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ABSTRACT

A proof of the celebrated Perron-Frobenius results for non-negative
matrices is given via classical spectral theory. This approach is based on the
properties of a hierarchy of subsets of the non-negative matrices which are

of considerable interest in their own right and which are detailed here.

81 Introduction

The main aim of this document is to present elementary proofs of two classical resullts,
namely the Perron-Frobenius (PF) Theorem and the Compact Group Theorem, using
basic spectral theory. For background the reader is only required to have a working
knowledge of spectral theory as can be found in any comprehensive treatise on linear

operators such as[1].

A brief word on notation. Although a matrix is an object of interest in its own right, we
shall often prefer to regard it as alinear operator on a finite-dimensional vector space. If
T is such an operator we shall formally denote its matrix relative to afixed basis by [T]
and the actua element in row i, column j by [T]; . Where thereis no danger of confusion
the sguare brackets may be omitted. The transpose of T will be denoted by T'. We will
be chiefly interested in non-negative matrices and we shall use [, to denote the set of

all such m-square matrices. Whenever the size of the matrix is immaterial we shall
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simply write T [0 O or, more usualy, T = 0. We shall write diag(T) > O if every entry on
the diagonal of T is positive. The spectrum or set of eigenvalues of T is denoted by o(T)
and the largest modulus amongst its eigenvalues, the spectral radius of T, is denoted by

r(T). The peripheral spectrum 1q(T) isthe set of eigenvalues of T with modulusr(T), and

the number of elementsin 1i(T) is called the index of imprimitivity of T.

If T isany matrix we shall say that T is zero-free whenever T does not have either a zero
row or a zero column. For our purposes this will be a key property. Another important
attribute of any matrix T = 0 is its potency namely the smallest positive integer n such
that diag(T") > 0. If no such number exists then T is said to be impotent. Note that a
potent matrix must always be zero-free and have a positive spectra radius. Since a
nilpotent matrix must be impotent (easily seen by considering its trace), impotence may

be regarded as arather weak form of nilpotence.

Two standard concepts for dealing with non-negative matrices are connectedness and
permutations. The latter are often used to transform a matrix to make it more tractable.
They effectively re-order the basis of the underlying space and by this means alter the
positions of rows and columns in the matrix. A valid row/column interchange is to swop
row i with row j and then to swop column i and column j. As these swops commute
their order is immaterial. It will be seen that whilst such interchanges move rows and
columns around, the contents of rows and columns (and aso the diagonal) may be
re-ordered but never changed. Permutation matrices have many trivial properties. There
isasingle non-zero entry (one) in each row and each column. They are al invertible and

thelr inverses are the same as thelir transposes.

A non-negative matrix T is said to be decomposable (some authors use reducible) if
there exists a permutation matrix E such that ETE" has a 2 x 2 block form where the
diagona blocks are both square and the top right hand corner block is zero. Matrices
that do not enjoy this property are called connected (also indecomposable and
irreducible). See [2] page 122 for details. There are several equivaent definitions of

connectedness and one of particular importanceisthat T = 0 is connected if for every i,
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there exists n such that [T"]; > 0. Thisis presented as exercise 5.2.6 on page 122 of [2].
It is not hard to see that this condition implies connectedness, but the converseis alittle
tricky. It may be proved using a permutation similar to that of Lemma 7 with suitable
alterations; in other words by concentrating on elements i, j such that [T"]; = O for al n
instead of the zeros of P. It is also easy to see that if T = 0 is connected then T is potent
and r(T) > 0. For to every i thereis an n(i) such that [T""]; > 0, and the product of the
n(i) isthen aways a suitable candidate for the potency.

Two fundamental ideas which permeate the following proofs are hierarchy and
inheritance. The latter is demonstrated in the crucial Lemma 4 wherein we see the child
operator inheriting connectedness and dominating its parent to a quite astonishing
extent. It also surfaces in inductive proofs such as those of Lemma 7 and Proposition 4
where the properties of several small matrices are used to derive similar properties for a
larger one. The former is based on the observation that to descend from a positive
matrix to a non-negative matrix there are three intermediate steps along the way which

are neatly summed up in the following simple hierarchy statement.

positivity [ connectedness [0  potency [  zero-freedom

All of these properties will be central to our work. Note that they are all qualitative as
opposed to quantitative. In other words they only depend on the entries in the matrix
insofar as those entries are either zero or non-zero; to them the magnitude of the various
entries in the matrix is of no consequence whatsoever. Note also that each of them is

invariant under any permutation of the basis of the underlying space.

