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Abstract

We construct several Spin(7) holonomy metrics which admit a G2 holonomy reduction
along one isometry. The resulting G2 holonomy metrics admit a further reduction to
6-dimensional Kahler metrics, therefore realizing the pattern Spin(7) → G2 → (Kahler)
proposed in [26] and which describe an M-theory/IIA superstring duality. An infinite
class of such metrics are found, which are locally R3-fibrations over the Eguchi-Hanson
gravitational instanton and which, to our knowledge, were not considered in the litera-
ture before. Some of the supersymmetric cycles inside these metrics are characterized.
At the end the constructed G2 holonomy examples are lifted to a non geometrical IIA
supergravity solution.

1. Introduction

Spaces of special holonomy namely, G2 and Spin(7) holonomy, were the only two cases of
the Berger classification of the possible holonomy groups for Riemanian geometry [1] whose
existence was in doubt. This situation changed completely with the construction of explicit
non compact examples in [2]-[3] and the proof of the existence of compact ones given in [4]-[5].
Since the appearance of these works, further special holonomy metrics were found in [6]-[21].
These spaces are relevant for constructing supersymmetric solutions of supergravity theories
or vacuum solutions of superstring theories. For instance, in eleven dimensions in absence of
fluxes the backgrounds R1,2 × M8 or R1,3 × M7 are supersymmetric if M7 or M8 are of special
holonomy. Reduction to 4 or 3 dimensions gives N=1 supersymmetric theories. For heterotic
string theory these spaces also provide N=1 supersymmetry in 3 and 2 dimensions [27]. This
picture breaks down in presence of branes, and for this reason the study of compactifications
with fluxes is also of importance.

For another side, the present understanding of the dynamics of N=1 supersymmetric theories
relies partially in the existence of dual realizations of a given theory. For instance [23]-[24] it
was found that D6 branes of IIA superstring theory wrapping a supersymmetric cycle inside a
CY manifold are dual to M theory compactified on certain G2 manifold (see also [25]). More
recently dualities between D6 branes of IIA superstrings wrapping supersymmetric four cycles
(co-associative) of a G2 manifold and M theory on Spin(7) manifolds were studied in [26].
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This duality refers to N=1 theories in 3 dimensions. In addition it was considered in [26] the
analogous relation between IIA superstrings wrapping a special lagrangian sub-manifold of a
CY manifold and M-theory on G2 manifolds, and it was shown that under certain assumptions
the 6-metric in the string frame is Kahler. This realize a duality between N=1 four dimensional
theories. The interesting thing about both cases is that they relate a background with RR fluxes
(the IIA background) to one which is entirely geometrical (the M-theory one).

The pattern of dualities described above is the main motivation of the present work. In
principle, not every G2 manifold is related to 6 dimensional Kahler manifold by a Kaluza-Klein
reduction along an isometry. As it was shown in [20] that if a G2 manifold possess an isometry
preserving the G2 structure and admits a 6-dimensional Kahler reduction, then it has a second
isometry commuting with the first one. Thus this G2 metric is necessarily toric, and there
further conditions are to be satisfied. For another side one does not expect any G2 holonomy
metric to be toric or that this extra conditions would be identically satisfied. Therefore, this
kind of dualities should be realized only for an specific (though, by the results of [21] and [22],
infinite) class of G2 and Kahler metrics. The same considerations must be true for Spin(7)
and G2 pairs. Moreover, it is not evident whether or not the G2 metrics participating in the
(Kahler, G2) and (G2, Spin(7)) dualities are related. The interesting fact we prove here is that
any G2 metric admitting a Kahler reduction can be uplifted to an Spin(7) metric. We are not
in position at the moment to prove or reject the inverse statement. The conclusion is that the
set of G2 metrics participating in the Spin(7) duality is equal or bigger than the one for the
Kahler duality.

