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Abstract

Singular monopoles are nonabelian monopoles with prescribed Dirac-
type singularities. All of them are delivered by the Nahm’s construc-
tion of monopoles. In practice, however, its effectiveness is limited to
the cases of one or two singularities. We present an alternative con-
struction of singular monopoles formulated in terms of Cheshire bows.
To illustrate the advantages of this bow construction we obtain an ex-
plicit expression for one U(2) gauge group monopole with any given
number of singularities of Dirac type.
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1 Introduction

We formulate a new construction of singular monopoles and illustrate its
every step by explicitly computing one monopole with k Dirac-type singu-
larities as an example. Until now the conventional techniques were limited to
k = 1 and k = 2 cases. Our construction is equally effective for any number
of singularities. The elements of our construction are conveniently organized
in terms of bows, which are generalizations of quivers introduced in [1, 2, 3].
Originally bows were introduced in order to find Yang-Mills instantons on
curved backgrounds of asymptotically locally flat gravitational instantons.
As we argue here, by specifying to what we call Cheshire bow representations
one obtains an alternative way of finding all singular monopoles.
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1.1 The Use of Singular Monopoles

Singular monopoles play important role in a number of physical problems
and have diverse mathematical applications. These classical Yang-Mills-
Higgs configurations are directly related to

• the vacua and the low energy behavior of the super-Yang-Mills theory
in three dimensions,
• the electric-magnetic duality of maximally supersymmetric Yang-Mills

in four space-time dimensions,
• Yang-Mills instantons on curved backgrounds,
• string theory brane configurations, and
• gravitational instantons.

As fist suggested in [4] and explored in e.g. [5, 6, 7], the moduli spaces of
vacua of the quantum N = 4 three-dimensional gauge theories are given by
the moduli spaces of singular monopoles. In particular the quantum moduli
space of vacua of the N = 4 U(n) super Yang-Mills theory with k matter
hypermultiplets in the fundamental representation is the classical moduli
space of n U(2) monopoles with k minimal singularities. In the exploration of
the Montonen-Olive duality [8], or more exactly its supersymmetric version
[9], in [10, 11] the Goddard-Nuyts-Olive (GNO) singularities [12] of the
type we study here represent ’t Hooft operators that are dual to the Wilson
operators of the electric-magnetic dual super-Yang-Mills theory. In fact it is
the study of [12] of the monopole singularities that prompted the discovery of
the electric-magnetic duality in [8]. On the other hand, it was demonstrated
in [13] that one of the consequences of the electric-magnetic duality of the
maximally supersymmetric Yang-Mills theory is the geometric Langlands
correspondence. As a result, singular monopoles are significant in the study
of the geometric Langlands duality; in particular, in [13] the moduli spaces of
singular monopoles were identified with the spaces of Hecke transformations.
Such a close relationship was also emphasized in [14].

There is a very close connection between monopoles and instantons.
For example an instanton on a space with a periodic direction, called a
caloron, can be thought of as a nonlinear superposition of monopoles and
antimonopoles [15, 16]. In a different view [17, 18] a caloron with a gauge
group G can be thought as a monopole with the loop group of G as its
structure group. If one wishes to extend these statements to instantons on
a multi-Taub-NUT space TNk, then the corresponding generalization of the
former is that an instanton on TNk is a nonlinear superposition of singular
monopoles and antimonopoles. And the analogue of the latter statement is
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that an instanton on TNk with a gauge group G is a monopole with the
loop group of G.

Singular monopoles describe Chalmers-Hanany-Witten brane configura-
tions of the type IIB string theory [4, 6] and are very useful in exploring
their various properties. In [19] they were instrumental in obtaining the
twistor spaces of Gravitational Instantons, metrics on which were found in
[20].

The twistor theory and the moduli spaces of singular monopoles were
first studied in [21]. In particular the moduli space of one U(2) monopole
with k minimal singularities, which is the configuration we explicitly obtain
here, is the k-centered multi-Taub-NUT space [21]. The centered moduli
space of two U(2) monopoles with k singularities is the Dk ALF space [19,
20].

1.2 Singular Monopole Constructions

By a BPS monopole1 we understand a pair (A,Φ) of a hermitian connection
A and a hermitian Higgs field Φ satisfying the Bogomolny equation

Fab +
3∑
c=1

εabc[Dc,Φ] = 0, (1)

where F is the curvature of A. A singular monopole with singularities at
points ~νj ∈ R3, j = 1, . . . , k is a BPS monopole with A and Φ regular
everywhere except at points ~νj , where locally it is required to have the
prescribed behavior

Φ =
(1 + \n)
4
∣∣~t− ~νj∣∣ +O

(∣∣~t− ~νj∣∣0) , A =
1 + \n

2
ωj +O

(∣∣~t− ~νj∣∣0) , (2)

Here ωj = − (~T×~tj)·d~t
2tj(Ttj−~T ·~tj)

, we have a unit vector ~n = (n1, n2, n3) and are using

the notation \n = n1σ1 +n2σ2 +n3σ3 with σ1, σ2, σ3 the Pauli matrices. This
is exactly the Dirac monopole at each ~νj embedded into the gauge group
U(2).

The technique of constructing a general regular monopole was discov-
ered by Nahm [22, 23]. For a U(2) monopole with k singularities this tech-
nique was used in [19, 24] to study the metric on the moduli space of such

1Normally one requires a monopole to have finite energy
R

R3 tr(F ∧ ∗F +DΦ ∧ ∗DΦ).
For singular monopoles, however, this condition is relaxed. Instead one excises small balls
Bj centered around the points νj and requires the energy outside

R
R3\∪jBj

tr(F ∧ ∗F +

DΦ ∧ ∗DΦ) to be finite, while the singularity inside each ball Bj is prescribed.
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monopoles. The starting point of this construction of singular monopoles is
a solution of the Nahm equations either on a real line or on a semi-infinite in-
terval. While being very efficient in the study of the moduli spaces, it would
be difficult to apply this formulation if one is to find the monopole configu-
rations themselves. For the case of one or two singularities this construction
is tractable and was employed in [25, 26] producing explicit solutions. Un-
fortunately, for a more general case, the difficulty is that the Nahm data,
which is the starting point of the construction, contains the rank k solution
of the Nahm equations on a semi-infinite interval. For k > 2 such solutions
are difficult to construct and to work with.