Last but not least the author would like to record his thanks to T. T. West for his help,

advice, and occasional inspiration during the preparation of this document.
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82 Perron-Frobenius

Our first target is to prove the PF-Theorem. Some preliminary results are needed and we
deal with them before giving the proof proper. Matrices with positive diagonals are
discussed in more detail in [4]. Indeed Lemma 2 below is an easy corollary of the

eccentric disk theorem (see [4] proposition 6).

+ Lemmal

If 0T =0and T commutes with a connected non-negative matrix then T is zero-free.

Proof : Suppose S = 0 is connected and ST = TS. Choose i, j such that [T]; > 0. Then
given k by connectivity thereis an n such that [S"]« > 0 so [S'T]i > 0. By commutativity
[TST > 0 hence row k of T is non-zero. Thus T has no zero rows and a similar

argument shows that it has no zero columns either ©

+ Lemma?2

If T=0anddiag(T) > 0 then T(T) = {r(T)}.

Proof : Clearly r(T) > 0 so we may assume without loss of generality that r(T) = 1. Let
C={e®; W2 <6< 3m2}. Fix nand let £ be the smallest entry on the diagonal of T".
Since reducing the diagona elements clearly cannot increase the spectral radius we have
r(T"-€l) <r(T") = 1and o(T" - €1) isjust o(T") shifted left by € > 0 so T" cannot have

eigenvalueson C. Asnisarbitrary T(T) = {1} by the spectral mapping theorem ©

+ Lemma3 (the peripheral projection)
Suppose T = 0 is connected with potency ¢ and spectral radiusr. The spectral projection
(called the peripheral projection of T) given by P = P(1q(T);T) satisfies the following :-
(i) TP=PTandP=P(r5T°;
(i) P=0;
@iy TP=rP;
(iv) diag(P)>0.
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Proof : The results of (i) are standard properties of spectral projections. Since r > 0 we
may assume, using appropriate scaling, that r = 1. Then 1(T°) = {1} by Lemma 2, and by
the usual spectral decomposition T°=U OV where U=T¢|PX and V=T°|(1- P)X.
If v ischosensuchthat r(V) <v <1 then ultimately the norm of V* isbounded by v*
andso V¥ - 0 ask - o .Now supposethat 1 isapoleof T¢of order g+ 1 where

q=1.Then U=1+N whereN#0,N"*=0 s0 U¥ =1+kN + .......... + KC4Nd

which is apolynomial in k of degree q, the coefficient of k% being N%q! whichisa
non-zero operator, W say. Moreover it follows immediately that UW =W and W?=0.
Then k9U* - W and writing E=W 0 0 showsthat k9T« =k9UO k?V* ., E.
Note that E> 0 since T =0 and aso TE = ET. Now E>=W? [0 0=0. It follows that
ETE = O for all k. But if [E];; # O then by connectedness there would exist k such that
[T4;i # 0 which would mean that ET*E # 0 which is false. Therefore 1 is a simple pole
of T°and U = 1. Hence T°P = P which proves (iii). Notethat T“=10V* - 100=P
so Pisreal and P = O proving (ii). Finally to prove (iv) we show [P]; > 0. Since P> 0 is
non-zero and commutes with the connected T > 0 by Lemma 1 there exists j such that
[P]i > 0. Again by connectedness choose k so that [T*]; > 0. This implies [PT"]i > 0 so
raising to the ¢" power [PT*]; >0, but PT*=Phence[P]i>0 ©