We are also able to construct an infinite class of sequences (Kahler)→ G2 →Spin(7) metrics
which arise as fibrations over the Eguchi-Hanson gravitational instanton. Such metrics are
parameterized in terms of an holomorphic function defined over a complex sub-manifold of the
Eguchi-Hanson manifold. We were not able to repeat the calculation for other hyperkahler
metrics, though it does not mean that this can not be done. It is interesting to note that the
Eguchi-Hanson instanton is the main ingredient to construct Ricci-flat metrics in K3 [33] or in
the construction of the G2 or Spin(7) compact manifolds of [4] and it happen also to be the
main ingredient in our construction. It is not clear (at least for the authors) if there is a deep
reason for this coincidence or not.

The present work is organized as follows. In section 2 a system of equations for uplifting a
given G2 holonomy metric to an Spin(7) one is found. Also a brief characterization of the G2

holonomy metrics which admit a Kahler reduction is given and it is shown that any of these
metrics can be uplifted to an Spin(7) one by means of the mentioned system of equations. In
section 3 some known examples of these G2 metrics [20]-[21] are reviewed and the uplifting to
Spin(7) metrics is presented explicitly. In section 4 the mentioned infinite family of Spin(7)
metrics fibered over the Eguchi-Hanson gravitational instanton is presented. By Kaluza-Klein
reduction along one of the isometries we obtain a non geometrical IIA background related to
the underlying G2 holonomy metrics.

2. Spin(7) metrics admitting G2 reductions

2.1 The defining equations

Our starting point is an 8-dimensional space M8 with metric

g8 = e6f (dz + A)2 + e−2fg7 (2.1)
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for which the 1-form A, the 7-metric g7 and the function f are independent on the coordinate z.
This condition means that V = ∂z is a local Killing vector, which induce a local decomposition
M8 = M7 × Rz if z is non compact or M8 = M7 × U(1)z if z is an angular coordinate. In the
following we will impose that g8 is of Spin(7) holonomy and that g7 is of G2 holonomy and we
will derive the consequences of this statement, with the further assumption that V = ∂z also
preserve the Spin(7) structure. The last assumption is for simplicity.

By defining the one form e8 = e3f (dz+A) one can decompose the Spin(7) equivariant 4-form
corresponding to g8 as

Ω8 = e8 ∧ Φ̃ + ∗Φ̃, (2.2)

being Φ̃ and ∗Φ̃ a pair of G2 invariant 3 and 4 forms for the metric e−2fg7. It is clear that
the 4-form (2.2) is preserved by V = ∂z as f is z-independent. Furthermore Φ̃ = e−3fΦ and
∗Φ̃ = e−4f ∗ Φ being Φ and ∗Φ certain G2 invariant 3 and 4 forms for the metric g7. The four
form (2.2) can be expressed in terms of Φ and ∗Φ as

Ω8 = (dz + A) ∧ Φ + e−4f ∗ Φ. (2.3)

As is well known g7 has holonomy in G2 if and only if dΦ = d ∗ Φ = 0. By assuming that this
is the case the Spin(7) condition dΩ8 = 0 gives the following system

F ∧ Φ + d(e−4f) ∧ ∗Φ = 0, (2.4)

being F = dA. By construction F is a closed two form.
Equation (2.4) constitutes an apparently simple method to lift a known starting G2 holon-

omy metric to an Spin(7) one, but is not obvious that for any G2 metric it will exist a non
trivial solution. Note also that this system do not classify completely all the Spin(7) metrics
admitting a G2 holonomy reduction. Even if dΦ = d ∗Φ 6= 0 there could exist a rotation of the
tetrad frame of g7 such that dΦ

′

= d ∗ Φ
′

= 0 for certain new calibration forms. In the present
work we will take a modest approach and we will just find several particular solutions of (2.4).
The G2 metrics from which we will start are an special class of G2 holonomy metrics which are
defined by admitting Kahler reductions [26], [21], [20] and [22].