In order to circumvent this difficulty, we shall employ the novel technique
of bow diagrams introduced in [3] and developed in [1, 2]. Bow diagrams
were introduced in order to construct all instantons, i.e. solutions of the
self-duality equation, on the multi-Taub-NUT space with the metric ds2 =
V
(
~t
)
d~t 2 + 1

V
(
~t
)(dθ + ω)2. All such connections with self-dual curvature of

given charges are given by a bow representation of the, so called, Ak bow,
such as in Figure 2. A representation is determined by a collection of points
on a bow and the ranks of bundles over the intervals between these points.
The positions of these points correspond to the eigenvalues of the Polyakov
loop at infinity of the multi-Taub-NUT space, while the ranks determine the
charges.

What does the bow construction for instantons has to do with the singu-
lar monopole problem we are considering here? In [21] Kronheimer observed
that any self-dual connection on a k-centered multi-Taub-NUT space that is
invariant under the triholomorphic isometry of the multi-Taub-NUT space
can is equivalent to a solution of the Bogomolny equation F = − ∗DΦ on
R3, with k singularities corresponding to the Taub-NUT centers. Thus our
problem of singular monopoles with k singularities is equivalent to the prob-
lem of θ-independent instantons on TNk. In terms of the bow representation
the condition that guarantees the invariance of the resulting solution under
the triholomorphic isometry is that one of the ranks determining the bow
representation is zero. We call such a representation a Cheshire representa-
tion. This is exactly what one needs to find the singular monopole solutions
we are after. As a matter of fact this representation provides a construction
for singular monopoles of any charge.

In the following section we present the Ak bow and explain its relation to
the multi-Taub-NUT space and abelian instantons on it. Section 4 identifies
the relevant Cheshire representations of the bow and its data. In Section 5
we apply the Nahm transform of [2] to obtain one generic U(2) monopole
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solution with k minimal singularities positioned at ~νj , j = 1, 2, . . . , k. We
find its Higgs field and connection to have a relatively simple form:

Φ
(
~t
)

=

λ+
k∑
j=1

1
4tj

 coth 2(λ+ α)z − 1
2z

 \z
z

+
z

sinh 2(λ+ α)z

k∑
j=1

\T j⊥
2tj
(
(Tj + tj)2 − z2

) +
k∑
j=1

1
4tj

, (3)

A
(
~t
)

=

 1
2z
− 1

sinh 2(λ+ α)z

λ+
k∑
j=1

Tj + tj

2
(
(Tj + tj)2 − z2

)
 i[\z, d\t]

2z

+
z

sinh 2(λ+ α)z

k∑
j=1

i[\tj , d\t]⊥
4tj
(
(Tj + tj)2 − z2

)
−
(

1 +
\z
z

coth 2(λ+ α)z
) k∑
j=1

(~Tj × ~tj) · d~t
2tj((Tj + tj)2 − z2)

. (4)

The eigenvalues of the Higgs field at infinity are ±λ and −~T determines the
position of the nonabelian monopole.

We would like to emphasize that the Cheshire bow construction we
formulate here delivers all singular monopoles. We focus on one singular
monopole as an illustrative example where every detail can be worked out
explicitly.

2 Cheshire Bow Construction

The core idea of this work combines the observation of Kronheimer relat-
ing singular monopoles with instantons on multi-Taub-NUT space with the
bow construction of such instantons. Let us begin by formulating the con-
ventional Nahm transform for singular monopoles, highlighting the technical
difficulties one faces in its practical application. Then we proceed by present-
ing Kronheimer’s relation and formulating our generalization of the Nahm
transform. This gives an alternative construction of singular monopoles.

2.1 The Nahm Transform

In order to construct U(2) monopole of nonabelian charge m with k singu-
larities using the conventional Nahm transform one begins by finding the
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Nahm data (T1(s), T2(s), T3(s)) consisting of three hermitian matrix valued
functions of one variable s that satisfy the Nahm equations

d
dsT1 = i[T2, T3],
d
dsT2 = i[T3, T1],
d
dsT3 = i[T1, T2].

(5)

If the asymptotic eigenvalues of the monopole Higgs field we are constructing
are λ1 and λ2 with λ1 < λ2, then the Nahm data is of rank m on the interval
[λ1, λ2] and rank k on the semi-infinite intervals (λ2,+∞). For concreteness,
let us presume that k > m, then at λ2 the matching condition is such that
for s > λ2

Ta(s) =

 ρa

s−λ2
+O(1) O

(
(s− λ2)

k−m−1
2

)
O
(

(s− λ2)
k−m−1

2

)
Tj(λ2) +O(s− λ2)

 , (6)

where the residues ρ1, ρ2, and ρ3 satisfy [ρa, ρb] =
∑

c εabciρc, forming an
irreducible representation of su(2). The condition at λ1 is that

Ta(s) =
ρ′a

s− λ1
(7)

with ρ′a forming an m-dimensional irreducible representation of the su(2)
generators. If the positions of the monopole singularities are ~νj , then the
conditions one imposes on the eigenvalues of the Nahm data at s =∞ are

lim
s→+∞

EigVal Ta(s) = diag(νa1 , ν
a
2 , . . . , ν

a
k ). (8)

Given any such solution (T1, T2, T3) Nahm constructs a family of Dirac
(or Weyl) operators parameterized by ~t ∈ R3: \D = − d

ds − \T − \t, and a
family of conjugate operators

\D† =
d

ds
− \T − \t. (9)

These operators act on L2 fundamental spinors over the interval (λ1,+∞).
All such spinors form a trivial bundle over the R3 parameterized by ~t, and
the kernel of \D† is a subbundle of this trivial bundle. For each value of ~t
the kernel is two dimensional. If ψ1(s,~t ) and ψ2(s,~t ) form an orthonormal
basis of this kernel, then one forms the Higgs field and the connection with
the components

Φαβ(~t ) =
∫ +∞

λ1

sψ†αψβ ds, Aaαβ(~t ) = i

∫ +∞

λ1

ψ†α
∂

∂ta
ψβ ds, (10)
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which together constitute a singular monopole. This is the conventional
Nahm transform as formulated in [24]. For every gauge equivalence class
of solutions of the Nahm equations with the boundary conditions specified
above it produces a U(2) singular monopole with minimal singularities at
~νj and nonabelian charge m.

This transform was successfully applied to find singular monopoles with
one [26] and two singularities [25]. As we already pointed out, it is substan-
tially more difficult, though not impossible, to use for a larger number of
singularities. This is one of the reasons we proceed to introduce an alterna-
tive construction of singular monopoles.