« Lemma4 (thechild operator)
Let T = 0 be connected with potency c, spectral radiusr, peripheral projection P, and
index of imprimitivity h. Then the child operator of T given by R = TP satisfies :-
(i) m(R)=m(T)=0o(R){0} and P=P((R);R) ;
(i) R=0isconnected ;
(iif) If (for any n) an entry in [R"] is zero the corresponding entry in [T"] isalso zero;
(iv) hisequal tothe potency of R ;
(V) R'=r"Pand R™=r"R;
(vi) cisdivisibleby h;
(vii) If nisdivisible by hthen diag(R") > 0 ; otherwise diag(R") =0 ;
(viii) If [RM;>0then[R™; >0 = (m+n)isdivisibleby h.
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Proof : (i) is standard. By Lemma 3(ii) it follows that R isreal = 0. If [R"; = 0 then
[T'Pl; = 0s0 X [T"w[P] = 0 and as al terms are non-negative and [P]; > 0 this means
that [T"]; = 0. Hence R is connected proving (ii) and (iii). (iv) and (v) now follow by
applying Lemma 3 to R and using (i). If [R"]; > O by connectedness there exist u, v with
[RY; > 0and [RY; > 0. Then [R*]i = [R]i[R"]; > 0 so [R];[RT;[Ri[R“™™]; > 0 so
[R* ;> 0 s0 [R"y > 0 by (v). Thisimplies diag(R") > 0 hence n = h and diag(R") =0
for n < h. This proves (vi) and (vii). Finaly if [R"; > 0 and (m+n) is not a multiple of h
then [R™; = 0 by (vii). But as R is connected we know by (v) that [R™); is periodically

positive and hence [R™];i > 0 whenever (m+n) isamultiple of h. This proves (viii)) ©

« Lemma 5
A positive projection P always has rank one and may be written as uJf where u is the

first column of P and f is the top row of P divided by [P].;. Thisgivesf(u) = 1.

Proof : Clearly Pu=u and u > 0. Let v be any other column and A be the largest real
number such that w =v - Au= 0. Then Pw = w and at least one component, say number
k, of w iszero so  [P]w; = 0 which means that w = 0 and hence every column of Pisa

multiple of the first one. Thus P has rank one and we can writeit in the givenform ©

« Lemma6 (the Perron projection)

Suppose that T = 0 is connected with spectral radius r, peripheral projection P, index of
imprimitivity h, and child R. Then for any A O 1(T) the spectra projection P(A;T) is
given by the formula P(A\;T) = h}(P + AR + AR + ... + XUR™)_In particular P(r;T)

which will be called the Perron projection of T is positive and has rank one.

Proof : Let Q= h(P+ AR+ A?R* + ... + N\("R™) As R" = ("P by Lemma 4(V) it
follows that Q is a projection. Obviousy QR = AQ = RQ so Q reduces R. Note that
(R-A)|QX iszero, and dso (R-A)(1-Q)x =00 Rx=Ax 0O Qx=x0 (1-Qx =0s0
(R-N)|(1-Q)X is one-to-one and hence invertible. Therefore Q = P(A;R) = P(A;T) as
required. Now P(r;T) = h'r'R > 0 (note that if h = 1 then P = r'R) so P(r;T) is a

connected projection hence it must be positive. By Lemma 5 itsrank must beone  ©
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Having scaled the lesser peaks we are now finally ready to tackle the big one. The
observant reader will notice that statement (I1V) below is much stronger than the version
that is usually quoted, namely that o(T) is invariant under rotation by an angle 21vh. It
implies that spectral characteristics such as pole order and algebraic and geometric
multiplicities are faithfully preserved under rotation. Used in conjunction with (1) it also
shows that if A O 1(T) then P(A;T) has rank one and consequently that al points of the

peripheral spectrum are simple roots of the characteristic equation of T.

Unfortunately most existing proofs of the PF-Theorem are neither straightforward nor
intuitive. Indeed [2] declines to give one because it would be "too long and too
involved". A new and attractive proof using semigroups has however recently been

published in [3]. By comparison our proof is less general but more direct.

« The Perron-Frobenius Theorem (see[2] page 124)
Let T = 0 be connected with spectral radiusr. Then :-
(1) risareal positive eigenvalue (the Perron root of T) which isasimple root of the
characteristic equation of T.
(I1) There exists a positive eigenvector corresponding to r.
(111) 1f T has h eigenvalues of modulusr these are the h distinct roots of z"- r" = 0.
(V) If w=e"thenTissimilar to wT.
(V) If h> 1there exists apermutation matrix E such that ETE" has a representation
consisting of h square blocks on the main diagonal and all blocks except those

directly above the main diagonal and the one in the bottom Ieft corner are zero.

Proof : By Lemma 6 the Perron projection is rank one which proves (1), moreover its

first column is a positive eigenvector corresponding to the Perron root. This proves (11).