2.2 G2 holonomy metrics admitting Kahler reductions

As was mentioned above, any Spin(7) metric with an isometry preserving the metric and the
calibration form induce a G2 structure which will not be closed, unless (2.4) is satisfied. Anal-
ogous consideration hold for G2 metrics with an isometry which preserve the calibration forms
Φ and ∗Φ. In this case a 6-dimensional SU(3) structure is induced [31] and if the associated
SU(3) structure is Kahler, then it admits another isometry which commute with the former
one [20]. Therefore any of such G2 metrics is toric from the very beginning. Also it is possible
to make a further reduction with respect to the second isometry and describe the seven and six
metrics as fibrations over certain Kahler 4-dimensional metric which we will specify below. 1

Let us describe schematically the local form of the G2 holonomy metrics in question, further
details can be found in the original reference [20]. These metrics possess the following local
form

g7 =
(dα + H2)

2

µ2
+ µ

(
u dµ2 +

(dβ + H1)
2

u
+ g4(µ)

)
. (2.5)

1Note that the uplifting of these metrics to 8 dimensions by (2.4) will give an Spin(7) metric with three
commuting isometries, as the initial metric is toric.
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All the quantities defining g7 are independent on the coordinates α and β, therefore (2.5) is toric
with Killing vectors ∂α and ∂β. The metric g4(µ) is Kahler and defined over a four manifold
M and it depends on µ as a parameter. It also admits a complex µ-independent symplectic
2-form Ω = ω2 + iω3, where being “symplectic” means that it is closed, dΩ = 0. On the other
hand, being “complex” implies that

ω2 ∧ ω2 = ω3 ∧ ω3, ω2 ∧ ω3 = 0, (2.6)

and that the equation
ω2(J1·, ·) = ω3(·, ·). (2.7)

define a complex structure J1. In other words, the Niejenhuis tensor of J1 vanishes identically or
equivalently J1 is integrable. The corresponding two form ω̃1(µ) in general will be µ dependent
and is also closed on M . The function u in (2.5) depends on the coordinates of M and on the
parameter µ, and is defined through the relation

2µ ω̃1(µ) ∧ ω̃1(µ) = u Ω ∧ Ω. (2.8)

This function always exists because the wedge products in (2.8) are proportional to the volume
form V (g4) of g4(µ). In fact

ω̃1(µ) ∧ ω̃1(µ) = V (g4)

The forms H1 and H2 are defined on M × Rµ and M respectively by the equations

dH1 = (dc
Mu) ∧ dµ +

∂ω̃1

∂µ
, dH2 = −ω2, (2.9)

with dc
M = J1dM . The last equation can always be solved locally as the forms ω̃1 and ω2 are

closed. The construction described in [20] states that if the quantities appearing in (2.5) are
related by the evolution equation

∂2ω̃1

∂2µ
= −dMdc

Mu, (2.10)

then the metric (2.5) will have G2 holonomy. This statement is not difficult to see. The
calibration 3-form corresponding to the metrics (2.5) is

Φ = ω̃1(µ) ∧ (dα + H2) + dµ ∧ (dβ + H1) ∧ (dα + H2)

+µ ( ω2 ∧ (dβ + H1) + uω3 ∧ dµ ) , (2.11)

and the dual form ∗Φ corresponding to (2.11) is given by [21]

∗Φ = µ2ω̃1(µ) ∧ dµ ∧ (dβ + H1) + uω2 ∧ (dα + H2) ∧ dµ

+ω3 ∧ (dβ + H1) ∧ (dα + H2) + µ2ω̃1(µ) ∧ ω̃1(µ). (2.12)

By means of (2.9), (2.10) and (2.8) it follows that dΦ = d ∗ Φ = 0.