2.2 Kronheimer’s Correspondence

The multi-Taub-NUT is a four-dimensional space with the metric

ds2 = V d~t 2 +
dθ + ω

V
, (11)

with θ of period 2π, V = l +
∑k

j=1
1

2|~t−~νj |
, and dω = − ∗3 dV. A Yang-Mills

connection Â on this space can be written as

Â = A− Φ
dθ + ω

V
. (12)

As observed in [21], if this connection satisfies the self-duality equation on
the multi-Taub-NUT space and if there is a gauge transformation that makes
A and Φ θ-independent, then we can understand the fields A and Φ as a
connection and Higgs field on R3 satisfying the Bogomolny equation

F + [DA,Φ] = 0. (13)

If before the gauge transformation the field Â was smooth and had a finite
action, then the resulting configuration (A,Φ) is a singular monopole with
singularities at the positions of the Taub-NUT centers ~νj . It is the action
of this gauge transformation at the points ~νj that determines the charges of
the singularities [21].

With this in mind, instead of searching for singular monopoles we can
try to solve an equivalent though at first sight more complicated looking
problem, that of finding instantons on the multi-Taub-NUT space that are
θ-independent.
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2.3 Bows and Instantons on multi-Taub-NUT

A multi-Taub-NUT space with k Taub-NUT centers is a close cousin of the
Ak−1 Asymptotically Locally Euclidean (ALE) space. This space is given
by the metric (11) with the parameter l = 0. The asymptotic form of its
metric approaches the flat metric on R4/Zk. The instantons on the Ak−1

ALE space, and on all ALE spaces, were constructed by Kronheimer and
Nakajima [27]. This construction is formulated in terms of quivers. The
relevant quiver is the affine Ak−1 quiver, such as the one in Figure 1.

Figure 1: An example of the affine Ak−1 quiver. This is an A8 affine quiver
giving the A8 ALE space and instantons on it.

The recent construction of instantons on multi-Taub-NUT spaces [1, 2, 3]
generalizes the notion of quivers to the notion of bows. If a quiver consists
of points and oriented edges connecting them, a bow consists of intervals
and oriented edges connecting them. We refer to [1] for the exact defini-
tions. An Ak bow appears in Figure 2. It has various representations, each
representation of a bow corresponding to a class of all instantons with given
topological charges. A representation of a bow is a collection of points λj
belonging to its intervals and a collection of vector bundles over the subin-
tervals into which these intervals are divided by the λ-points. In particular
some of these bundles can have rank zero, in which case their corresponding
subintervals play no role and do not contribute to the final instanton con-
nection. If this is indeed the case and a representation has at least one of
its bundles of rank zero we call it a Cheshire representation.

Now, among all of the bow representations it remains to single out those
that produce self-dual connections that are θ-independent. How does the θ
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dependence arise?
On each of the bow intervals one considers the Nahm data consisting

of the abelian U(1) gauge field t0 and three abelian Higgs fields t1, t2, t3.
The three Higgs fields give rise to the three of the multi-Taub-NUT coordi-
nates assembled into a vector ~t, while the coordinate θ is the logarithm of
the Polyakov loop

∫
t0(s)ds. Our construction is gauge invariant and there-

fore we can change the values of t0, even gauging it away on some intervals
completely. The only objects that remains invariant under the gauge trans-
formations are the Polyakov loop and t1, t2, and t3. Given some other bow
representation we form a family of operators similar to the \D† operators of
Eq. (9) that appeared in the conventional Nahm transform of Section 2.1.
These operators depend only on the values of t0 on the subintervals where
the rank of the representation bundle is nonzero. Therefore, if all ranks
of a representation are positive, then the resulting connection does depend
on t0 and therefore on θ. If one of the ranks is zero, however, then we can
work in a gauge where t0 is gauged away on all sub-intervals, except the one
carrying the zero rank bundle. As a result the kernel of our operators will
be independent of θ and so will be the resulting connection.

3 The Multi-Taub-NUT Space

A general definition of a bow, its representation, and its data can be found
in [1]. Here we focus on the Ak−1 bow, also called the TNk bow, given in
Figure 2. It consists of k intervals Ij , j = 1, . . . , k denoted by the wavy lines

Figure 2: Ak−1 Bow. It has multi-Taub-NUT space with k centers as the
moduli space of its small representation. Any other representation of this
bow delivers self-dual connections on this multi-Taub-NUT space.

and k oriented edges ej , j = 1, . . . , k denoted by the arrows connecting the
ends of the lines. We parameterize the intervals by the variable s, and for
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concreteness denote the left end of Ij by pLj and the right end by pRj so
that Ij = [pLj , p

R
j ]. In what follows we shal understand the variable s to be

parameterizing a circle of circumference l. This circle is divided into intervals
Ij , and even though in this picture any two neighboring intervals Ij−1 and Ij
share an endpoint, we still treat pRj−1 and pLj as distinct points. One of the
simplest representations of this bow has rank one bundles on each interval
and no marked λ-points. We call this the Small Representation and denote
the associated data by small letters t and b. Let us begin by discussing this
representation in detail and by finding its moduli space.

Each interval Ij has an associated line bundle ej → Ij with connection
d
ds − it0(s) and three Higgs fields t1(s), t2(s), t3(s). Each edge, say the jth

edge, connects the intervals j − 1 and j as in Figure 3, with the tail t(j)
being the right end of the (j − 1)st interval, pLj = h(j), and the head h(j)
being the left end of the jth interval, pRj−1 = t(j). If et(j) denotes the fiber of
ej−1 at the right end of the interval Ij−1 and eh(j) denotes the fiber of the
bundle ej at the left end of the interval Ij , then we consider the linear maps

bLRj : et(j) → eh(j) and bRLj : eh(j) → et(j). (14)

j − 1

j

h(j)

t(j)

edge j

Figure 3: An edge

These are assembled into b+j and b−j as

b+j =

(
bRLj
−bLRj

)
and b−j =

(
bLRj
bRLj

)
. (15)

Figure 4 assembles all this data into a decorated bow. The collection of
the connection, the Higgs fields, and the linear maps is a point in the affine
space of the small representation data.
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b±k−1

�tk−2

b±k−3 b±1b±k

�tk−1

b±k−2

�tk−3

b±2

�t1

Figure 4: Small Bow Representation: This bow has k intervals. Assigning a
line bundle to each defines a representation with k-centered Taub-NUT as
its moduli space.

