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Abstract

We show that operators onn×n matrices which are representable in the
form T (X) =

∑`
i=1 aiXbi (for ai andbi n×n matrices) and arek-positive

for k = [
√

`] must be completely positive. As a consequence, elementary
operators on aC*-algebra with minimal length̀ which arek-positive for
k = [

√
`] must be completely positive.

ForA aC*-algebra, an operatorT :A→ A is called anelementary operatorif
T can be expressed in the formTx =

∑`
i=1 aixbi with ai andbi (1 ≤ i ≤ `) in the

multiplier algebraM(A) of A. (We will mainly be concerned with the case where
A is the algebraMn(C) of n×nmatrices and thenM(A) = A. IndeedM(A) = A
if A is unital.) Such representations ofT may not be unique. The smallest` in such
representations ofT is called theminimal lengthof T . If A is a primeC*-algebra
(Mn(C) is prime) and the collections{ai : 1 ≤ i ≤ `} and{bi : 1 ≤ i ≤ `} are
each linearly independent, then` is the minimal length ofT [4]. If A is prime and
such an elementary operatorT sends the setAh = {x ∈ A : x = x∗} of hermitian
elements ofA into itself, thenT is representable as

Tx =
∑̀
i=1

λia
∗
ixai (1)

with ai ∈M(A) (1 ≤ i ≤ `) linearly independent andλi (1 ≤ i ≤ `) nonzero real
numbers [4]. (By linear independence of theai, the` in (1) must be minimal.)

An operatorT :A → A which preserves the setAh of hermitian elements is
calledpositiveif Tx ≥ 0 wheneverx ∈ A is positive. T is calledn-positive if
the operatorT (n) is positive, whereT (n) acts on then × n matricesMn(A) with
entries inA and is given byT (n)(xij)i,j = (T (xij))i,j. The operatorT is called
completely positiveif it is n-positive for alln = 1, 2, 3, . . .. This terminology goes
back to Stinespring [6].

For the caseA = Mn(C) all linear operators onMn(C) are elementary op-
erators with length at mostn2. An example of Choi [1] says that the operator
Tx = (n − 1)trace(x) − x onMn(C) is (n − 1)-positive but notn-positive. It is
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not hard to compute that the minimal length of this operator isn2. In fact,T can
be expressed as

Tx =
n∑

i,j=1

(n− 1)eij
∗xeij − I∗xI

=
∑
i6=j

(n− 1)eij
∗xeij −

n∑
i=1

((n− 1)eii − I)∗xeii,

whereeij denotes then×n matrix with1 in the(i, j) place and zeroes elsewhere.

Thus we have expressedTx in the form
∑n2

i=1 aixbi with independent{ai} and
{bi} and soT has lengthn2.

It is also well known thatn-positive operators onMn(C) are completely posi-
tive. (We include a proof of this result below.)

A result of Choi [1] as generalised by Takasaki and Tomiyama [7] charac-
terisesk-positivity of operatorsT onMn(C) in terms of properties of ann2 × n2

matrix associated withT . Letγ(T ) denote the block matrix inMn(Mn(C)) where
the (i, j) block isT (eij). We regardγ(T ) as an element ofMn2(C). Clearlyγ
establishes a linear bijection between linear operators onMn(C) andMn2(C).

Proposition 1 ([1] and [7]) An operatorT :Mn(C) → Mn(C) is k-positive for
1 ≤ k ≤ n if and only if the matrix(In ⊗ P )γ(T )(In ⊗ P ) is positive for all rank
k (hermitian) projectionsP ∈Mn(C).

If P = (pij)ij, then the matrixIn ⊗ P may be viewed as the block matrix in
Mn(Mn(C)) with (i, j) block equal topijIn. For positivity of hermitian elements
of Mn2(C), we regard them as hermitian or quadratic forms onC

n2
. We choose

to identify a row vectorz = (z1, z2, . . . , zn2) ∈ C
n2

with then × n matrix ρ(z)
which hasith row (zn(i−1)+1, zn(i−1)+2, . . . , zni). With this identification, observe
that〈z, w〉 = trace(ρ(z)ρ(w)∗), where〈·, ·〉 denotes the standard inner product on
C

n2
. In other wordsρ carries the standard inner product onC

n2
to the Hilbert-

Schmidt inner product onMn(C).

Lemma 2 For z ∈ C
n2

andP ∈ Mn(C), ρ(z(In ⊗ P )) = P tρ(z) (whereP t

denotes the transpose ofP ). Moreover the subset

{ρ(z(In ⊗ P )) : z ∈ C
n2

, P = P ∗ = P 2 ∈Mn(C), rank(P ) = k}

ofMn(C) is the set of matrices inMn(C) of rank at mostk.