Proof. Taking the exterior derivative of (2.11) gives

dΦ = dω̃1(µ) ∧ (dα + H2) + ω̃1(µ) ∧ dH2 + dµ ∧ dH1 ∧ (dα + H2) + dµ ∧ (dβ + H1) ∧ dH2

+du ∧ ( ω2 ∧ (dβ + H1) + uω3 ∧ dµ ) + µ ( ω2 ∧ dH1 + du ∧ ω3 ∧ dµ ) . (2.13)

4



As ω̃1 is closed on M we have that

dω̃1 = ∂µω̃1 ∧ dµ

Also the relation ω̃1 ∧ ω2 = 0 and the µ-independence of ω2 imply that

∂µω̃1 ∧ ω2 = 0.

Inserting the last two equalities into (2.13) and taking into account (2.6) and (2.9) gives

dΦ = ∂µω̃1(µ) ∧ dµ ∧ (dα + H2) + dµ ∧ dH1 ∧ (dα + H2) − dµ ∧ (dβ + H1) ∧ ω2

+dµ ∧ ( ω2 ∧ (dβ + H1) + uω3 ∧ dµ ) + µ ( ω2 ∧ dc
Mu ∧ dµ + d4u ∧ ω3 ∧ dµ ) . (2.14)

The first two terms cancel by virtue of the first of (2.6). The third and the four terms cancel
identically. The fifth is identically zero as it contains dµ twice. Now, the definition of J1 given
in (2.7) implies that

ω2 ∧ A = −ω3 ∧ J1A

being A any 1-form. In particular by taking A = d4u and remembering that dc
4 = J1d4 it is

obtained that the last two terms in (2.14) cancel, thus dΦ = 0. An analogous calculation shows
that d ∗ Φ = 0. Q. E. D.

The G2 metrics (2.5) are fibered over the six dimensional metric

g6 = u dµ2 +
(dβ + H1)

2

u
+ g4(µ), (2.15)

which is Kähler with Kähler form

K = (dβ + H1) ∧ dµ + ω̃1. (2.16)

The condition to be Kahler is usually referred as the “strong supersymmetry condition” in the
physical literature [26]. The converse of this statement is also true. That is, for given a G2

holonomy manifold Y with a metric g7 possessing a Killing vector that preserves the calibration
forms Φ and ∗Φ and such that the six-dimensional metric g6 obtained from the orbits of the
Killing vector is Kähler, then there exists a coordinate system in which g7 takes the form (2.5)
being g4(µ) a one-parameter four-dimensional metric admitting a complex symplectic structure
Ω and a complex structure J1, being the quantities appearing in this expression related by (2.7)
and the conditions (2.9), (2.10) and (2.8). This is the most involved part of the proofs and we
refer the reader to the original reference [20].

Note that the Killing vector fields preserve the metric and Φ, therefore preserve ∗Φ and
thus the whole G2 structure. Another interesting fact is that

∗Φ|M = V (g4),

therefore the Kahler base g4 is a co-associative sub-manifold . In the same way for fixed value
of the coordinates of g4 one obtains from (2.5) the three dimensional metric

g3 =
dα2

µ2
+ u dµ2 + µ

dβ2

u
. (2.17)

defined on certain space M3, and it follows that

∗Φ|M3
= V (g3),

therefore M3 is an associative sub-manifold. These are calibrated sub-manifolds [35] and are
supersymmetric from the physical point of view [36].
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2.3 Uplifting to Spin(7) metrics

In this subsection we show that any of the G2 holonomy metrics (2.5) described above can
be uplifted to an Spin(7) holonomy one by means of the uplifting formula (2.4). The two
form appearing in the equation F = dA must be closed. As we have a the sympletic form
Ω = ω2 + iω3 and it is seen from (2.9) that dH2 = −ω2 the most natural anzatz is to put

F = dA = −ω3. (2.18)

The system (2.4) reduce in this case to

ω3 ∧ Φ = d(e−4f ) ∧ ∗Φ. (2.19)