3.1 Moment Map Conditions

According to [1] the moduli space of the small bow representation is obtained
by imposing the moment map conditions

\µ(t, b) =
k∑
j=1

(δ(s− t(j))− δ(s− h(j)))\νj , (16)

and dividing by the action of the gauge group. The moment map arises
from considering the space of representation data, which is hyperkähler, and
the natural action of the gauge group on it. The space being hyperkähler
it has three symplectic structures and these are respected by the gauge
transformations. It is the three Hamiltonians µ1, µ2, and µ3 generating this
action that form the moment map values

\µ(t, b) = − d

ds
\t +

k∑
j=1

(
δ(s− t(j))b−j

(
b−j
)† + δ(s− h(j))b+j

(
b+j
)†)

. (17)

Within each interval this condition implies that the data satisfies the Nahm
equations, which, since tµ(s) is abelian read d

ds ti = 0 for i = 1, 2, 3. Thus
within each interval ~t = (t1, t2, t3)tr is constant. At t(j) Eqs. (16) and (17)
read

b+j (b+j )† = |~t(t(j))− ~νj |+ (\t(t(j))− \νj), (18)
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and at h(j)
b−j
(
b−j
)† = |~t(h(j))− ~νj | −

(
\t(h(j))− \νj

)
. (19)

In particular these equations imply that \t(t(j)) = \t(h(j)) and thus ~t(s) = ~t
is not only constant within each interval, but, has the same value across
all intervals for all values of s. Once this is established let us simplify our
notation slightly by introducing

~tj = ~t− ~νj and, accordingly, \tj = \t − \νj . (20)

The remaining gauge freedom can be used to completely gauge away the
connection component t0 within each interval absorbing it into the phase
factors of b±j . At this point the calculation reduces to that of [29].

As a result we obtain the moduli space of this small representation at
level \ν that is four-real-dimensional. This space can be parameterized by ~t
and the invariant combination of t0 and complex phases of bj , leading to the
Gibbons-Hawking form of the metric

ds2 = V d~t 2 +
1
V

(dθ + ω)2, (21)

with V = l+
∑

j
1

2|~tj |
, θ ∼ θ+2π, and the one-form ω satisfying ∗dV = −dω.

Here l is the sum of the lengths lj of the intervals Ij .
One can now see the significance of the values ~νj of the moment map -

these are the positions of the Taub-NUT centers. The size of the Taub-NUT
circle at infinity on the other hand is determined by l, which is the total
sum of lengths of all intervals in the bow.

Since this four-dimensional space is obtained as a moduli space of a
bow representation it comes equipped with a family of self-dual connections
parameterized by the union of all intervals of the bow. In our case all
of these connections are abelian instantons. These abelian instantons are
instrumental in our construction and we derive them now.

3.2 Natural Line Bundles and Self-dual Connections

The exact abelian instanton connection will depend on how we parameterize
the intervals in the bow. Let us call the point at which s = 0 the distin-
guished point. We shall be interested in the connection associated to some
point s = s0. Let us call this point the marked point.

Let us consider a general position of the distinguished point on the kth
interval, dividing it into left and right intervals on lengths u and l0−u. The
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marked point s0 is in a general position belonging to the interval number
int(s0) : s0 ∈ Iint(s0). The distinguished point and the marked point divide
the TNk bow into two parts. Let us call the part forming the path from
the distinguished point to the marked point the left path, and the part
forming the path from the marked point to the distinguished point the right
path. The total length of the intervals belonging to the left path is s0 and
the total length of the intervals belonging to the right path is l − s0, with
l = l1 + . . .+ lk. We shall use the corresponding subscripts l and r to denote
the quantities relating to these two parts. For example we denote the data
of the left path by Datl and the data of the right path by Datr.

The data of the bow can be viewed as the direct product of the data of
the left and right paths with zero-level hyperkähler reduction by the action
of the gauge group Gs0 at the marked point. Dat = (Datl × Datr)///Gs0 .
Moreover, if Gs0 is the group of gauge transformations that act trivially at
the marked and at the distinguished point then it can be viewed as a direct
product of similar groups Gl and Gr acting on the left and right path data
respectively with trivial action at the marked and distinguished points.

The moduli space M of the small bow can thus be represented as a
hyperkähler quotient in a number of ways:

M = Dat///G = Dat///(G∫′ ×Gs0) =
(

(Datl///Gl)× (Datr///Gr)
)
///Gs0 .

(22)
Here /// denotes the hyperkähler reduction [28]. Let us denote the moduli
space of respectively the left and the right paths by Ml and Mr so that
Ml = Datl///Gl and Mr = Datr///Gr. Performing hyperkähler reduction
within each interval reduces the Nahm data on each interval to R3×S1. The
remaining quotient by the gauge groups acting at the end of the intervals
amounts to the quotient considered in [29] which results in a multi-Taub-
NUT space. Thus Ml = TNs0 and Mr = TNl−s0 with metrics

ds2l = Vld~t
2
j +

1
Vl

(dβ + ωl)2, ds2r = Vrd~t′
2

j +
1
Vr

(dα+ ωr)2, (23)

here α and β have period 2π and

Vl = s0 +
int(s0)∑
j=1

1
2tj

, Vr = l − s0 +
k∑

j=int(s0)+1

1
2tk

, (24)

∗3 dωl = −dVl, ∗3 dωr = −dVr. (25)

The action of the Gs0 = U(1) is by (α, β)→ (α− φ, β + φ), the invariant of
this action is θ = α + β and the moment map is ~t′int(s0) − ~tint(s0). Putting
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the moment map to zero we obtain the metric on the five-real-dimensional
zero level set of Gs0

ds2 = V d~t2 +
1
V

(dθ + ω)2 +
V

VlVr

(
dβ + ωl −

Vl
V

(dθ + ω)
)2

, (26)

where V = Vl + Vr is the harmonic function of the k-centered Taub-NUT,
ω = ωl + ωr, ~t = ~tint(s0) = ~t′int(s0). Viewing this as a metric on the principal
U(1)s0 bundle over M we have the natural connection as0 on this bundle

as0 = ωl − Vl
(dθ + ω)

V
. (27)

It is natural to associate the one-form connection a(j) = ωj − 1
2tj

dθ+ω
V , with

dωj = −∗3d 1
2tj
, to each of the Taub-NUT centers, then the above connection

(27) in the chosen trivialization has the form

as = −sdθ + ω

V
+

int(s)∑
j=1

a(j), (28)

for s = s0. This abelian connection is self-dual. Thus each point of a bow
has an associated abelian self-dual connection given by Eq. (28).

4 Cheshire Representation

In order to obtain one singular monopole solution we begin with the large
representation of Figure 5. For the sake of symmetry let us choose the
distinguished point with s = 0 to be in the middle of the kth interval Ik.
This representation has two λ-points at s = ±λ.2 All bundles have rank
one, except for the bundle over a single subinterval which has rank zero.
This subinterval has the λ-points as its ends. Since the rank zero bundle
has no data associated to it, it is not drawn in Figure 5. This is a Cheshire
representation, which ensures that the resulting instanton on the multi-
Taub-NUT can be written in the form

Â = A− Φ
dθ + ω

V
, (29)

with A and Φ independent of the variable θ. The fact that Â has self-
dual curvature in orientation (dt1, dt2, dt3, dθ) is equivalent [21] to A and Φ

2This choice of λ-points makes it simpler to extract the U(2) singular monopole ex-
pression from our answer. A priori any two points can be chosen as λ-points.

