) and (6a).

3



Proof. Use the following bound on the local truncation error

(@1 — o) o + 1 s — 2@ < N

LYV, = 0)(w)] < :

Wl M

and the two mesh functions ¥*(z;) = CN~'(1 — z;) £ (V. — v.)(z;) to complete the
proof with the discrete minimum principle.

Lemma 2 For all N > 4, the singular component of the error satisfies the estimate
(a) |(W.—w.)(z:)] <CN 'InN, z;€QF

where w, is the solution of (3b) and W, is the solution of (6b) and, in the case of
oc=%<InN,

(b) |W.(z))| <CN'(1 —xy), x> 0.

Proof. (a) The proof follows the argument given in [1], except that a more sophisti-
cated barrier function is used in the subinterval [0, 0] to get a sharper error bound.
Consider first the case when o = £In N. For all z; € [0, 1], it is shown in [1] that
W, (z;)] < CN~! and |w,(z;)| < CN~'. For all z; € (0,0), we use the bounds on the
derivatives and a standard local truncation error estimate to obtain
LYW )@)€ S w0 + e (@i 2l

€ € € /] = 3 i+1 Ti—1)||Wg [Zim1,2i41] 9 Ti+1 Z;) || W, [Tiz1,2i41]

< Coe 2N~ lemomi-1/e,

We note also that (W, —w,)(0) = 0 and |(W, —w,)(c)] < CN~"'. Instead of the linear
barrier functions used in [1], we define the mesh functions ¥* on the subinterval [0, o]
by

Ut (z;) = Coe®ee ' N7Y; + N7 £ (W, — w,) ()
where Y is the solution of the constant coefficient problem
e0’Y + DY =0, z; € Q¥ n(0,0)

with the boundary conditions Yy = 1 and Yx/2 = 0; and -y is an arbitrary parameter
such that 0 < v < a. It is easy to check that

LNU*(2;) < Cy(a(x;) — y)eD Yoe 2N~ 4 Coe 2N~ omi1/(25) <,

From the discrete minimum principle, it follows that

\We(z;) — we(z;)| < Croe "N~y 4+ CN"' < CN'"InN



as required. For the case 0 = 1/2, apply the argument used above for the subinterval
[0,0] to the entire interval [0, 1], and observe, from the definition of o, that, for all
values of € and N,

To prove (b) use the mesh functions

1—.’13Z'
1—0

v (2:) = [We(0)]

on the interval [0, 1] to get the required bound on |W.(x;)|, for all i > N/2.

Combining the estimates in Lemmas 1 and 2 gives an e—uniform error estimate at
each point of the mesh QY. As in [1], we can extend these results to each point of
the domain €2, which leads to the global e—uniform error estimate

sup ||U; —u.|[lg < CN 'InN (7)

0<e<1

where U, is the piecewise linear interpolant of U, over Q and C is a constant inde-
pendent of N and ¢.

We now establish the ¢ uniform convergence of the scaled discrete derivatives to
the corresponding scaled derivatives of the solution u..

Theorem 1 At each mesh point z; € QY U {0}

leD T ue (%) — eul||wimig < CN~'InN,
where u, is the solution of (2).
Proof. Note that, for all z; € QY U {0},
1D% 0 (5) — tlaggern) < Clainn — )0 apn] < N 0

and, when o0 = 1/2, we see from the argument leading to (8) that
D 0. (@:) 0l < CN'Tn . 9)
For all z; € [0,0), we have that

el D we(w;) — wl

1 < CO(igr — m3)el|wy |

(23,241 [zimi1] < CO‘(EN)_l < CN 'InN.