From (2.12) it follows that the right hand of (2.19) is

d(e4f ) ∧ ∗Φ = d(e−4f) ∧
(
µ2ω̃1(µ) ∧ dµ ∧ (dβ + H1) + uω2 ∧ (dα + H2) ∧ dµ

+ω3 ∧ (dβ + H1) ∧ (dα + H2) + µ2ω̃1(µ) ∧ ω̃1(µ)
)

(2.20)

The left hand side is obtained from (2.11) and is

ω3 ∧ Φ = ω̃1(µ) ∧ (dα + H2) ∧ ω3 + dµ ∧ (dβ + H1) ∧ (dα + H2) ∧ ω3

+µ ( ω2 ∧ (dβ + H1) + uω3 ∧ dµ ) ∧ ω3 (2.21)

But from (2.8) we see that ω2 ∧ ω3 = ω̃1 ∧ ω3 = 0 and also that

µuω3 ∧ ω3 = µ2ω̃1 ∧ ω̃1.

With these relations (2.21) get simplified as

ω3 ∧ Φ = dµ ∧
(
(dβ + H1) ∧ (dα + H2) ∧ ω3 + µ2ω̃1 ∧ ω̃1

)
(2.22)

Equating (2.22) to (2.20) gives the equation

d(e−4f) ∧ dµ ∧
(
µ2ω̃1(µ) ∧ (dβ + H1) − uω2 ∧ (dα + H2)

)

+d(e−4f) ∧
(
ω3 ∧ (dβ + H1) ∧ (dα + H2) + µ2ω̃1(µ) ∧ ω̃1(µ)

)
(2.23)

= dµ ∧
(
ω3 ∧ (dβ + H1) ∧ (dα + H2) + µ2ω̃1(µ) ∧ ω̃1(µ)

)

The solution of this system is immediate. If d(e−4f ) = dµ the two first terms of the left hand
side vanishes and the two last ones equal to the right hand side. We choose then e−4f = aµ + b
and our Spin(7) metrics become

g8 =
(dz + H3)

2

(aµ + b)3/2
+ (aµ + b)1/2g7 (2.24)

being dH3 = −ω3 and g7 the G2 holonomy metrics described in the previous section. The
metrics (2.24) are an infinite family of Spin(7) metrics admitting G2 reductions, realizing the
pattern described in [26]. The reason for which the family is infinite is because the G2 family
over which are fibered is also infinite [20], [21].
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3. Explicit Spin(7) examples

3.1 Two different ramifications

As the Spin(7) metrics (2.24) are completely determined in terms of the G2 metric g7, the
task to find them has been reduced to solve equations (2.7)-(2.9) defining the G2 geometry
together with the new condition dH3 = −ω3. A simple solution is obtained by assuming that
the function u does not depends on the coordinates of M but only on the coordinate µ. Then it
is obtained from (2.10) that ω̃1 = (cµ+d)ω1 being ω1 independent on µ. As ω̃1 is closed on M4

it follows that d4ω1 = 0. This means that if one starts with an hyperkahler triplet ωi of some
hyperkahler manifold M all the conditions (2.5)-(2.9) are solved except (2.8), which becomes
then an algebraic equation defining u. The solution is u = µ(cµ + d)2. Also g4(µ) = (cµ + d)g4

being g4 the hyperkahler metric corresponding to ωi. The resulting 7-metrics (2.5) have the
following expression

g7 =
(dα + H2)

2

µ2
+

(dβ + H1)
2

(cµ2 + d)2
+ µ2(cµ + d)2 dµ2 + µ(cµ + d)g4. (3.25)

Moreover the equations (2.9) are in this case

dH1 = ω1, dH2 = −ω2. (3.26)

These metrics are usually well behaved away from the point µ = 0 or µ = −b/a if b/a < 0.
The second type of solutions corresponds to the case when u depends on µ and also varies

on M . This case is more hard but still we will find below several of these solutions. Consider
as before an hyperkahler structure ωi with its Ricci flat metric g4 and make an anzatz for ω̃1(µ)
of the form