14



satisfying the Bogomolny equation ∗3F = −[DA,Φ]. One can see from the
form of Eq. (29) that in such a reduction of a smooth self-dual connection to
the monopole the resulting monopole can have 1

tj
type singularities at the

positions of the Taub-NUT centers.

1 1

1

1 1 1

Figure 5: Large bow representation: This bow has k edges and k+1 intervals.
Assigning a line bundle to each of the intervals. A solution of this bow
determines a monopole on a k-centered Taub-NUT space.

For a charge m singular monopole the large bow is the same as in Figure
5 except that the ranks of all the bundles on the shown intervals are equal
to m. In order to construct a monopole with the U(n) gauge group, one
considers a Cheshire bow with n λ-points with various bundle ranks equal
to the nonabelian monopole charges.

Figure 5 illustrates the reason why our method has an advantage over
the conventional Nahm transform. In the conventional Nahm data for a
monopole with k singularities one has to work with the rank k Nahm data,
which makes it into a highly nonlinear problem. In the Cheshire bow for-
mulation, even though one still constructs a monopole with k singularities,
only abelian rank 1 data appears on the intervals, which makes the whole
construction tractable.

The data we associate to the large representation is denoted by capital
letters T and B, as in Figure 6. The moment map conditions we impose for
this data are

\µ(B, T ) = −
∑
j

(
δ(s− t(j))− δ(s− h(j))

)
\νj , (30)

which are negative of those for the small bow of Eq. (16). Since the gauge
group action on the large representation data (T,B) has the same form as
on the small representation data the moment map is given by the same
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expression, which for an arbitrary rank bow data takes the form

\µ(T,B) = − d

ds
\T + vec \T \T

+
k∑
j=1

(
δ(s− t(j))B−j

(
B−j
)† + δ(s− h(j))B+

j

(
B+
j

)†)
. (31)

Here vec \T \T = iεabc[Ta, Tb]σc and for the rank one large representation it
vanishes. The gauge equivalence classes of solutions to the moment map
equation (30) are in one-to-one correspondence with the SU(2) singular
monopoles with k minimal singularities. The positions of the singularities
are fixed to be ~νj , while −~T parameterizes the position of the nonabelian
monopole. We have the abelian Nahm data ~T associated to each interval.

�Tk
�T0

B±k−1

�Tk−2

B±k−3 B±1B±k

�Tk−1

B±k−2

�Tk−3

B±2

�T1

Figure 6: The large bow representation with its data. Black dots are the
λ-points at s = ±λ.

The Nahm equations imply that ~T is constant on each interval. To each
edge we associate linear maps

BLR
j : Et(j) → Eh(j) BRL

j : Eh(j) → Et(j) (32)

which we assemble into

B+
j =

(
BRL
j

BLR
j

)
B−j =

(
BLR
j

−BRL
j

)
. (33)

The moment map condition of Eq. (30) reads

B±j B
±†
j = |~T + ~νj | ± (\T + \νj), (34)
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which implies that ~T is not only constant within each interval but also has
the same value on all intervals. To simplify our notation we introduce

~Tj = ~T + ~νj , so that \T j = \T + \νj . (35)

5 The Monopole

Given any solution (~T ,Bj) of the moment map conditions (34), we construct
a singular monopole solution with monopole position parameter−~T . In order
to find the value of A and Φ at a point ~t let us introduce the relative position
~z = ~t+ ~T with respect to the monopole. We also introduced ~tj = ~t−~νj which
are the relative positions with respect to the singularities. Now consider the
twisted Weyl or Dirac operator

D† =
(
d

ds
− \z
)
⊕
∑
j

δ(s− t(j))(b−j , B−j )⊕
∑
j

δ(s− h(j))(B+
j , b

+
j ). (36)

This operator acts on Ψ = (ψ(s), vj) with ψ(s) a section of Ej⊗ej⊗S, where
Ej → Ij is the line bundle of the large representation over the interval Ij , ej
is the line bundle of the small representation over the interval Ij , and S is the

two-dimensional chiral spin bundle, while vj =
(
v+
j

v−j

)
with v+

j ∈ eh(j)⊗Et(j),

v−j ∈ Eh(j) ⊗ et(j). Thus the equation D†Ψ = 0 amounts to(
d

ds
− \z
)
ψ(s) = 0 within each interval, (37)

ψ(t(j)) = (b−j , B
−
j )vj , ψ(h(j)) = −(B+

j , b
+
j )vj . (38)

If the columns of Ψ form an orthonormal basis of solutions of D†Ψ = 0,
then the resulting self-dual connection on the multi-Taub-NUT is

Â =
(

Ψ,
(
idta

d

dta
+ as

)
Ψ
)
. (39)

Here we use the most natural norm

(Ψ,Ψ) ≡
∫
ψ†(s)ψ(s)ds+

k∑
j=1

v†jvj . (40)
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Together with Kronheimer’s reduction (29) and the expression for the abelian
instanton as of Eq. (28) this leads to the monopole expression

Φ =

Ψ,
(
s+

int(s)∑
j=1

1
2tj

)
Ψ

 , (41)

A =

Ψ,
(
idta

d

dta
+

int(s)∑
j=1

ωj

)
Ψ

 . (42)

Before we proceed solving for Ψ we introduce Pj =
√

2(tjTj − ~tj · ~Tj) =√
(tj + Tj)2 − z2 and observe the following useful relations

Pj = B±†j b∓j = b±†j B∓j = B+
j b
−†
j + b+j B

−†
j = B−j b

+†
j + b−j B

+†
j , (43)

(b−j , B
−
j )(b−j , B

−
j )† = Tj + tj −\z, (B+

j , b
+
j )(B+

j , b
+
j )† = Tj + tj + \z, (44)

and

Pj = (b−j , B
−
j )(B+

j , b
+
j )† = (B+

j , b
+
j )†(b−j , B

−
j ) (45)

Pj = (B+
j , b

+
j )(b−j , B

−
j )† = (b−j , B

−
j )†(B+

j , b
+
j ). (46)

In a way Eqs. (43) hold up to a phase factor eiφ. We put this factor to
identity which amounts to choosing a gauge in which our solution will be
written.