We next prove (V). In order to do so we look at the underlying complex vector space X
with basis{e|, &, ..., &imx} Where & hasa 1 initsi™ coordinate and O elsewhere. R
imposes a strict regime on this basis to the extent that X is expressible as the direct sum

of h subspaces V1, Vs, ..., Vi by theformulaV, = span{g ; [R"y > 0}. Since R™* = "R
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every base vedor liesin at least one of these subspaces, moreover no base vedor e can
belong to more than ore subspace for if we had [R™4 >0, [R"4 > 0with 1< m< hand
1 < n<hthen by Lemma4(viii) we have [R™i1 > 0s0 [R™™;; >0s0 h+m-n=h by
Lemma 4(vii) which impliesm =n. Thus X =V, O V, O .... O Vi, and we now show
that R(Vn1) O Vi, . [ Here we ae adopt alocd convention that Vo =V ]. Suppese g [
Vi and consider Rg = Z[R];e . If [R]; > 0 then by Lemma 4(viii) we have [R™]; > 0
s0 [R™]4[R™];i > 0 s0 [R™4 > 0 thus [R" > 0 so e O V.. Therefore Rg O V, and it
follows that R(V 1) O V. Now by Lemma 4(iii ) we seethat T shares exadly the same

property, namelf (V.+1) O V. which forces the block decomposition of T given in (V).

Now let w = & As X isadired sum we can define alinea operator D on X by the
formulaD(Zv,) = Zw™v, wherev, O V, for 1 < n< h. Clealy D has a diagonal matrix
and D" = 1. If v, O V, then Dv, = w™v, O V, hence TDv, = w™'Tv, O V. therefore
D'TDv, = w™w"'Tv, = wTv,. Hence D*TD = wT which proves (IV) and aso shows
that theroatsof 2" - "= 0liein T(T). However as R™ = "R and (T) = T(R) there ae a

most h points im(T). This establishes (Ill) and completes the proof ©O

It is interesting to compare the peripheral projedion and the Perron projedion. The
former is red, nonnegative, and pdent, the latter is red, positive, and rank ore. Of
course the spedral projedions of general eigenvalues aren't normally red, bu by taking
nonred eigenvalues in conjugate pairs it is easy to see using the standard complex
integral formula, that the spedral projedions of conjugate pairs of eigenvalues are red,
and so too are the spedral projedions correspondng to red eigenvalues. However nore
of these projedions can be non-negative since they must all be orthogonal to the Perron

projection.
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83 General non-negative matrices

We now drop the connectedness assumption and consider non-negative matrices in
general. In this context it is vital for the reader to appreciate how Proposition 1 below
and the PF-Theorem interact. The former gives a lower triangular form for any
non-negative matrix, moreover the diagonal blocks of this form are connected matrices
to which the latter can naturally be applied. Thus these two results complement one
another, respectively giving macroscopic and microscopic views of the subject.
Alternatively one may like to think of the problem in terms of crossing a river. In this
analogy connectedness is a stepping stone that one can reach from one bank using
Proposition 1, and which then gives access to the opposite bank by using the
PF-Theorem.

We first describe the spectrum of a general non-negative matrix. This is an immediate
consequence of the definition of connectedness which shows that any matrix that is not
connected (except the trivial 1 x 1 zero matrix) is always decomposable. Note that it
depends purely on connectedness and not the PF-Theorem. What the PF-Theorem does
doisto provide a detailed description of the diagonal blocks of the matrix.

+ Proposition 1

If T = 0 then there exists a permutation matrix E such that ETE" has the lower triangular

T 0 O .. O
¥ To 0 ... O
form ¥ % T3 .. 0
* * % Th

where each T, = 0 is a square matrix that is either connected or zero.

Prompted by the PF-Theorem we shall call a set of complex numbers S a PF-type

spectrumiif
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(1) Sisfinite and non-empty and self-conjugate
(2) The outer ring of S consists of all solutions of the equatiem” = 0 for some r

and h where B O is real and h is a positive integer.

(3) Sisinvariant under rotations Ryvh .

From Propasition 1we seethat o(T) is the union d the o(Ty) and by the PF-Theorem
ead o(T.) has a PF-type spedrum. This shows immediately that ead element of T(T) is
cyclic. However unlike the @mnneded case this does not mean that the outer ring is

complete, since ifo = €', then 1, -1, w’* could be a valid peripheral spectrum.

The 2 x 2 matrix with I'sin its left-hand column and Os in itsright trivialy shows that
al of the PF properties, (1) - (V) may still hod in the asence of connededness
However anather property (I1)" namely that T™ has a positi ve eigenvedor correspondng
tor isaso clealy true, and we now show (informally) that if T > O has gedral radiusr
and properties (1), (11), andl) ™ hold then T must be connected.