Also, for all z; € [0,1), the local truncation error can be written in the form

1 Tit1 s T
Dt w,(x;) — wl(z) = 7/ / w!(t) dt ds / w?(t) dt.
s=x; t=x; t=x;

Tit1 — T4
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Then, using the fact that L.w. = 0 and integration by parts, we obtain

. /t D dl = - /t " ety () dt = /  d W) dt— atyw.(t)

=x; =x; t=x; t=x;

< Ol

[Ti,Tit1] -
Note also that, when 0 = £1In N, we have for all x > o
|we ()] < |we(o)| <CN .
Combining these inequalities completes the proof.
Lemma 3 At each mesh point z; € QY U {0}
leD* (Ve(®i) — ve(2:))| < CNT,
where v, is the solution of (3a) and V; is the solution of (6a).

Proof. Denote the error and the local truncation error, respectively, at each mesh
point by

e; = Vo(x;) —ve(z;) and 7 = Le;.
From Lemma 1 |ey_1| < CN 2 and, since ey = 0,

— EN-—1

leD™en| = <€|6N | < CeNT'. (10)

For mesh points in the coarse mesh, using the expression for the local truncation error
we have

eD e;= (¢ +a(z;)H)D"e; — Hr;, N/2 <i< N,
and this can be rewritten in the form
eD7e; =eD%e; + a(x;)(e;1 — ;) — Hriy, N/2 <i< N. (11)

Summing these equations from j =i to N — 1 yields, for each i, N/2 <i < N,

N1 N—1
D e;=eDen + 3 alz;) (e —¢;) — H Y 7.
j=i

Note that
Z a(z;)(ej+1 — ;) = a(zr)ert1 — a(zi-1)e; — Z(a(%’) —a(zj1))e.  (12)



Now from Lemma 1 we have that |e;| < CN~! and from its proof we have |7;| < CN~!,
and (10). From these inequalities we have the following bound for all ¢ such that
N/2<i<N

|€D+6i| < CN_l.
At the transition point zy/, = o,

h+H
2

h+H
L

EDieN/Q = €D+€N/2 + CI,($N/2)( )TN/Q,

and noting that

EN/24+1 — ENJ2

|Dfenys| = | 7

| <C

results in [eD~eyn/2| < CN~'. In the fine mesh, z; < o, we sum (11) from j =i to
N/2 — 1 to get

N/2-1 N/2-1
eD e;=eD enj+ Z a(z;)(ej+1 —€;) — h Z T3
j=i =

Repeat the argument that was used in the coarse mesh area, to get
leDe;| <CN', 1<i<N/2
which completes the proof.

Lemma 4 In the case of 0 = eln N/a,

eD™W,.(2;)| K ON™' |, o< <1, (13a)
elDT(W.(z;) —we(x))| KON, o<uz<]1, (13b)
elD-(W.(0) —w.(0))| <CN 'InN |, (13c)

where w, s the solution of (3b) and W, is the solution of (6b).

Proof. From Lemma 2, |W_(z;)| < CN'(1—x;) for i > N/2 and thus |D~W,_(zx)| <
CN~'. Since LYW, = 0, we can write

eD W.(x;) = (¢ + a(x;)H)D*W_(z;), N/2<i<N,

which after summation yields, for all 0 < z; < 1,

ED () = =D Wa(ow) — alos )We(og) — 32 Wela)a(e) — aloy 1),

j=i



which completes the proof of (13a).

Note that
DT (We(zi) — we(:))| = el D™We(z;) — wi(z) + wl(x;) — D we ()]
< e|DYWe ()| + e|wl(zi)] + elwl(x:) — D w.(3)]
< CN™!

which completes the proof of (13b).
At the transition point

h+H

eD"W.(0) = eD'W.(0)+ a(o)(—=—)D W.(0),
= (1+ @)SD‘FWE(U) + @(Wg(a + H) — W.(0))
< CN .

Note also that,

ac ah

lew!(c —h)| < Ce “e= <CN' W < ON™

and complete the proof of (13c) using Theorem 1 which gives
gD w.(c —h) —w'(c —h)| <CN~'InN.
Theorem 2 For all z; € QN U {0}
e| DY (W (z;) — we(z))| < CN"'In N
where w, 1is the solution of (3b) and W, is the solution of (6b).