Due to Eq. (37) within each interval ψ(s) = es\zΠj for some s-independent
Πj , while the matching conditions (38) give

vj =
(B+

j , b
+
j )†

Pj
ψ(t(j)) and ψ(h(j)) = −Tj + tj + \z

Pj
ψ(t(j)). (47)

Therefore the factors Πj on consecutive intervals are related by

Πj = −Tj + tj + \z
Pj

Πj−1, (48)

so that the choice of Π0 completely determines the solution Ψ. As we shall
need an orthonormal basis of solutions we shall fix Π0 accordingly after we
compute the normalization.

In our computation the factor Tj + tj + \z plays a special role, with this
in mind we observe that

Tj + tj ± \z = Pje±2αj\z, (49)
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where
αj =

1
4z

ln
Tj + tj + z

Tj + tj − z
. (50)

Also, let us introduce α =
∑k

j=1 αj .
It is most convenient to choose the value of Π0 so that the normalisation

factor

N2 = (Ψ,Ψ) =
k∑
j=0

∫ pR
j

pL
j

dsΠ†je
2s\zΠj +

k∑
j=1

v†jvj , (51)

is indeed just a scalar factor (times the identity matrix I2×2). This dictates
our choice below.

The normalised solution in this case can be written as ΨN = 1
NΨ.

Differentiating (ΨN ,ΨN ) = 1, one verifies that(
ΨN ,

d

dta
ΨN

)
=

1
2

((
ΨN ,

d

dta
ΨN

)
−
(
d

dta
ΨN ,ΨN

))
=

1
N2

((
Ψ,

d

dta
Ψ
)
−
(
d

dta
Ψ,Ψ

))
. (52)

This allows us to work with the solution Ψ satisfying (Ψ,Ψ) = sinh 2(λ+α)z
z

when we compute the Higgs field and the connection below.
From our expressions for the monopole fields in Eq. (41) the Higgs field

satisfies

N2Φ =
k∑
j=0

∫ pR
j

pL
j

dsΠ†jse
2s\zΠj +

k∑
j=1

v†j

(
pLj 0
0 pRj−1

)
vj

+
k∑
j=1

1
2tj

 k∑
i=j+1

v†i vi + (v+
j )†v+

j

+
k∑
j=1

j∑
i=1

1
2ti

∫ pR
j

pL
j

dsΠ†je
2s\zΠj

(53)

and the connection satisfies

N2A =
i

2

k∑
j=0

∫ pR
j

pL
j

ds
(
ψ†j(s)dψj(s)− dψ

†
j(s)ψj(s)

)
+
i

2

k∑
j=1

(
v†jdvj − dv

†
jvj

)

+
k∑
j=1

ωj

 k∑
i=j+1

v†i vi + (v+
j )†v+

j

+
k∑
j=1

j∑
i=1

ωi

∫ pR
j

pL
j

dsΠ†je
2s\zΠj

(54)
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where ψj(s) = es\zΠj , with Πj = (−1)je2(α1+···+αj)\zΠ0 and

vj =
(
v+
j

v−j

)
= (−1)j

(b−j , B
−
j )†

Pj
ep

R
j−1\ze2(α1+···+αj)\zΠ0. (55)

Except for the total length of all the intervals in the bow, the sizes of
the individual intervals did not play any role in our discussion so far. Nor
will they. From this point on we put all of the intervals in the bow to zero
size with the exception of the one interval that contains the two λ-points.
This interval is of length l. Every other interval that is now shrunk to a
point is at s = 0. The resulting Cheshire bow representation is in Figure 7.
This puts pL0 = −λ, pRk = λ, and all other pLj = pRj = 0. This substantially
simplifies our computation.

B±1

B±2

B±k

s = −λ s = 0, t(e)

s = 0, h(e) s = λ

Figure 7: The Cheshire representation of Figure 6 with all but one intervals
shrunk to zero size. It is important to keep in mind the relation of this
diagram with the TNk bow.

5.1 Normalization

The normalisation factor (51) is now given by

N2 = (Ψ,Ψ) =
∫ 0

−λ
dsΠ†0e

2s\zΠ0 +
∫ λ

0
dsΠ†ke

2s\zΠk +
k∑
j=1

v†jvj (56)

The integrals over s are straightforward and one can show that the contri-
bution from the s = 0 endpoints cancels with the sum of vj terms; this latter
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calculation in fact implies that

k∑
i=j+1

v†i vi =
1

2z2

(
Π†k\zΠk −Π†j\zΠj

)
(57)

Using the fact that Πk = (−1)ke2α\zΠ0 one ends up with an expression for N2

which is proportional to Π†0e
2α\zΠ0. This suggests a natural choice of orthog-

onal basis of solutions given by Π0 = e−α\z. In this basis the normalization
factor is indeed a scalar

N =

√
sinh 2(λ+ α)z

z
, (58)

and all basis elements have the same norm and are orthogonal to each other.

5.2 Higgs Field

With our labelling of the interval endpoints, the Higgs field Φ of Eq. (53)
becomes

N2Φ =
∫ 0

−λ
dsΠ†0 se

2s\zΠ0 +
∫ λ

0
dsΠ†k se

2s\zΠk

+

 k∑
j=1

1
2tj

∫ λ

0
dsΠ†k e

2s\zΠk

+
k∑
j=1

1
2tj

(v+
j )†v+

j +
k∑

i=j+1

v†i vi

 ,

(59)

Our choice for Π0 from the previous section simplifies the computation of the
integrals greatly, leaving us with simple integrals involving the exponentials
e2(s±α)\z . The result of the integration is

Φ =
k∑
j=1

1
4tj

+

λ+
k∑
j=1

1
4tj

 coth 2(λ+ α)z − 1
2z

 \z
z

+
z

sinh 2(λ+ α)z

 \z
2z3

sinh 2αz − \z
z2
e2α\z

k∑
j=1

1
4tj

+
k∑
j=1

1
2tj

(v+
j )†v+

j +
k∑

i=j+1

v†i vi

 . (60)
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The
∑

i v
†
i vi term can be replaced with a much simpler expression us-

ing Eq. (57). After substituting in v+
j = (−1)j(b−j )†e−α\ze2(α1+···+αj)\z and

bringing the remaining pieces together one finds, after some manipulation
of sums of exponentials of slashed terms that the final expression is

Φ =
k∑
j=1

1
4tj

+

(λ+
k∑
j=1

1
4tj

)
coth 2(λ+ α)z − 1

2z

 \z
z

+
z

sinh 2(λ+ α)z

k∑
j=1

1
2tjP2

j

\T j⊥. (61)

The second term in the first line of this expression is reminiscent of the
Higgs field of the ’t Hooft-Polyakov monopole:

Φ
(
~z
)

=
(
λ coth 2λz − 1

2z

) \z
z
. (62)

One can see for example that the size of the nonabelian monopole is modu-
lated by the presence of the singularities with λ+

∑k
j=1 αj playing the role

of the size controlling λ in the ’t Hooft-Polyakov case.

