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Abstract

We obtain all charge one monopole solutions of the Bogomolny
equation with k prescribed Dirac singularities for the gauge groups
U(2), SO(3), or SU(2). We analyze these solutions comparing them to
the previously known expressions for the cases of one or two singular-
ities.
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1 Introduction

The Dirac magnetic monopole [1] is a solution of the U(1) gauge group
Bogomolny equation

B + ∇φ = 0, (1)

where φ is a scalar field and B = (B1, B2, B3)
t is the magnetic field with

the one-form potential ω, so that ǫabcB
adtbdtc = dω, where ǫabc is the Levi-

Civita symbol. The basic monopole solution is
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for any given vector ~T . Clearly ωN
~T

(and ωS
~T
) extend from its domain to the

complement of the semi-infinite line {~t = −r ~T |r > 0} (and {~t = r ~T |r > 0}
respectively). Since Eq. (1) is linear, it is straightforward to write a solution
with k Dirac monopoles with positions ~νj ∈ R

3, j = 1, . . . , k. If we denote
by ~tj = ~t − ~νj the position relative to the jth point and let tj = |~tj |, then
the solution is φ =

∑

j
1

2tj
and ω =

∑

j ω
(

~tj
)

with the vector potentials ω

of Eq. (2). Clearly these solutions are singular only at the points ~νj.
The first nonabelian monopole solution was found by ’t Hooft and Polyakov

in [2] and [3]. It is a nonabelian generalization of the Dirac monopole and
in the Bogomolny-Prasad-Sommerfield (BPS) limit [4, 5] it can be written
exactly:

Φ
(

~z
)

=

(

λ coth 2λz − 1

2z

)

\z
z
, (4)

A
(

~z
)

=

(

λ

sinh(2λz)
− 1

2z

)

i[\z, d\t ]
z

, (5)

where Φ is the Higgs field and A is the gauge field for the SU(2) gauge
group. It is the solution of the Bogomolny equation

Fab +

3
∑

c=1

ǫabc[Dc,Φ] = 0, (6)
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where F the field strength of the gauge field A. As opposed to the abelian
Dirac monopole of Eq (2), which is singular, the ’t Hooft-Polyakov monopole
(4,5) is everywhere smooth. The Bogomolny equation (6) is nonlinear and
superimposing its solutions becomes an interesting nonlinear problem.

In this brief note we present solutions to the Bogomolny equation that
can be thought of as nonlinear superpositions of one ’t Hooft-Polyakov
monopole (4,5) with k minimal Dirac singularities (2) embedded into the
gauge group.

A general formalism for constructing BPS monopoles was discovered by
Nahm in [6, 7, 8]. Singular monopoles were introduced in [9], where their
twistor theory and moduli spaces were studied. They play a significant
role in quantum gauge theory as first pointed out in [10] and explored in
various contexts in e.g. [11],[12], and [13]. Their significance in the geometric
Langlands program became apparent after [14].

First singular monopole solutions with nonabelian charge were found in
[15] and [16]. These solutions were derived using the conventional Nahm
transform of the Nahm data described in [17]1 This Nahm transform tech-
nique was limited however to the cases of one or two singularities at most.
The reason for this limitation is that the conventional Nahm data for one
monopole with k singularities is defined on a real line which is divided by
two points ±λ into a finite interval [−λ, λ] and left and right semi-infinite
intervals (−∞,−λ) and (λ,+∞). The Nahm data over the finite interval is
rank one is easy to work with, while the Nahm data over the left and right
semi-infinite intervals is of respective ranks k− and k+ with k−+k+ = k. For
k± > 1 such data has not yet been constructed explicitly, and even if found,
would be difficult to work with when performing the Nahm transform. Un-
til now this difficulty precluded any derivation of a singular monopole with
more than two singularities.