ω̃1(µ) = ω1 − d4d
c
4G, (3.27)

being G a function on M×Rµ. With this anzatz equations (2.6) and (2.7) are satisfied. Inserting
it into the evolution equation (2.10) gives

∂2
µG = 2u, (3.28)

therefore u is determined in terms of G. The equation for G is found from (2.9). The relation

ω̃1(µ) ∧ ω̃1(µ) = (ω1 − d4d
c
4G) ∧ (ω1 − d4d

c
4G) = M(G)ω1 ∧ ω1 (3.29)

defines a non linear operator M(G) called Monge-Ampere operator. This operator always exist
as all the expressions in (3.29) are proportional to the volume form of g4(µ). In terms of M(G)
the insertion of (3.28) into (2.9) gives

2µM(G) = ∂2
µG, (3.30)

which is the equation defining G. Also, from (2.10) it follows that

H1 = −dc
4∂µG (3.31)

It should be remarked that metric tensor g4(µ) in (2.5) is not the hyperkahler metric g4 in
general. If K denote the Kahler potential corresponding to ω1 then the metric g4(µ) is the one
which corresponds to the modified Kahler potential K = K − G. This metric will be Kahler,
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but not necessarily hyperkahler. Equations (3.28)-(3.31) define a new family of G2 metrics and
all the objects defining the metric are related essentially to a single function G satisfying (3.30).

The difficulty in solving the previous equations reside in the non linearity of the Monge
Ampere operator M(G), due to the presence of the term d4d

c
4G ∧ d4d

c
4G. But in the special

cases in which
d4d

c
4G ∧ d4d

c
4G = 0, (3.32)

it is obtained that [20]
M(G) = 1 + ∆4G

being ∆4 the laplacian over the starting hyperkahler metric g4. This happens when the function
G is defined over a complex sub-manifold on the hyperkahler manifold M [32]. Perhaps is better
to express this in other words. The starting hyperkahler structure ωi is obviously Kahler, thus
M is complex and parameterized in terms of certain complex coordinates (z1, z2) and their
complex conjugates. The equation (3.32) will be satisfied if for the complex coordinate system
zi which diagonalize J1, the function G is of the form G = G(w, w) being w a single complex
function of the zi and w its complex conjugate. The equation (3.30) will be reduced to

2µ(1 + ∆4G) = ∂2
µG. (3.33)

The advantage of imposing this condition is that one has to solve a Laplace type equation
instead a non linear one, though to find solutions of a Laplace equation in a curved space is
not easy in general.

3.2 Simple known examples

Both type of solutions described above are constructed starting with an hyperkahler structure.
It will be convenient to consider simple examples first. The simplest hyperkahler manifold is
R4 with its flat metric g4 = dx2 + dy2 + dz2 + dς2 and with the closed hyperkahler triplet

ω1 = dς ∧ dy − dz ∧ dx, ω2 = dς ∧ dx − dy ∧ dz, ω3 = dς ∧ dz − dx ∧ dy.

This innocent looking case is indeed very interesting. The forms Hi such that dHi = ωi are
given by

H1 = −xdz + ydς, H2 = −ydz + xdς, H3 = −ydx + zdς (3.34)

and by selecting c = 1 and d = 0 in (3.25) the resulting G2 metric is

g7 =
(dα − xdz + ydς)2

µ2
+

(dβ − ydz − xdς)2

µ2
+ µ4 dµ2 + µ2 ( dx2 + dy2 + dz2 + dς2 ). (3.35)

The metrics (3.35) have been already obtained in the physical literature [19]. Even in this
simple case and though the base 4-metric has trivial holonomy, it has been shown that (3.35)
is irreducible and has holonomy exactly G2, not a subgroup.

