A note on positivity of elementary operators

Richard M. Timoney

Abstract

We show that operators onx n matrices which are representable in the
formT(X) = Zle a; X b; (for a; andb; n x n matrices) and ark-positive
for k = [v/¢] must be completely positive. As a consequence, elementary
operators on & '*-algebra with minimal lengti¥ which arek-positive for
k = [v/{] must be completely positive.

For A aC*-algebra, an operatdr: A — A is called arelementary operataif
T can be expressed in the forfix = Zle a;xb; with a; andb; (1 <i < /) inthe
multiplier algebral/(A) of A. (We will mainly be concerned with the case where
Alisthe algebra/,, (C) of nxn matrices and thei/ (A) = A. IndeedM (A) = A
if Aisunital.) Such representationsbmay not be unique. The smallésh such
representations df is called theminimal lengthof 7. If A is a primeC*-algebra
(M, (C) is prime) and the collectionfs; : 1 < i < ¢} and{b;, : 1 < < (} are
each linearly independent, théis the minimal length of " [4]. If A is prime and
such an elementary operatbisends the set;, = {x € A : z = z*} of hermitian
elements of4 into itself, thenT’ is representable as

‘
Tx = Z \ia; ra; (1)
i=1

with a; € M(A) (1 < i < /) linearly independent ant (1 < i < ¢) nonzero real
numbersi4]. (By linear independence of thethe/ in () must be minimal.)

An operator’: A — A which preserves the set, of hermitian elements is
calledpositiveif Tx > 0 wheneverz € A is positive. T' is calledn-positive if
the operatofl™ is positive, wherd™ acts on thex x n matricesM,,(A) with
entries inA and is given byl'™ (x,;); ; = (T(z;;)):;- The operatofl is called
completely positivé it is n-positive for alln = 1,2, 3, .. .. This terminology goes
back to Stinespring6].

For the casel = M,,(C) all linear operators o/, (C) are elementary op-
erators with length at most>. An example of ChoilJ1] says that the operator
Tz = (n — 1)tracgx) — x on M, (C) is (n — 1)-positive but not:-positive. It is

1



not hard to compute that the minimal length of this operateisin fact,7” can
be expressed as

n

Tr = n— e xwe;; — [Fxl
j LCij

i,j=1
= Z (n — l)eij*.f(:@ij — Z((n - 1)61'@' - [)*'Teiia
i£] i=1

wheree;; denotes the x n matrix with 1 in the (7, j) place and zeroes elsewhere.

Thus we have expressdd: in the form E’iil a;xb; with independenta;} and
{b;} and sal" has lengtm?.

It is also well known that.-positive operators on/,,(C) are completely posi-
tive. (We include a proof of this result below.)

A result of Choi [1] as generalised by Takasaki and Tomiyama [7] charac-
terisesk-positivity of operatord” on M,,(C) in terms of properties of an* x n?
matrix associated witl'. Let~(7") denote the block matrix in/,, (M, (C)) where
the (7, 7) block isT(e;;). We regardy(T") as an element a#/,2(C). Clearly~
establishes a linear bijection between linear operato®/ftC) and M,z (C).

Proposition 1 ([1] and [7]) An operator?: M, (C) — M,(C) is k-positive for
1 <k < nifand only if the matrix/, ® P)y(T)(I, ® P) is positive for all rank
k (hermitian) projections” € M,,(C).

If P = (pij)ij, then the matrix,, ® P may be viewed as the block matrix in
M,, (M, (C)) with (4, j) block equal tap;; I,,. For positivity of hermitian elements
of M, (C), we regard them as hermitian or quadratic formsin. We choose
to identify a row vector: = (21, 2, . . ., z,2) € C* with then x n matrix p(z)
which hasith oW (z,(:_1)41, Zu(i—1)42; - - - » 2as)- With this identification, observe
that(z, w) = tracdp(z)p(w)*), where(-, -) denotes the standard inner product on
C™*. In other wordsp carries the standard inner product 6f° to the Hilbert-
Schmidt inner product of/,,(C).