We circumvent this limitation by employing bow diagrams and a gener-
alization of the Nahm transform presented in [18, 19, 20] and in particular
their Cheshire representations [21]. Our method is based on the observation
of Kronheimer [9] that an instanton on a multi-Taub-NUT space that is
invariant under the isometry of the Taub-NUT is equivalent to a singular
monopole. The bow formalism of [18, 19] was developed to construct all
instantons on multi-Taub-NUT space. In [21] we identify the bow represen-
tations that give rise to the instantons invariant under the multi-Taub-NUT
isometry. Since these are the representations which have one of the ranks
equal to zero we call them Cheshire representations. The detailed derivation

1The notion of the nonabelian charge of the singular monopole is also defined in [17].
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of the results we present here shall appear in [21]. In this letter we limit our-
selves to giving the explicit general one monopole solution with any number
of singularities for the gauge groups U(2), SO(3), and SU(2).

2 Solutions

We place the singularities at some k distinct points with ~t = ~νj , j =
1, 2, . . . , k. The position relative to the jth singularity is ~tj = ~t − ~νj. The

nonabelian monopole position parameter is ~T , which approximately corre-
sponds to the negative of the monopole position. Let ~Tj = ~T + ~νj and

Tj = |~T +~νj|. By ~z = ~t+ ~T we denote the position relative to the monopole.
For any three-vector ~a we use its projection ~a⊥ on the plane orthogonal

to ~z, that is ~a⊥ ≡ ~a − ~a·~z
z

~z
z
, and we denote the length of ~a by a = |~a|. We

also use the conventional notation \a to denote ~a · ~σ = a1σ1 + a2σ2 + a3σ3,
where σ1, σ2, and σ3 are the Pauli matrices. Since one common combination
that enters our solution is Tj + tj + \z, we introduce the following functions

Pj =
√

(tj + Tj)2 − z2 =

√

2
(

Tjtj − ~Tj · ~tj
)

and αj =
1

4z
ln

Tj + tj + z

Tj + tj − z
,

(7)

so that Tj + tj ± \z = Pje
±2αj\z. Also let the sum of all the αj functions be

α = α
(

~t
)

=
∑k

j=1 αj .

2.1 U(2) and SO(3) Monopoles

For a U(2) singular monopole each minimal singularity has a sign associated
to it [13], so that its charge ej is +1 or −1 depending on whether one of
the Higgs field eigenvalues approaches + or − infinity respectively as one
approaches the singularity ~νj. For a singularity at ~t = ~νj let ωj = ωS

~Tj

(

~tj
)

,

with the one-form ωS
~T

(

~t
)

given in Eq. (3). The one U(2) monopole solution

derived in [21] can easily be generalized to the case of minimal singularities
of arbitrary charge ej = ±1 giving

Φ =
k

∑

j=1

ej

4tj
+ ~Φ · ~σ, A =

k
∑

j=1

ej

2
ωj + ~A · ~σ, (8)
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where
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1

2P2
j tj

(

~tj × d~t
)

⊥
.

(10)

Stripping off the trace part of this solution one obtains a solution Φ = (Φab)
and A = (Aab) for the singular monopole with the SO(3) gauge group with

Φbc = ǫabcΦ
c, Aab = ǫabcA

c. (11)

Here Φc and Ac denote the components of the vectors ~Φ and ~A of Eqs. (9)
and (10) above.

2.2 SU(2) Monopole

By bringing the singular points of opposite charges together in pairs in the
U(2) solution (8), we obtain the singular monopole solution for the SU(2)
gauge group

Φ =





(

λ +
k

∑

j=1

1

2tj

)
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2z





\z
z

+
z
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1
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j
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− 1
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z
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k
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(13)
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3 Exploring the solutions

Here we study various limits and special points of our solutions verifying the
expected behavior and comparing to the solutions known earlier.