Turning on the attention to the second ramification, a possible choice of complex coordinates
for R4 is z1 = x + iy, z2 = z + iς and complex conjugates. If the functional dependence the
function G is assumed to G = G(µ, z1, z1) then the Monge-Ampere operator M(G) reduce to
the laplacian operator in flat space

G′′ + µ(∂xxG + ∂yyG) = 2µ. (3.36)
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The separable solutions in the variable µ are of the form

G =
1

3
µ3 + V (x, y)K(µ).

By introducing G = G(µ, x, y) into (3.36) it follows that K(µ) and V (x, y) are solutions of the
equations

K ′′(µ) = p µ K(µ), ∂xxV + ∂yyV + p V = 0, (3.37)

being p a parameter. By defining the µ̃ = µ/p1/3 the first of the equations (3.37) reduce to the
Airy equation. The second is reduced to find eigenfunctions of the two dimensional Laplace
operator, which is a well known problem in electrostatics. For p > 0 periodical solutions are
obtained and for p < 0 there will appear exponential solutions.

A simple example is given by the eigenfunction V = q sin(p x), being q a constant. A
solution of the Airy equation is given by

K = Ai(µ̃) =
1

3
µ̃1/2(J1/3(τ) + J−1/3(τ)), τ = i

2 µ3/2

3 p1/2
.

Then the function G is

G =
1

3
µ3 + q sin(p x)Ai(

µ

p1/3
),

From (3.31) it is obtained that

H1 = −p qAi(µ̃)′ cos(p x)dy, u = µ(1 + p q Ai(µ̃) sin(p x)). (3.38)

g4(µ) =
u

µ
(dx2 + dy2) + dz2 + dς2

By defining the new function H(µ, x, y) = (1 + p q Ai(µ̃) sin(p x)) it is obtained the following
G2 holonomy metric [20]

g7 =
(dχ − xdz + ydς)2

µ2
+

(dυ − p qAi(µ̃)′ cos(p x)dy)2

H
+µ ( Hdx2+Hdy2+dz2+dς2 )+µ2H dµ2.

(3.39)
Again the metric is known to have holonomy exactly G2 [20].

The corresponding Spin(7) metrics are obtained from (2.24) and (3.34), and are given by

g8 =
(dz + ydx − zdς)2

(aµ + b)3/2
+ (aµ + b)1/2g7 (3.40)

being g7 any of (3.39) or (3.35). The curvature tensor is irreducible for these metrics and the
holonomy is not reduced to a subgroup.

4. Two fibrations over the Eguchi-Hanson gravitational

instanton

In this section the solutions of the two ramifications described previously when the starting
hyperkahler metric is the Eguchi-Hanson gravitational instanton [28] will be constructed. As
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is well known this is an hyperkahler metric with a the Killing vector which is tri-holomorphic,
namely, one satisfying

LKω1 = LKω2 = LKω3 = 0.

For any metric admitting a tri-holomorphic Killing vector ∂t there exists a coordinate system
in which it takes generically the Gibbons-Hawking form [37]

g = V −1(dt + A)2 + V dxidxjδ
ij, (4.41)

with a 1-form A and a function V satisfying the linear system of equations

∇V = ∇× A. (4.42)

These metrics are hyper-Kähler with respect to the hyper-Kähler triplet

ω1 = (dt + A) ∧ dx − V dy ∧ dz

ω2 = (dt + A) ∧ dy − V dz ∧ dx (4.43)

ω3 = (dt + A) ∧ dz − V dx ∧ dy

which is actually t-independent. The Eguchi-Hanson solution corresponds to take two monopoles
on the z axis. Without losing generality, it can be considered that the monopoles are located
in the positions (0, 0,±c). The potentials for this configurations are

V =
1

r+

+
1

r−
, A = A+ + A− =

(
z+

r+

+
z−
r−

)
d arctan(y/x), r2

±
= x2 + y2 + (z ± c)2.