Proof. Consider first the case of 0 = ¢ln N/a. Use the previous lemma in the case
of z; > 0. Denote the error and the local truncation error, respectively, at each mesh
point by

éi =W.(z;) —w.(z;) and 7;= Lévéi.
For1<i< N/2 1

N/2-1 N/2-1
eD é;=¢eD énjp+ Z J(éj41 —€5) — h Z -
Jj=t j=1%
Note that
N/2-1 B2 N/2-1

h2 %

Finish using the argument given in Lemma 3. In the case of 0 = 0.5, use the argument
from Lemma 3 to first establish that e|W,(z;) — we(z;)| < CN~'In N(1 — z;) which
implies that e|[D"éx| < CN~'In N; then repeat the argument given above on the
entire interval [0, 1].

2
L@)ah < Cﬁmax{l,ﬁ} < CN7 'InN.
1—e ¢ € €



Theorem 3 Let u. be the solution of (2) and let U, be the corresponding numerical
solution generated by (5). Then the discrete and exact scaled derivatives satisfy the
estimate

e| DU (z;) —ul(z)| < CN 'InN, forall x € [2;, 2i41]
where C 1is a constant independent of N and ¢.
Proof. Use the triangle inequality
e|DTUe(zs) — ul(z)| < €D Ue(wi) — DT ue(w:))] + €| D ue(ws) — ul(z)]
and the previous lemmas to complete the proof.
Remark Note that the bound
e|DTU(0) — ul(0)| <CN'InN

together with Theorem 1 imply that e[D*(U.(0) — u.(0))| < CN~'In N, which in
turn implies that at the first internal mesh point

\Us(21) — u.(z1)| < C(N"'In N)%

We define the piecewise constant function DU . on [0,1] by
eD U, (z) = eD U.(z;), for z € [m;,2i41), i=01...,N—1
and at the point z = 1 by
eD ' U.(1) =eD Ud(zy_1).

Then, from the last theorem, DU ¢ is an e—uniform global approximation to eu. in
the sense that

sup €D U, — eul]lg < CN 'InN.

0<e<1

In other words the numerical method (5) is € uniform in an appropriately scaled
global C' norm. That is,

sup 5||E+UE —uLllg + \U. — Uellg < CN'InN. (14)

0<e<1

Note that eu! = f — aul. Hence, for all z € [x;, x;11],
e’6°U, (z;) — e”ull (z) = e(f (z:) — f(z)) + (a(z) — a(z;))eul(z) — a(z;)e (DU, — u.)
which implies that, with the obvious definition for the extension SU e

sup &2||I3°U. — ' |lg+ | DU, — vl + ||U. — ullg <CN 'InN.  (15)

0<e<1

In other words the numerical method (5) applied to problem (2) is e-uniform in an
appropriately scaled global C? norm.



3 Numerical results

Consider the following two dimensional convection diffusion problem on the unit
square © = (0,1) x (0, 1)
ou,

eAu, + e 0, (z,y) € Q, (16a)

ue(z,0) = 6423 (1 — z)3, u.(1,y) = 64y3(1 — y)3, u.(z,1) = u(0,y) =0. (16Db)

A regular boundary layer occurs at the edge z = 0 and a parabolic boundary layer
at the edge y = 0. We use the piecewise uniform partially fitted mesh

Qy x oF (17)

which is fitted to the regular boundary layer but not to the parabolic boundary layer.
The mesh Q7 is a uniform mesh along the y—axis and QY is the one-dimensional
fitted mesh defined in (5c¢). We use the numerical method based on the upwind finite
difference operator