To seethis decompaose T as in Propasition 1and nde that by (1) there eists predsely
one diagonal block Ty such that r(T«) = r. Consider the block form of the spedral
projedion given by P = P(T(T);T). By the standard complex integral formula for P it
follows that every super- diagonal block is zero, and every diagona block except Px is
also zero. However the range of P contains the eigenspaceof r which by (Il) contains a
positive vedor. This implies P has no zero rows. Similarly by (Il)", P" contains a
positive vedor so P has no zero columns, hence P is zero-free It follows that P
coll apses to the single block Py , and hencein similar fashion T coll apses to the single

block T« . But T« is connected by Proposition 1, and hence so i®©®T

We now consider several other standard results on nonnegative matrices. The
traditional proofs generally need to buld eigenvedorsin order to establi sh the existence
of eigenvalues. Our spedral theoretic goproach almost turns this on its head sinceit is
primarily concerned with eigenvalues, and regards eigenvedors as being of somewhat

secondary importance.

Page 10



RS notes
April 1999

+ Proposition 2
If T > 0then 1(T) is cyclic and the spedral radiusr = r(T) isan eigenvalue of T with at

least oneeigenvectox = 0.

Proof : We have dready seen that T(T) is cyclic andr is an eigenvalue of T. Decompaose

T asin Propasition 1and let k be the highest suffix such that r O o(Tx). Then T has the

*» 00
foom | * Tx O where r [ o(C). By the PF-Theorem T has an eigenvedor v = 0,
* B C
0 0 0
Tw=rv.Writew=(r-C)'Bv=0.Ilfx=| v | then Tx= Tkv =] rv
w Bv +Cw rw

soTx =rx, x2 0, and x is non-zero since v is. Thus x ia@envectoof T ©

« Proposition 3

If T >0 thenr =r(T) is a pole of maximal order among the pointsidf).

The standard proof of thisis very elegant, namely if r = 1 and A O 1(T) then for every
red number & > 1 and pative integer n we have [(Ad - A)"AS - T)Y < (6- DS -T)*:.
Soif wenow let & | 1thenitiseasly seen that the order of the pole & 1 is at least as

great as the order of the pole\at

A lessesoteric reason why thisis 9 can be inferred from Propasition 1.For A [0 1((T) to
be anonsmple pdeit is clealy necessary that A must appea in at least two dagonal
blocks, say T; and T; with i > j , and the block U at the intersedion d row block i and
column block j must satisfy P(A; T))UP(A;T;) # 0. But then U = 0, U # O and since P(r; T))
and P(r;T;) are bath pasiti ve blocks we have P(r; T))UP(r; T;) # 0 which shows that r can't
be asimple pae of T. Example 4 gives amatrix in which the orders of the poleson 1i(T)

are not all the same.
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We end this ®dion by giving three goplicaions of an important induction technique for
establishing potency. Note the striking similarity between Lemma 1 and Propasition 4.
The next result will be akey element in the proof of the Compad Group Theorem in the

next section. It has been independently deriveRé&gjavi(see [3] lemma 4).

« Lemma 7
If P is a non-negative zero-free projection then there exists a permutation matrix E such

thatEPE is a direct sum afank(P)positive projections. There exist=> 0, fx = 0 such
thatEPE = Y ulfx andfi(y) = &; for alli and j.

Proof : Let P be m-square and assume the result halds for all smaller matrices. It is
trivially true for m = 1. When P > 0 the result follows immediately from Lemma 5, so
asume P » 0. Choose any row of P that contains at least one zero. Suppase this row has
k zeros in total; note that 1 < k < m-1. Now apply a permutation so that the k zeros
move to the right hand side of the row, and let Q be the resultant matrix. Of course the
row itself may be moved up or down by this operation bu its overall contents won't
change. Then taking eat o its k zeros in turn shows that in al of the right hand k

U o

WVJ where U is

columns the tofm-k) entries must be zero. Thus Q = [

(m-k)-square and V is k-square. Clealy U and V must both be projedions and in
addition W = WU + VW so multiplying on the left by V gives VWU = 0. AsQ is
clealy zero-freg U has no zero rows and V has no zero columns and so W = 0.
Therefore Q =U 0 V so U and V must be zero-free and sincethey are bath small er than
P then by the inductive hypathesis ead of them is adired sum of positive projedions.