5.3 Vector Potential

From (54) the vector potential is given by

N2A =
i

2

∫ 0

−λ
ds
(
ψ†0(s)dψ0(s)− h.c.

)
+
i

2

∫ λ

0
ds
(
ψ†k(s)dψk(s)− h.c.

)
+

k∑
j=1

ωj

∫ λ

0
dsΠ†ke

2s\zΠk +
k∑
j=1

ωj

(v+
j )†v+

j +
k∑

i=j+1

v†i vi+


+
i

2

k∑
j=1

(v†jdvj − h.c.).

(63)

The integrals in the first line are straightforward to compute after writing
ψ0(s) = e(s−α)\z and ψk(s) = (−1)ke(s+α)\z, while the integral and the sum-
mation in the second line are the same as those that occur in the calculation
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of Φ. One also needs

v†jdvj−dv
†
jvj =

1
P2
j

e−(α−2[α1+···+αj ])\z
(
b−j db

−†
j − db−j b

−†
j

)
e−(α−2[α1+···+αj ])\z

+
1
Pj

[\z, d\z]
z2

sinh(α− 2[α1 + · · ·+ αj−1])z sinh(α− 2[α1 + · · ·+ αj ])z.

(64)

and
b−j db

−†
j − db−j b

−†
j = 2iωj(tj − \tj) +

1
2tj

[\tj , d\tj ] (65)

Using these and the explicit expression ωj = − 1
P2

j tj
~z · (~tj×d~tj) it is straight-

forward to simplify the remaining terms obtaining

A =
i

2z
[\z, d\z]

− 1
sinh 2(λ+ α)z

λ+
k∑
j=1

Tj + tj
2P2

j

+
1
2z


+

k∑
j=1

ωj
2

+
k∑
j=1

ωj
2
\z
z

coth 2(λ+ α)z +
z

sinh 2(λ+ α)z

k∑
j=1

i[\tj , d\tj ]⊥
4P2

j tj

(66)

Our results, Eqs. (61) and (66), deliver a one monopole with k minimal
Dirac singularities at ~νj points. The monopole position is parameterized by
−~T , and we used ~Tj = ~T + ~νj ,~tj = ~t− ~νj , and P2

j = (Tj + tj)2 − z2.

6 Conclusions

We formulate an alternative Nahm transform for monopoles. This new ver-
sion of the Nahm transform that we apply here amounts to finding a solution
(T,B) of the moment maps of a large Cheshire bow representation and form-
ing a family of Dirac operators D† determined by the solution (T,B). An
orthonormal basis of solutions Ψ of the Dirac equation D†Ψ = 0 gives a
singular monopole with

Φ =

Ψ,

(
s+

∑
j≤int(s)

1
2tj

)
Ψ

 , A = i (Ψ,∇aΨ) dta, (67)

with the covariant derivative ∇a = ∂
∂ta
− iaa. One can think of these expres-

sions as an induced Higgs field and connection on the kernel of D† from the
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simple abelian monopole family

φ = s+
int(s)∑
j=1

1
2tj

, a =
int(s)∑
j=1

ωj . (68)

This construction in principle delivers all singular monopoles of any
charge, singularity number, and unitary gauge group. As an illustration,
we work out the example of one U(2) monopole with k singularities is com-
plete detail. The resulting Higgs fields and connection are given in Eqs. (61)
and (66).

In [30] we use this solution to obtain an SU(2) monopole with k minimal
singularities and analyze its properties.
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8 Appendix

We describe here in detail the calculations which lead to our expressions for
Φ and A. We have set pL0 = −λ, pRk = λ and all other points pLj = pRj = 0.
Solving the Dirac equation (37) and (38) we write our data Ψ = (ψ(s), vj)
in the form

ψ(s) =

{
es\zΠ0 −λ < s < 0
es\zΠk 0 < s < λ

, (69)

vj =
(
v+
j

v−j

)
=

(−1)j

Pj
(b−j , B

−
j )†e2[α1+···+αj ]\zΠ0, (70)

with αj such that exp(2αjz) =
√

Tj+tj+z
Tj+tj−z , so that

cosh 2αjz =
Tj + tj
Pj

, sinh 2αjz =
z

Pj
, (71)

cosh 4αjz =
(Tj + tj)2 + z2

P2
j

, sinh 4αjz =
2z(Tj + tj)
P2
j

. (72)

Note as well from (48) that Πk = (−1)ke2α\zΠ0.
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Normalisation

The first step in our construction is to compute the normalisation factor
N2 = (Ψ,Ψ) =

∫
dsψ(s)†ψ(s) +

∑
j v
†
jvj . From (56) this is given by

N2 =
∫ 0

−λ
dsΠ†0e

2s\zΠ0 +
∫ λ

0
dsΠ†ke

2s\zΠk +
k∑
j=1

v†jvj

=
1
2z

(
sinh 2λz

[
Π†0Π0 + Π†kΠk

]
+

1
z

cosh 2λz
[
Π†k\zΠk −Π†0\zΠ0

])
+

1
2z2

Π†0\zΠ0 −
1

2z2
Π†k\zΠk +

k∑
j=1

v†jvj .

(73)

We can write the last three terms as 1
2z2

Π†0C(k)Π0 with

C(k) = \z(1− e4(α1+···+αk)\z) + 2z2
k∑
j=1

1
Pj
e4(α1+···+αj)\ze−2αj\z. (74)

Then the difference C(k)− C(k − 1) can be written as

C(k)− C(k − 1) = e4(α1+···+αk−1)\z
(
−\ze4αk\z + \z +

2z2

Pk
e2αk\z

)
, (75)

which vanishes, as can be checked by expanding the exponentials and us-
ing the relations (71) and (72). Thus C(k) = C(k − 1) = . . . = C(1) =(
−\ze4α1\z + \z + 2z2

P1
e2α1\z

)
= 0, so we have shown that the last line in Eq. (73)

vanishes. Hence, using Πk = (−1)ke2α\zΠ0, Eq. (73) becomes

N2 =
1
2z

Π†0

(
sinh 2λz

(
e4α\z + 1

)
+
\z
z

cosh 2λz
(
e4α\z − 1

))
Π0

=
1
z

(sinh 2λz cosh 2αz + cosh 2λz sinh 2αz) Π†0e
2α\zΠ0

(76)