e6.U. + €0, U, + DYU. =0, (z;, ;) € Q) x Qf,

where 02, D] are the standard centered and forward difference operators, and the
partially fitted mesh (17), to solve problem (16). It is known from the theoretical
results in [2] that this method is not & uniform. This may be seen from the numerical
results in Table 1. There is an error ridge along a diagonal of the table, typical of a
non e-uniform method, but in this case the maximum pointwise errors are at worst
only 6% for N > 32. For many, this level of accuracy may be acceptable despite the
fact that the method is not e—uniform. However, it is when this method is used to
generate approximations to a scaled first derivative of the solution, that its inadequacy
becomes more pronounced. This is of practical importance, because often the physical
quantities of interest, such as the flux, involve scaled first order derivatives of the
solution. A small error in the approximation of the solution may be tolerable, but
in practice we often want comparably small errors in the numerical approximations
of the scaled derivatives (cug, /eu,). The computed maximum pointwise errors of
the numerical approximation to the scaled derivatives generated by this partially
fitted method and the upwind finite difference operator are given in Table 2. These
results demonstrate that the numerical approximations of the scaled derivatives do
not converge e—uniformly in the boundary layer regions where the mesh is not fitted.
In fact, there is an error of 100% for small values of ¢.

We now consider the numerical method based on the same upwind finite difference

operator and the fitted mesh Q2 x QY where ﬁ;\: is the piecewise—uniform fitted mesh

defined in (5¢) and Q.. is defined by

OF = {yi| yi=ihy, i <NJ4 yi=y; 1+ Hy, NJ/A<i<3N/4;

. (18a)
Yi = Yi1 + he, 3N/4 < i}
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Table 1: Computed maximum pointwise errors EV for problem (16) using an upwind
finite difference operator and the partially fitted mesh (17) with no refinement in the

parabolic layers for various values of ¢ and N.
Number of intervals N

€ 8 16 32 64 128 256

1 0.185D-01 0.737D-02 0.301D-02 0.126D-02 0.514D-03 0.169D-03
—2 0.325D-01 0.168D-01 0.836D-02 0.399D-02 0.174D-02 0.599D-03
4
6
8

0.991D-01 0.504D-01 0.251D-01 0.128D-01 0.624D-02 0.235D-02
0.116D+00 0.682D-01 0.379D-01 0.200D-01 0.960D-02 0.354D-02
0.152D+00 0.886D-01 0.484D-01 0.251D-01 0.118D-01 0.428D-02
2710 0.164D+00 0.945D-01 0.650D-01 0.323D-01 0.126D-01 0.455D-02
2712 0.167D+00 0.960D-01 0.568D-01 0.590D-01 0.267D-01 0.725D-02
21 0.168D+00 0.963D-01 0.526D-01 0.556D-01 0.558D-01 0.238D-01
2716 0.168D+00 0.964D-01 0.526D-01 0.273D-01 0.551D-01 0.540D-01
2718 0.168D+00 0.965D-01 0.527D-01 0.273D-01 0.216D-01 0.547D-01
2720 0.168D+00 0.965D-01 0.527D-01 0.273D-01 0.129D-01 0.216D-01
2722 (0.168D+00 0.965D-01 0.527D-01 0.273D-01 0.129D-01 0.561D-02

273" 0.168D+00 0.965D-01 0.527D-01 0.273D-01 0.129D-01 0.465D-02

with h,g == 40'2/N, H2 = 2(1 - 0'2)/N and
1
09 = min{i,\/gln N} (18b)

The results in Tables 3 and 4 show that in this case the numerical approximations
to the scaled derivatives converge ¢ uniformly on this piecewise uniform mesh. We
remark especially that the ¢ uniform convergence displayed in Table 4 is in stark
contrast to the corresponding behaviour of the entries in Table 2.
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Table 2: Computed maximum pointwise errors EN (,/eD/}U) in approximating /zu,,
for problem (16) using the upwind finite difference operator and the partially fitted
mesh (17) for various values of ¢ and N.