Proof. Write z ∈ C
n2

asz = (z1, z2, . . . , zn) where eachzi ∈ C
n, so that the

zi are the rows ofρ(z). If P = (pij)ij ∈ Mn(C), thenw = z(In ⊗ P ) has
wi =

∑
j z

jpji, takingw = (w1, w2, . . . , wn) as forz. The rows ofP tρ(z) are
again

∑
j pjiz

j. �
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Lemma 3 LetT :Mn(C) → Mn(C) be the elementary operatorTx = a∗xa (for
a ∈ Mn(C)) and letP ∈ Mn(C) be a hermitian projection. Then the hermitian
form onC

n2
= Mn(C) associated withS = (In ⊗ P )γ(T )(In ⊗ P ) is

zSz∗ = |trace(aρ(z(In ⊗ P ))∗)|2

Proof. First writew = z(In ⊗ P ) ∈ C
n2

and

zSz∗ = z(In ⊗ P )γ(T )(In ⊗ P )z∗ = wγ(T )w∗.

Supposea = (aij)i,j. Then the blocks ofγ(T ) are

T (eij) =
∑
r,s,t,u

asrerseijatuetu =
∑
r,u

airajueru = (airaju)r,u.

It follows that

γ(T ) = (a11, a12, . . . , a1n, a21, . . . , ann)∗(a11, a12, . . . , a1n, a21, . . . , ann)

= ρ−1(a)∗ρ−1(a)

is a rank one hermitian operator and

wγ(T )w∗ = |〈ρ−1(a), w〉|2.

From this it follows that

wγ(T )w∗ = |trace(aρ(w)∗)|2.

This completes the proof of the Lemma. �
We can now deduce the following characterization of positivity for elementary

operators.

Theorem 4 Let T :Mn(C) → Mn(C) be an elementary operator of the form
Tx =

∑`
i=1 λiaixai∗ (whereλi ∈ R and ai ∈ Mn(C) for eachi). Suppose

1 ≤ k ≤ n. ThenT is k-positive if and only if the hermitian formQT :Mn(C)→
R given by

QT (z) =
∑̀
i=1

λi|trace(aiz
∗)|2

satisfiesQT (z) ≥ 0 wheneverz ∈Mn(C) has rank at mostk.
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Proof. By linearity ofγ and Lemma 3 it follows that forP a rankk projection on
C

n, (In ⊗ P )γ(T )(In ⊗ P ) gives rise to the hermitian formR: Cn2 → R with

R(w) =
∑̀
i=1

λi|trace(aiρ(w(In ⊗ P ))∗)|2

and soR(w) = QT (ρ(w(In ⊗ P ))). The result now follows from Proposition 1
and Lemma 2. �

Note that the theorem may be viewed in a geometrical light. It states that the
cone of matrices which are negative with respect toQT cannot intersect the rank
k matrices ifT is k-positive.

As an example, we establish the following well-known result via this theo-
rem: If a linear operatorT :Mn(C)→ Mn(C) is n-positive, then it is completely
positive.We know anyT which preserves the hermitian subset ofMn(C) can be
represented in the form (1) with̀≤ n2. If any of theλi is negative, we claim that
T cannot ben-positive. To show this, observe that if (say)λ1 < 0, then by linear
independence, we can findz ∈ Mn(C) so that trace(a∗1z) 6= 0 but trace(a∗i z) = 0
for 2 ≤ i ≤ `. From Theorem 4 it follows thatQT (z) = λ1|trace(a∗1z)|2 < 0 and
soT cannot ben-positive. Once we know thatλi > 0 for all i, it is easy to see
thatT is completely positive.

Proposition 5 If an elementary operatorT :Mn(C) → Mn(C) (n ≥ 2) has
length at mostn2 − 1 andT is (n− 1)-positive, thenT is completely positive.

Proof. ForT to be(n − 1)-positive, it must preserve Hermitian operators and so
must be representable in the form (1) withai (1 ≤ i ≤ `) independent elements
in Mn(C), ` < n2 andλi ∈ R \ {0}. For the sake of arriving at a contradiction,
supposeλ1 < 0.

From Theorem 4 we see thatQT (z) ≥ 0 wheneverz ∈ Mn(C) has rank at
mostn− 1 (that is, wheneverz is singular).