3.1 At the location of the monopole

Let us begin by establishing the regularity of our solutions at z = 0. Since
the term z/ sinh 2(λ+α)z has a regular limit, the only potentially divergent
terms are

(

λ +

k
∑

j=1

1

4tj

)

coth 2(λ + α)z − 1

2z
(14)

and

1

sinh 2(λ + α)z



λ +

k
∑

j=1

Tj + tj
2P2

j



 − 1

2z
. (15)

Since Tj = tj − ~z · ~tj/tj + O(z2) we conclude from the definition of αj that
αj = 1

4tj
+ O(z). Thus in all of the above solutions the 1

2z
terms is canceled

by the singular term in the expansion of term containing coth or sinh and
the whole expression is regular, as expected.

3.2 At the singularities

Since ~tj = ~t − ~νj and ~z = ~tj + ~Tj we have

4zαj = log
2Tj + O(tj)

tj − ~Tj · ~tj/Tj + O(t2j )
, (16)

and

coth 2(λ + α)z =
1 + e−4(λ+α)z

1 − e−4(λ+α)z
= 1 +

tjTj − ~Tj · ~tj
T 2

j

e−4
(

λ+
P

i6=j αi

)

z + O(t2j ).

(17)
Thus the singularity of the Higgs field as ~t → ~νj is

U(2) : Φ =
1

4tj

(

1 +
\T j

Tj

)

+ O(t0j ), (18)

SO(3) : Φab =
1

4tj
ǫabc

T c
j

Tj
+ O(t0j ), (19)

SU(2) : Φ =
1

2tj

\T j

Tj

+ O(t0j). (20)
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3.3 Apparent Dirac String

Since our expressions for the monopole solutions contain terms with P2
j =

(Tj + tj)
2 − z2 = 2(tjTj − ~tj · ~Tj) one can expect them to be singular along

the line Lj :
{

~tj |~tj = r ~Tj , r > 0
}

. For concreteness let us consider the term

z

sinh 2(λ + 2α)z

1

2tjP2
j

~Tj ⊥, (21)

in the expression for the SU(2) monopole. As we approach the line Lj we

have Pj → 0, |~Tj ⊥| → 0, and sinh 2(λ + 2α)z → ∞. To find the leading
behavior of there terms use

sinh 2(λ + 2α)z =
1

2



e2λz
∏

j

Tj + tj + z

Tj + tj − z
− e−2λz

∏

j

Tj + tj − z

Tj + tj + z



 (22)

→ 2e2λz

(

Tj + tj
Pj

)2 k
∏

i=1

i6=j

Ti + ti + Tj + tj
Ti + ti − Tj − tj

. (23)

This leads to a regular limit along Lj.
All of our solutions are written in a gauge that is partial to the non-

abelian monopole; this results in the appearance of apparent Dirac strings
Lj . There is a simple gauge transformation that is more democratic making
the solutions everywhere regular except at the points ~νj .

Focussing on one pure singularity, in the Dirac form it is

ΦD = φ(~tj)
\T j

Tj

, AD = ω(~tj)
\T j

Tj

, (24)

with φ and ω given by Eq. (2), while in the Wu-Yang form [22, 23], which
makes sense globally and has no Dirac strings,

ΦWY = − 1

2tj

\tj

tj
, AWY = −i

[\tj, d\tj ]

2t2j
. (25)

The gauge transformation relating these two solutions is

gj =

√

Tjtj

Pj

(\tj

tj
−

\T j

Tj

)

. (26)

This gj is both unitary and Hermitian and thus gj = ~nj · ~σ with the unit

vector ~nj =

√
Tjtj

Pj

(

~tj/tj − ~Tj/Tj

)

. So it has the form igj = exp(iπ
2 gj). Thus
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if we find some vector-valued function ~h such that as ~t → ~νj we have ~h → ~nj

then the gauge transformation

g = exp(i
π

2
\h), (27)

puts the solutions we have in a nonsingular form with Wu-Yang form of the
singularities.