Lemma 2 For z € C* and P € M,(C), p(z(I, ® P)) = P'p(z) (where P!
denotes the transpose B). Moreover the subset

{p(2(I, ® P)): z € C¥, P = P* = P> € M,(C),rank(P) = k}
of M,,(C) is the set of matrices if/,,(C) of rank at mosk:.

Proof. Write z € C* asz = (2%, 2%,...,2") where each’ € C", so that the
2" are the rows ofp(z). If P = (pi;)i; € M,(C), thenw = z(I, ® P) has
w' = Y. 2pj;, takingw = (w',w?, ..., w") as forz. The rows ofP’p(z) are
againy_ p;i’. O



Lemma 3 LetT: M,(C) — M, (C) be the elementary operat@tz = a*xa (for
a € M,(C)) and letP € M, (C) be a hermitian projection. Then the hermitian
form onC™* = M,,(C) associated witts = (I, ® P)v(T)(I, ® P)is

28z = |trace(ap(z(I, ® P))*)|?
Proof. First writew = z(I,, ® P) € C** and
282" = z(I, @ P)y(T)(I, ® P)z* = wy(T)w".

Suppose: = (a;;); ;. Then the blocks of/(7") are

T(eij) = E QsrCrsCijQiy,Ctu = E a_irajueru = (a_iraju)r,u'
U

r,8,t,u

It follows that

V(T) - (a117a127"'7a1n7a21;'"7ann)*(a117a127'"7a1n7a21a"'7ann)
= p'(a)'p ' (a)
is a rank one hermitian operator and
wy(Tyw* = [{p~" (a), w) .
From this it follows that
wy(T)w" = |tracgap(w)”)[.

This completes the proof of the Lemma. O
We can now deduce the following characterization of positivity for elementary
operators.

Theorem 4 Let T: M,,(C) — M, (C) be an elementary operator of the form
Ty = Zle Nia;za;x (Where); € R anda; € M,(C) for eachi). Suppose
1 < k < n. ThenT is k-positive if and only if the hermitian for@: A, (C) —

R given by

l
Qr(z) = Altrace(a;z")|”
=1

satisfies)r(z) > 0 whenever € M, (C) has rank at most.



Proof. By linearity of v and Lemma]3 it follows that foP a rankk projection on
C", (I, ® P)y(T)(I, ® P) gives rise to the hermitian fori: C** — R with

R(w) = Z Ailtraceaip(w(I, @ P))")|*

and soR(w) = Qr(p(w(Il, ® P))). The result now follows from Propositidin 1
and Lemmal2. O

Note that the theorem may be viewed in a geometrical light. It states that the
cone of matrices which are negative with respeaptocannot intersect the rank
k matrices ifT" is k-positive.

As an example, we establish the following well-known result via this theo-
rem: If a linear operator?": M, (C) — M, (C) is n-positive, then it is completely
positive. We know anyT’ which preserves the hermitian subset\éf(C) can be
represented in the form|(1) with< n2. If any of the)\; is negative, we claim that
T cannot ben-positive. To show this, observe that if (say) < 0, then by linear
independence, we can finde M,,(C) so that tracé:}z) # 0 but tracéa’z) = 0
for 2 <4 < ¢. From Theoreni]4 it follows thar(z) = \|trac€a}z)|*> < 0 and
so T’ cannot ben-positive. Once we know that; > 0 for all 7, it is easy to see
thatT" is completely positive.

Proposition 5 If an elementary operatot™ M, (C) — M,(C) (n > 2) has
length at mosh? — 1 andT is (n — 1)-positive, theri” is completely positive.

Proof. ForT to be(n — 1)-positive, it must preserve Hermitian operators and so
must be representable in the forfih (1) with(1 < i < /) independent elements
in M, (C), ¢ < n?and); € R\ {0}. For the sake of arriving at a contradiction,
suppose\; < 0.