From linear independence of{a1, a2, . . . , a`} plus the fact that̀ ≤ n2− 1, we
can see that we can find a nonzerox ∈Mn(C) with trace(aix

∗) = 0 for 1 ≤ i ≤ `
andy ∈ Mn(C) with trace(a1y

∗) 6= 0 but trace(aiy
∗) = 0 for 2 ≤ i ≤ `. From

Theorem 4, we can see that

QT (µx+ y) = λ1|trace(a1y
∗)|2 < 0

for all µ ∈ C. If there is any choice ofµ ∈ C whereµx + y has rank strictly
less thann (that is wheredet(µx + y) = 0) then we have shown thatT is not
(n − 1)-positive and obtained the desired contradiction. However, there remains
the case whereµx+ y is always invertible.
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As the set{z ∈Mn(C) : QT (z) < 0} is open and containsy, it contains a ball
aroundy. For anyz in this ball, we have

QT (µx+ z) = QT (z) < 0

(for all µ ∈ C) and it easy to see that there must be a choice ofz wheredet(µx+z)
is not a constant function ofµ. (To verify this assertion, suppose thatx has rank
j and choose unitary matricesU, V ∈ Mn(C) so thatUxV is diagonal with
diagonal entries(α1, α2, . . . , αj, 0, . . . , 0). Thendet(µx + z) = det(µUxV −
UzV )/ det(UV ) has degree at mostj in µ and the coefficient ofµj is the determi-
nant of the bottom right(n−j)×(n−j) block ofUzV times(1/ det(UV ))

∏j
i=1 αi.

We can findz arbitrarily close toy where this coefficient is nonzero.)
We can now chooseµ to be a solution ofdet(µx+ z) = 0 and get the required

contradiction to the(n− 1)-positivity of T . �
Our main result is the following, which leads to improvements of some results

of Li [3], Mathieu [5] and Hou [2].

Theorem 6 If an elementary operatorT :Mn(C) → Mn(C) has length at most
(k+1)2−1 andT is k-positive (where1 ≤ k < n), thenT is completely positive.

Proof. As before, we can assume thatT is given by (1) with` < (k + 1)2,
λi ∈ R \ {0} and{a1, a2, . . . , a`} linearly independent inMn(C). It is enough to
show thatT is n-positive and by induction onk it is clearly sufficient to show that
T is (k + 1)-positive.

By Theorem 4, ifT is not(k + 1)-positive, then there is somew ∈ Mn(C) of
rankk + 1 with QT (w) < 0. We can find unitary matricesU, V ∈ Mn(C) so that
UwV = r is diagonal with diagonal entries(r1, r2, . . . , rk+1, 0, . . . , 0). Now

QT (w) = QT (U∗rV ∗)

=
∑

i

λi|trace(aiV r
∗U)|2

=
∑

i

λi|trace((UaiV )r∗)|2

= QS(r)

for S the elementary operatorSz =
∑

i λib
∗
i zbi andbi = UaiV . SinceQS(z) =

QT (U∗zV ∗), it is clear from Theorem 4 thatS is alsok-positive.
We now consider the compression ofS to the subspace ofMn(C) consist-

ing of matrices which are zero outside the top left(k + 1) × (k + 1) block. We
can identify this subspace withMk+1(C). Let P : Cn → C

k+1 be the projec-
tion P (x1, x2, . . . , xn) = (x1, x2, . . . , xk+1) (or the associated(k + 1) × n ma-
trix). By the compression we mean the mapR:Mk+1(C) → Mk+1(C) given by
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Rz = P (Sz)P ∗. As the operator onMn(C) → Mk+1(C) given byz 7→ PzP ∗

is completely positive (and so is the inclusion operatorMk+1(C) → Mn(C) :
z 7→ P ∗zP implicit above),R is k-positive. AlsoR(z) =

∑
i λiPb

∗
i zbiP

∗ =∑
i λi(PbiP

∗)∗z(PbiP
∗) and soR is an elementary operator onMk+1(C) of length

at most(k + 1)2 − 1 andk-positive.
By Proposition 5R is (k + 1)-positive and soQR is always nonnegative. But

it is easy to see that

QR(PrP ∗) =
∑

i

λi|trace(PbiP
∗Pr∗P ∗)|2

=
∑

i

λi|trace(bir
∗)|2

= QS(r) = QT (w) < 0.

This contradiction shows thatT must be(k+1)-positive and completes the proof.
�

Our next task is to extend Theorem 6 to the infinite dimensional case where the
C*-algebra isB(H), the algebra of bounded operators on an infinite-dimensional
Hilbert space. AsB(H) is prime, the representation (1) is available for elementary
operators onA = B(H).

Lemma 7 LetH be a Hilbert space andT :B(H) → B(H) an elementary op-
erator of the formTx =

∑`
i=1 λia

∗
ixai (λi ∈ R and ai ∈ B(H)). If Tx ≥ 0

wheneverx ∈ B(H) is a rank one positive operator, thenT is positive.

Proof. Every finite-rank positive element ofB(H) can be expressed as a finite
sum of rank one positive operators and soTx ≥ 0 wheneverx ∈ B(H) is positive
and finite rank.