Number of intervals N

8 16 32 64 128 256

€

1 0.430D+00 0.210D+00 0.102D+00 0.469D-01 0.205D-01 0.690D-02
-2 0.430D+00 0.230D+00 0.129D+00 0.627D-01 0.275D-01 0.925D-02

4 0.650D+00 0.305D+00 0.154D+00 0.742D-01 0.325D-01 0.110D-01

6 0.934D+00 0.482D-+00 0.230D+00 0.113D-+00 0.498D-01 0.169D-01

8 0.123D+01 0.775D+00 0.433D+00 0.219D+00 0.999D-01 0.346D-01
2-10 0.124D4-01 0.102D+01 0.756D+00 0.423D+00 0.210D+00 0.846D-01
2-12 0.123D+01 0.104D-+01 0.988D+00 0.754D+00 0.428D+00 0.215D+00
2- 1 0.123D+01 0.104D+01 0.101D-+01 0.983D+00 0.754D+00 0.431D+00
216 0.123D+01 0.103D+01 0.100D+01 0.100D+01 0.986D+00 0.755D+00
218 0.123D+01 0.103D+01 0.100D+01 0.100D+01 0.100D+01 0.985D+00
2720 0.123D+01 0.103D+01 0.100D+01 0.100D+01 0.100D+01 0.100D+01
2722 0.123D+01 0.103D+01 0.100D+01 0.100D+01 0.100D+01 0.100D+01

234 0.123D+01 0.103D+01 0.100D+01 0.100D+01 0.100D+01 0.100D+01

Table 3: Computed maximum pointwise errors EN (¢DU) and EV(¢eD}U) in ap-
proximating eu, for problem (16) using QY x QY for various values of ¢ and N.
Number of intervals N
£ 8 16 32 64 128 256
1 0.444D+00 0.204D+00 0.989D-01 0.473D-01 0.204D-01 0.681D-02
-2 0.375D+00 0.219D4+00 0.104D+00 0.481D-01 0.205D-01 0.684D-02
4
6
8

0.142D+4+00 0.101D+00 0.536D-01 0.284D-01 0.134D-01 0.480D-02
0.120D4+00 0.805D-01  0.488D-01 0.266D-01 0.128D-01 0.465D-02
0.101D4+00 0.767D-01  0.463D-01 0.254D-01 0.123D-01 0.452D-02
2710 0.942D-01 0.755D-01  0.459D-01 0.251D-01 0.122D-01 (.448D-02
2712 0.934D-01 0.748D-01  0.457D-01 0.250D-01 0.121D-01 0.446D-02
21 0.932D-01 0.744D-01  0.455D-01 0.250D-01 0.121D-01 0.446D-02
2716 0.931D-01 0.742D-01  0.453D-01 0.250D-01 0.121D-01 0.446D-02

2-34 0.931D-01  0.740D-01  0.453D-01 0.250D-01 0.121D-01 0.445D-02
EN(eD}U) 0.444D+00 0.219D+00 0.104D+00 0.481D-01 0.205D-01 0.684D-02
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Table 4: Computed maximum pointwise errors EN(\/eDU) and EN(\/eD/}U) in
approximating \/zu, for problem (16) using QY x QY for various values of ¢ and N.
Number of intervals N

€ 8 16 32 64 128 256

1 0.430D+4+00 0.210D4+00 0.102D+00 0.469D-01 0.205D-01 0.690D-02
-2 0.430D+00 0.230D4+00 0.129D+00 0.627D-01 0.275D-01 0.925D-02
4
6
8

0.650D+00 0.305D+00 0.154D+00 0.742D-01  0.325D-01 0.110D-01
0.934D+00 0.482D+400 0.230D+00 0.113D4+00 0.498D-01 0.169D-01
0.736D+00 0.587D+00 0.370D+00 0.219D4+00 0.999D-01 0.346D-01
2710 (0.680D+00 0.562D+00 0.347D+00 0.208D+00 0.108D+00 0.411D-01

2734 0.671D+00 0.560D+00 0.347D+00 0.208D+00 0.108D+00 0.410D-01
EN(\/ED;}‘U) 0.934D+00 0.587D+00 0.370D+00 0.219D+00 0.108D+00 0.411D-01
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