The proof is completed by repeated applications of Lemma®
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Recall the hierarchy statement for non-negative matrices from the opening section :-
positivity [0 connectedness [ potency [  zero-freedom

For projections positivity and connectedness are clearly equivalent, and Lemma 7 shows
that potency and zero-freedom are also equivalent. Thus we can amost (but not quite)
reverse the implications. The problem is of course that potency generally does not imply
connectedness; identity matrices are trivial exponents of this. The 3 x 3 L-matrix given

in example 2 is the simplest case of a zero-free matrix that is not potent.

+ Proposition 4
Every invertible non-negative matrix is potent. Every non-zero non-negative matrix that

commutes with a positive matrix is potent.

Proof : Both results are clearly true for all 1 x 1 matrices. Each proof is by induction on
the size of the matrix. Suppose then that T is a non-negative square matrix and that the

results hold for all matrices smaller than T. If T is connected then we aready know that

T is potent so assumethat T is not connected and write ETET = [ \l/JV \O/ ] .

If T isinvertible then so are both U and V and by the inductive hypothesis they are both
potent, say diag(U™ > 0 and diag(V") > 0. But then diag(ET™E") > 0s0 T is potent.

If, on the other hand, T is non-zero and commutes with a positive matrix S then ESE" is

positive, say [é SJ and commutes with ETE'". However this means

that UA = AU + BW so trace(UA) = trace(AU) + trace(BW) hence trace(BW) = 0 as
trace(UA) = trace (AU). Since B > 0 this implies W = 0. Now ETE' is zero-free by

Lemma 1, so U and V are also zero-free. As UA = AU and VD = DV the inductive

hypothesis shows U and V must both be potent. Hence, as above, T itself ispotent ©
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84 Groups of non-negative matrices

We now turn our attention to the Compact Group Theorem. The aim here is to show that

every compact group of non-negative matricesisfinite.

« Lemma 8
Let [J be acompact group in On. If any element of [J has a zero row or column then [J is

isomorphic to acompact group in [ ..

Proof : Note that if S0 [ has a zero row then since T = SS*T that row will be globally
zerofor al T O 0. Suppose that it isrow n that is globally zero. For T O O define 6(T)
to be the matrix T with column n set to zero. It is easy to see that 8 is a homomorphism,
moreover if P is the identity of O and 6(T) = 6(P) then T and P have the same matrix
except for column n so [P = Z[Pli[ Pl = Z[T]i[Pls = [TP]; givingP=TP=T. Hence
0 is agroup isomorphism.

Now 6([J) isagroup of non-negative matrices in which row n and column n are both
zero and compactness has also been preserved as 6 is clearly norm reducing, so [ is

isomorphic to acompact groupin Oy ©

« Lemma 9
Let [J be a bounded group in 0, which contains the identity m x m matrix. Then O is

isomorphic to a subgroup of the symmetric group of degree m.

Proof : Since 1 O [0 it follows that every T 0 [ is zero-free. Suppose that T [J [J and
[T]; > 0and [T]ik > 0. As T is zero-free pick p, q such that [T?];, > 0 and [T« > O.
Then [TTY;,>0and [TTY,>0s0p =i =q. AsT is zero-free choose r with [T];; > 0.
Then [T*T];;>0and [T*T]w > 0s0j =r =k. This shows that no row of T can have more
than one positive element. The same is true for each column of T and hence as T is
zero-free every row and every column of T contains precisely one positive element.

. . 0 [6(M)]=0 if [T];=0
Now definethemapping 6:0 - O, b 0 .
PpIng Y g [oml=1 if [T];>0
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The argument above shows 6(T) is the unique permutation matrix such that there exists
0> 0with T = d06(T). It follows easily that 8 is a group homomorphism. In genera 6 is
not an isomorphism because 6*(1) is non-trivial, however when O is bounded no
element T O [J can have an eigenvalue of modulus greater than 1 and the same argument
applied to T shows that all eigenvalues of al elements of [0 must have modulus 1.

From this 6*(1) = {1} and hence 6 isan isomorphism asrequired. ©

« The Compact Group Theorem
Every compact group of non-negative matrices is finite. More precisely, if P is the

identity of the group then the group contains at most rank(P)! elements.