For an arbitrary positivex ∈ B(H) we havexP = PxP positive and finite
rank wheneverP ∈ B(H) is a finite rank hermitian projection. The net(xP )P ,
indexed by the finite rank projections ordered by inclusion of the ranges, con-
verges tox in the weak sense. That is, ifv ∈ H then〈xPv, v〉 → 〈xv, v〉. Indeed
〈xPv, v〉 = 〈xPv, Pv〉 = 〈xv, v〉 as long asv ∈ PH. Now, 〈T (xP )v, v〉 =∑`

i=1 λi〈xPaiv, aiv〉 →
∑

i λi〈xaiv, aiv〉 = 〈T (x)v, v〉. Thus〈T (x)v, v〉 ≥ 0
sinceT (xP ) ≥ 0. �

Corollary 8 Let H be a Hilbert space andT :B(H) → B(H) an elementary
operator of minimal length̀. If T is k-positive for somek ≥ 1 with (k + 1)2 > `,
thenT is completely positive.

Proof. Let T be given by (1) withai ∈ B(H), λi ∈ R (1 ≤ i ≤ `). As
the finite-dimensional case is covered by Theorem 6, we look at the case where
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H is infinite dimensional. To show thatT is n-positive forn > k, we consider
T (n):Mn(B(H)) = B(Hn)→ B(Hn) and observe thatT (n)X =

∑`
i=1 λi(a

(n)
i )
∗
Xa

(n)
i ,

wherea(n)
i ∈ B(Hn) acts onHn by ai acting on each ‘coordinate’ separately.

By Lemma 7,T (n) is positive if it maps rank one positive elements ofB(Hn)
to positive elements. A rank one positive element ofB(Hn) is of the form
X(v) = 〈v, w〉w for somew ∈ Hn. Let w = (w1, w2, . . . , wn) where each
wi ∈ H. Choose a finite rank projectionP ∈ B(H) so that the range ofP con-
tains all thewi and alla∗jw

i (1 ≤ i ≤ n, 1 ≤ j ≤ `). ThenP (n)XP (n) = X and

P (n)T (n)(X)P (n) =
∑`

i=1 λiP
(n)(a

(n)
i )
∗
Xa

(n)
i P (n) = T (n)(X).

Now consider the operatorS:B(H)→ B(H) given by

Sx =
∑̀
i=1

λi(PaiP )∗x(PaiP ) = P (T (PxP ))P,

which isk-positive becauseT is and so is the mapx 7→ PxP . The above calcula-
tions show thatT (n)(X) = S(n)(X). LetK = PH denote the (finite-dimensional)
range ofP and decompose all elements ofB(H) as2 × 2 blocks with respect to
H = K ⊕K⊥. Similarly decomposeB(Hn) = Mn(B(H)).

Let Q:H → K be the othogonal projection (the same asP but regarded
as having values inK). The compression ofS to the (K,K)-block B(K) =
QB(H)Q∗ is a finite-dimensional elementary operatorR:B(K)→ B(K),Ry =
QS(Q∗yQ)Q∗ =

∑`
i=1 λib

∗
i ybi, wherebi is QaiQ

∗. R is covered by Theorem 6.
Hence it isn-positive. It follows thatS(n)(X) = T (n)(X) is positive, because it is
equal toR(n)((Q(n))X(Q(n))∗) with zeroes added symmetrically. �

Corollary 8 improves on a result of Hou [2] where the same conclusion is
proved under the assumption that the length ofT is at most2k + 1.

Corollary 9 LetA be aC*-algebra andT an elementary operator onA of mini-
mal length at most(k + 1)2 − 1. If T is k-positive, thenT is completely positive.

Proof. This follows as in [5], where the same conclusion is proved under the
assumption that the length ofT is at most2k + 1. This result of [5] is also shown
in [3]. �

Acknowledgment. The author thanks Martin Mathieu for his help during this
work.

References

[1] M. D. Choi, Positive linear maps onC*-algebras, Canadian J. Math.24
(1972) 520-529.

7



[2] J.-Ch. Hou,A characterization of positive elementary operators, J. Operator
Theory, (to appear).

[3] Jiankui Li, A remark on complete positivity of elementary operators, J. Inte-
gral Equations and Operator Theory,28 (1997) 110-115.

[4] Martin Mathieu,Elementary operators on primeC*-algebras. I, Math. Ann.
284(1989) 223-244.

[5] Martin Mathieu,Characterising completely positive elementary operators,
Bull. London Math. Soc, (to appear).

[6] W. Forrest Stinespring,Positive functions onC*-algebras, Proc. Amer.
Math. Soc.6 (1955) 211–216.

[7] T. Takasaki and J. Tomiyama,On the geometry of positive maps in matrix
algebras, Math. Zeit.184(1983) 101-108.

School of Mathematics
Trinity College
Dublin 2
Ireland

Email: richardt@maths.tcd.ie

8