This expression suggests a natural choice of orthogonal basis of solutions
delivered by Π0 = e−α\z. In this basis the normalization factor satisfies

N2 =
1
z

sinh 2(λ+ α)z. (77)
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Higgs Field

Our Higgs field was given by (59):

N2Φ =
∫ 0

−λ
dsΠ†0 se

2s\zΠ0+
∫ λ

0
dsΠ†k se

2s\zΠk+

 k∑
j=1

1
2tj

∫ λ

0
dsΠ†k e

2s\zΠk

+
k∑
j=1

1
2tj

(v+
j )†v+

j +
k∑

i=j+1

v†i vi

 . (78)

The integrals are straightforward to compute upon substituting Π0 = e−α\z,
Πk = eα\z. One finds

Φ =
k∑
j=1

1
4tj

+

λ+
k∑
j=1

1
4tj

 coth 2(λ+ α)z − 1
2z

 \z
z

+
z

sinh 2(λ+ α)z

 1
2z3 \z sinh 2αz − \z

z2
e2α\z

k∑
j=1

1
4tj

+
k∑
j=1

1
2tj

(v+
j )†v+

j +
k∑

i=j+1

v†i vi

 . (79)

Now vanishing of the last three terms in Eq. (73) implies

k∑
i=j+1

v†i vi =
1

2z2

(
Π†k\zΠk −Π†j\zΠj

)
=

1
2z2 \ze

2α\z − \z
2z2

e−2α\ze4(α1+···+αj)\z.

(80)
The Dirac equation (47) gives us vj and its first component

v+
j =

(−1)j

Pj
(b−j )†e−α\ze2(α1+···+αj)\z, (81)

and a short calculation shows that

(v+
j )†v+

j =
1
P2
j

\T j⊥ +
1
P2
j

(
tj −

~z · ~tj
z

\z
z

)
e−2α\ze4(α1+···+αj)\z. (82)
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Combining these two observations

Φ =
k∑
j=1

1
4tj

+

(λ+
k∑
j=1

1
4tj

)
coth 2(λ+ α)z − 1

2z

 \z
z

+
z

sinh 2(λ+ α)z

k∑
j=1

1
2tjP2

j

\T j⊥ +
z

sinh 2(λ+ α)z

{
\z

2z3
sinh 2αz

+
k∑
j=1

1
2tj

e−2α\ze4(α1+···+αj)\z
(

1
P2
j

(
tj −

~z · ~tj
z

\z
z

)
− \z

2z2

)}
. (83)

The last line is simplified using

1
2tj

(
1
P2
j

(
tj −

~z · ~tj
z

\z
z

)
− \z

2z2

)
= − 1

2Pj
\z
z2
e−2αj\z, (84)

and in fact the sum of the terms in the curly brackets in Eq. (83) vanishes
if

sinh 2αz =
k∑
j=1

sinh 2αjze2(α1+···+αj−1)\z−2(αj+1+···+αk)\z. (85)

This is indeed the case since

k∑
j=1

(
e2αj\z − e−2αj\z

)
e2(α1+...+αj−1−αj+1−...−αk)\z =

k∑
j=1

(
e4(α1+...+αj−1+αj)\z − e4(α1+...+αj−1)\z

)
e−2α\z =(

e4(α1+...+αk)\z − 1
)
e−2α\z = e2α\z − e−2α\z. (86)

Vector Potential

The connection A is given by Eq. (63) so that

N2A =
i

2

∫ 0

−λ
ds
(
ψ†0(s)dψ0(s)− h.c.

)
+
i

2

∫ λ

0
ds
(
ψ†k(s)dψk(s)− h.c.

)
+
i

2

k∑
j=1

(v†jdvj−h.c.)+
k∑
j=1

ωj

∫ λ

0
dsΠ†ke

2s\zΠk+
k∑
j=1

ωj

(v+
j )†v+

j +
k∑

i=j+1

v†i vi

 .

(87)
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We can now insert v†jdvj − dv
†
jvj from Eq. (64) to find

A =
i

2z
[\z, d\z]

(
1
2z

+
1

sinh 2(λ+ α)z

[
− λ− sinh 2αz

2z

+
k∑
j=1

1
Pj

sinh(α− 2[α1 + · · ·+ αj−1])z sinh(α− 2[α1 + · · ·+ αj ])z
])

+
k∑
j=1

1
2
ωj +

k∑
j=1

1
2
ωj
\z
z

coth 2(λ+ α)z +
z

sinh 2(λ+ α)z

k∑
j=1

1
P2
j

ωj \T j⊥

+
z

sinh 2(λ+ α)z

k∑
j=1

{
ωj

(
1
P2
j

(
tj −

~z · ~tj
z

\z
z

)
− 1

2z2 \z
)
e−2α\ze4(α1+···+αj)\z

+
i

2P2
j

e−(α−2[α1+···+αj ])\z
(
b−j db

−†
j − db−j b

−†
j

)
e−(α−2[α1+···+αj ])\z

}
. (88)

Simple trigonometric identities and Eq. (71) give

k∑
j=1

1
Pj

sinh(α−2[α1+· · ·+αj−1])z sinh(α−2[α1+· · ·+αj ])z−
sinh 2αz

2z
=

− 1
2

k∑
j=1

Tj + tj
P2
j

+
1
2

k∑
j=1

1
Pj

cosh(2α−4[α1 + · · ·+αj−1]−2αj)z−
sinh 2αz

2z
.

(89)

Now, cosh(2α − 4[α1 + · · · + αj−1] − 2αj)z = cosh[−2(α1 + · · · + αj−1)z +
2(αj+1+· · ·+αk)z], and the sum of hyperbolic cosines in (89) cancels against
the sinh 2αz factor due to the trace part of Eq. (85).

This simplifies the [\z, d\z] terms of Eq. (88). Using Eq. (65) for the
b−j terms and then applying eβ\z\aeβ\z = \a⊥ + ~a·~z

z
\z
z e

2β\z, \tj⊥ = −\T j⊥ and
ωj = − 1

P2
j tj
~z · (~tj × d~tj) we obtain

A =
i

2z
[\z, d\z]

− 1
sinh 2(λ+ α)z

λ+
k∑
j=1

Tj + tj
2P2

j

+
1
2z


+

k∑
j=1

1
2
ωj +

k∑
j=1

1
2
ωj
\z
z

coth 2(λ+ α)z +
z

sinh 2(λ+ α)z

k∑
j=1

i

4P2
j tj

[\tj , d\tj ]⊥.

(90)
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