From Theoreni]4 we see th@y(z) > 0 wheneverz € M, (C) has rank at
mostn — 1 (that is, whenevet is singular).

From linear independence éf., as, . . ., a,} plus the fact that < n? — 1, we
can see that we can find a nonzere M, (C) with tracda;z*) = 0for1 <: < /¢
andy € M, (C) with trac€a;y*) # 0 but tracga;y*) = 0 for2 < i < ¢. From
TheorentH#, we can see that

Qr(uz +y) = Ai|tracary”)[* <0

for all 4 € C. If there is any choice of. € C wherepux + y has rank strictly

less tham (that is wheredet(uz + y) = 0) then we have shown th&t is not

(n — 1)-positive and obtained the desired contradiction. However, there remains
the case whergx + y is always invertible.



Asthesefz € M,(C) : Qr(z) < 0} is open and containg it contains a ball
aroundy. For any:z in this ball, we have

Qr(pr+2)=Qr(z) <0

(forall € C) and it easy to see that there must be a choicendferedet (pz+z)
is not a constant function qf. (To verify this assertion, suppose thahas rank
j and choose unitary matricdg V' € M, (C) so thatUzV is diagonal with
diagonal entrie§a, as, ..., a;,0,...,0). Thendet(uz + z) = det(uUzV —
UzV)/det(UV) has degree at mogin 1 and the coefficient of’ is the determi-
nant of the bottom rightn—j) x (n—75) block of U2V times(1/ det(UV)) [T_, -
We can findz arbitrarily close tay where this coefficient is nonzero.)
We can now choosg to be a solution oflet(uz + z) = 0 and get the required
contradiction to thén — 1)-positivity of T'. O
Our main result is the following, which leads to improvements of some results
of Li [8], Mathieu [5] and Hou [2].

Theorem 6 If an elementary operatof: M, (C) — M, (C) has length at most
(k+1)?—1andT is k-positive (wherd < k < n), thenT is completely positive.

Proof. As before, we can assume thatis given by [1L) with < (k + 1),
Ai € R\ {0} and{ay, as,...,a,} linearly independent idZ, (C). Itis enough to
show thatl’ is n-positive and by induction ohit is clearly sufficient to show that
T is (k + 1)-positive.

By Theoren{}4, ifl" is not(k + 1)-positive, then there is some € M,,(C) of
rankk + 1 with Qr(w) < 0. We can find unitary matricds, V' € M,,(C) so that
UwV = r is diagonal with diagonal entrigs;, r, ..., 74:1,0,...,0). Now

Qr(w) = Qr(UTVY)
— Z)\iytrace(ai‘/r*U)!Q

= ) \ltrace (Ua,V)r)|”

= Qs(r)

for S the elementary operatdtz = >, \;b; zb; andb; = Ua,;V. SinceQg(z) =
Qr(U*zV*), itis clear from Theorer 4 thét is alsok-positive.

We now consider the compression $fto the subspace af/,,(C) consist-
ing of matrices which are zero outside the top [&ft+ 1) x (k + 1) block. We
can identify this subspace with/,,(C). Let P:C* — C**! be the projec-
tion P(xy,zo,...,2,) = (x1,29,...,2141) (Or the associatetk + 1) x n ma-
trix). By the compression we mean the m&ApM;,(C) — My.,(C) given by
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Rz = P(Sz)P*. As the operator o/, (C) — My.1(C) given byz — PzP*
is completely positive (and so is the inclusion operatér, ;(C) — M,(C) :
z — P*zP implicit above), R is k-positive. AlsoR(z) = ) . \iPbizb;P* =
> Ni(PbiP*)*z(Pb; P*) and saR is an elementary operator ar, ., (C) of length
at most(k + 1)? — 1 andk-positive.

By Propositior[ bR is (k + 1)-positive and s@)r is always nonnegative. But
it is easy to see that

Qr(PrP*) = Y \|tracgPb;P*Pr*P*)|’

= Y \ltracebr®)?
= QZS(T) = Qr(w) < 0.