For example let ~h = ~H/f, with any function f satisfying lim~t→~νj
f =√

Tjtj

Pj
. Some possible choices are ~H = ~z

z
−∇ 1

P

1

tj

, or ~H = ~z
z
− 1

P

1

tj

∑ 1
tj

~tj
tj

,

and f =

(

∑

j
1
Pj

√

Tj

tj

)/

∑ 1
tj

.

3.4 Charges measured at infinity

As ~t tends to infinity coth 2(λ + α)z and coth 2(λ + 2α)z tend to one up to
terms exponentially small terms containing exp(−4λ|~t|), while sinh 2(λ+α)z
and sinh 2(λ+2α)z grow exponentially. Thus the U(2) Higgs field at infinity
has the form

U(2) : Φ =

k
∑

j=1

ej

4tj
+



λ − 1

2z
+

k
∑

j=1

1

4tj





\z
z

+ o(e−4λz), (28)

with the eigenvalues behavior EigVal(Φ) =
(

λ − 1−k+

2t
,−λ + 1−k−

2t

)

, with

k− and k+ the number of singularities with ej = −1 and ej = 1 respec-
tively. This exactly corresponds to the nonabelian charge one configuration
as defined in [13].

For the remaining two cases

SO(3) : Φab =



λ − 1

2z
+

k
∑

j=1

1

4tj



 ǫabc
zc

z
+ o(e−4λz) (29)

=

(

λ +
k − 2

4t

)

ǫabc
tc

t
+ O(t−2), (30)

SU(2) : Φ =



λ − 1

2z
+

k
∑

j=1

1

2tj





\t
t

+ o(e−4λz) (31)

=

(

λ +
k − 1

2t

) \t
t

+ O(t−2). (32)
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so the total charge measured at infinity is 1
2k−1 for the SO(3) case and k−1

for the SU(2) case and, since we have k charge 1
2 minimal singularities in

SO(3) and k charge 1 minimal singularities in SU(2) the nonabelian charge
equals to one, as expected.

3.5 Removing the Singular Points

If we remove one of the singularities by sending ~νk → ∞, then Tk and
tk → ∞ and αk → 0. As a result α reduces to the expression for the case with
k−1 singularity, while all the terms associated with the removed singularity
vanish. This procedure relates a solution with k singularities to the solutions
with any lower number of singularities. In particular, removing all of the
singularities one recovers the original BPS limit of the ’t Hooft-Polyakov
monopole.

In order to compare to the solutions with one singularity [16] or two
singularities [15] it suffices to observe that in general

sinh 2αz =
1

2

1

P1 . . .Pk





k
∏

j=1

(Tj + tj + z) −
k

∏

j=1

(Tj + tj − z)



 , (33)

cosh 2αz =
1

2

1

P1 . . .Pk





k
∏

j=1

(Tj + tj + z) +

k
∏

j=1

(Tj + tj − z)



 . (34)

Using these our solutions with k = 1 or 2 reduce to those of [16] and [15].

4 Conclusions

The moduli space of the U(2) and SO(3) singular monopoles we found
here is the k-centered Taub-NUT space, while in the case of SU(2) sin-
gular monopole it is the 2k-centered Taub-NUT space with these centers
arranged into k degenerate pairs. As a result this space is singular with
k A1 singularities. Even though the moduli spaces of singular monopoles
were well studied explicit singular monopole solutions were scarce. The con-
ventional Nahm transform for singular monopoles was effective in obtaining
one monopole solutions with at most two singularities. It is substantially
more difficult to use it in order to obtain a monopole solution with arbi-
trary number of singularities. We are able to circumvent these difficulties
by employing the bow formalism. The resulting explicit singular monopole
solutions for U(2), SO(3), and SU(2) gauge groups are presented here and
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their properties analyzed. Our technique can be used to find explicitly the
charge (1, 1, . . . , 1) monopole in U(n) with any number of minimal singular-
ities.
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