Proof : Suppose first that P is zero-free. Decompose it according to Lemma 7. Pick any

T 0O O and let U be the block located at row-block i, column-block j of T. Since T = PTP
we see that U = (uJfi))U(y;0f;) which when multiplied out gives fi(Uu)(ulf;)) whichisa
non-negative multiple of uf; that iszero if and only if U =0.

Now set [y to be the algebra of k-square matrices with real entries and consider the
mapping 6 : On — O, given by [T]; — [T]i(ulf) for al i and j. This is an algebra
homomorphism since row-block i, column-block j of the product 6(S)6(T) is
2 Slik(uf)[ T](wdf;) which is ZS]i[T]k(ullf) as fu(u) = 1 for al k, and this is
simply [ST];(uCf;) which is just row-block i, column-block j of 6(ST). As 8 is clearly
one-to-one [, must be isomorphic to its image in .. But as we have seen above this
image must contain [, and 6 also preserves both non-negativity and compactness. So
0*(0) is a compact group in O, containing 6*(P) which is the identity m x m matrix.
From Lemma 9 it now follows that 6*(0) and O must both contain at most rank(P)!

elements.

Finally if Pis not zero-free then by repeatedly applying Lemma 8 to eliminate any zero
rows and columns, the original group reduces to one whose identity P is a zero-free
matrix. These applications clearly have no effect upon rank(P). Thus the end product of

combining the various isomorphisms is a group of rank(P)! elementsat most ©©
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85 Examples

We onclude with four examples from ;s to reved some of the pathology of the

situation. Whil st al of them are dementary ead isincluded in order to make aspedfic

point. They serve as useful first ports of call when formulating or testing hypotheses.

011 111 010 010
Let A=101 B=1 010 C=/001 D=1100
110 010 100 111

From the PF-Theorem (V) it follows that if tracg€T) > 0 then h= 1. The matrix A shows

that the converse is false; even whete(T)= 0 it is still possible to have h=1©

Seondy we examine the situation whenever T is not conreded using the matrix B
which shall be referred to as the T-matrix for obvious reasons. Set T = B and nde that
T"isthe same & T except for the dement in the middle of its top row which is 2n-1.
Clealy the eigenvalues of T are {1,1,0} andits peripheral projedion P isin essencejust
T9; that is, the entry in the middle of itstop row is -1 and all other entries are the same
asin T. So Pisn't nonnegative andits diagonal isn't positive. ASR = PT =T the diildis
in Oz but asmall refinement of the example shows that it too can misbehave. Let d > 0
be asmal number and set S = (1-0) + dT. Then S I [; has a pasitive diagonal and
eigenvalues {1, 1, 1-8}. The spedra projedions for S are exadly the same & those for
T and it can easily be computed that the ™ power of its child is the same & T except
that it has 2nd-1 in the midde of its top row. Thus although the powers of this child

eventually go non-negative it may take a long time for them to do so.

This poses an interesting general question regarding the computability of the peripheral
projedion and the child matrix. If T = 0is conneded then thereisno problem sinceif T
has patency c then the peripheral projedionisthe limit of T™ and consequently it is easy
to compute. However when T is not conreded the periphera projedionis generaly nat

a limit of powers of T and there is no very obvious good way of computing it.
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Finally this example gives a nice visua demonstration d how the demmpasition in
Propasition 1works in pradice It transforms the T-matrix into the L-matrix; that is, 1's

in the left hand column and the bottom row and 0's elsewhete

The third example shows that there may be gaps in the inner rings of the spedrum and
also that the aguments of the eigenvalues do nd have to be rational multiples of 21t Let
0>0andset T=0+C. Then h=1andthe eigenvaluesof Tared+ 1,0+ w, 0 + w?
where w=¢e&"? | If, for example, d = 1/2 then the eigenvalues are 3/2 and + iV3/2. Thus
the spokes conreding the origin to the eigenvalues on the outer ring do nd necessarily
intersed the inner rings at eigenvalues, and by letting & increase it is clea that the

argumen® of theeigenvalue + w can be anything in the range ® < 2173 ©

Our final example ams to show that even for matrices that appea to be "reasonably
well conreded"” the orders of the pales on 1(T) may vary quite unexpededly. Let T = D.
The minimum padynomial of Tis (T - 1)T + 1) =0 . This $hows that the eigenvaue 1

is a pole of order 2 whereas -1 is a pole of order 1©
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