This contradiction shows thdt must be(k + 1)-positive and completes the proof.
O

Our next task is to extend Theorém 6 to the infinite dimensional case where the
C*-algebra isB(H ), the algebra of bounded operators on an infinite-dimensional
Hilbert space. A$3(H ) is prime, the representatiof (1) is available for elementary
operators oM = B(H).

Lemma 7 Let H be a Hilbert space and’: B(H) — B(H) an elementary op-
erator of the forml'xz = Zle Niafra; (\; € Randa; € B(H)). If Tx > 0
whenever: € B(H) is a rank one positive operator, thé@nis positive.

Proof. Every finite-rank positive element d®(H) can be expressed as a finite
sum of rank one positive operators and/3o> 0 whenever: € B(H ) is positive
and finite rank.

For an arbitrary positive € B(H) we haverp = PxP positive and finite
rank whenever” € B(H) is a finite rank hermitian projection. The netp),
indexed by the finite rank projections ordered by inclusion of the ranges, con-
verges tar in the weak sense. That isife H then(xzpv,v) — (zv,v). Indeed
(xpv,v) = (vPv, Pv) = (zv,v) aslong av € PH. Now, (T'(zp)v,v) =
Zle Xilzpav, av) — > Nizav,av) = (T'(z)v,v). Thus(T(xz)v,v) > 0
sinceT'(zp) > 0. O

Corollary 8 Let H be a Hilbert space and: B(H) — B(H) an elementary
operator of minimal lengtli. If 7' is k-positive for somé > 1 with (k + 1)2 >/,
thenT is completely positive.

Proof. Let T be given by [[L) witha; € B(H), \; € R(1 < i < {). As
the finite-dimensional case is covered by Theofém 6, we look at the case where
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H is infinite dimensional. To show th&t is n-positive forn > k, we consider
T™: M,(B(H)) = B(H") — B(H") and observe th&™ x = S"°_ X, (a{™) Xa!",

whereagn) € B(H") acts onH" by a; acting on each ‘coordinate’ separately.
By Lemmal[¥, 7™ is positive if it maps rank one positive elements®fH™)

to positive elements. A rank one positive elementB{fH") is of the form
X(v) = (v,w)w for somew € H". Letw = (w',w? ..., w") where each
w® € H. Choose a finite rank projectial € B(H) so that the range aP con-
tains all thew’ and allaw’ (1 < i < n,1 < j < (). ThenP™MXP® = X and

POTO(X)P0) =S¢ A P™ (M) Xa{ P = T (X).

7

Now consider the operats: B(H) — B(H) given by

)4
Sz =Y \(Pa;P)*z(Pa;P) = P(T(PzP))P,

=1

which isk-positive becaus® is and so is the map — PxP. The above calcula-
tions show that' ™ (X) = S™(X). Let K = PH denote the (finite-dimensional)
range of P and decompose all elementsBfH ) as2 x 2 blocks with respect to
H = K & K*. Similarly decompos®(H") = M, (B(H)).

Let Q: H — K be the othogonal projection (the same Rdut regarded
as having values k(). The compression of to the (K, K)-block B(K) =
QB(H)Q* is afinite-dimensional elementary operatorB(K) — B(K), Ry =
QS(QyQ)Q* = Ele \ibiyb;, whereb; is Qa;Q*. R is covered by Theoret{ﬂ 6.
Hence it isn-positive. It follows thats™ (X) = T (X) is positive, because it is
equal toR™ ((Q™) X (Q™)*) with zeroes added symmetrically. O

Corollary [8 improves on a result of Hoil [2] where the same conclusion is
proved under the assumption that the lengtii’a$ at mostk + 1.

Corollary 9 Let A be aC*-algebra and7’ an elementary operator oA of mini-
mal length at mostk + 1) — 1. If T is k-positive, therl” is completely positive.

Proof. This follows as in [5], where the same conclusion is proved under the
assumption that the length @fis at mostk + 1. This result of [5] is also shown
in [3]. O
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