This case corresponds to the Eguchi-Hanson instanton, whose metric, in Cartesian coordinates,
reads

g =

(
1

r+
+

1

r−

)−1 (
dτ +

(
z+

r+
+

z−
r−

)
d arctan(y/x)

)2

+

(
1

r+
+

1

r−

)
( dx2 + dy2 + dz2 ),

(4.44)
where z± = z ± c. In order to recognize the Eguchi-Hanson metric in its standard form it is
convenient to introduce a new parameter a2 = 8c, and the elliptic coordinates defined by [30]

x =
r2

8

√
1 − (a/r)4 sin ϕ cos θ, y =

r2

8

√
1 − (a/r)4 sin ϕ sin θ, z =

r2

8
cos ϕ.

In this coordinate system it can be checked that

r± =
r2

8

(
1 ± (a/r)2 cos ϕ

)
, z± =

r2

8

(
cos ϕ ± (a/r)2

)
, V =

16

r2

(
1 − (a/r)4 cos2 ϕ

)−1
,

A = 2
(
1 − (a/r)4 cos2 ϕ

)−1 (
1 − (a/r)4

)
cos ϕ dθ,

and, with the help of these expressions, it is found

g =
r2

4

(
1 − (a/r)4

)
( dθ + cos ϕdτ )2 +

(
1 − (a/r)4

)−1
dr2 +

r2

4
( dϕ2 + sin2 ϕdτ ) (4.45)

This is actually a more familiar expression for the Eguchi-Hanson instanton, indeed. Its isom-
etry group is U(2) = U(1) × SU(2)/Z2. The holomorphic Killing vector is ∂τ . This space is
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asymptotically locally Euclidean (ALE), which means that it asymptotically approaches the
Euclidean metric; and therefore the boundary at infinity is locally S3. However, the situation
is rather different in what regards its global properties. This can be seen by defining the new
coordinate

u2 = r2
(
1 − (a/r)4

)

for which the metric is rewritten as

g =
u2

4
( dθ + cos ϕdτ )2 +

(
1 + (a/r)4

)−2
du2 +

r2

4
( dϕ2 + sin2 ϕdτ ). (4.46)

The apparent singularity at r = a has been moved now to u = 0. Near the singularity, the
metric looks like

g ' u2

4
( dθ + cos ϕdτ )2 +

1

4
du2 +

a2

4
( dϕ2 + sin2 ϕdτ ),

and, at fixed τ and ϕ, it becomes

g ' u2

4
dθ2 +

1

4
du2.

This expression “locally” looks like the removable singularity of R2 that appears in polar co-
ordinates. However, for actual polar coordinates, the range of θ covers from 0 to 2π, while in
spherical coordinates in R3, 0 ≤ θ < π. This means that the opposite points on the geometry
turn out to be identified and thus the boundary at infinite is the lens space S3/Z2.

The known example

The task to find the G2 metrics (3.25) corresponding to the Eguchi-Hanson metric was
already solved in [21]. The result is

g7 =
(dα + H2)

2

µ2
+

(dβ + H1)
2

(cµ2 + d)2
+ µ2(cµ + d)2 dµ2 + µ(cµ + d)g4 (4.47)

being g4 the Eguchi-Hanson metric described above and the forms Hi are such that dHi = ωi,
being ωi given by (4.43). Their explicit expression is [21]

H1 = −x dτ + (log(r+ + z+) + log(r− + z−)) dy − 2a x d arctan(y/x), (4.48)

H2 = +y dτ + (log(r+ + z+) + log(r− + z−)) dx + 2a y d arctan(y/x), (4.49)

H3 = −zdτ − a ( r+ + r− ) d arctan(y/x). (4.50)

The corresponding uplift to Spin(7) follows immediately from (4.47) and (2.24).

The new examples

Here we find a solution of the second ramification which, to our knowledge, was not worked
out before in the literature. It will be convenient to define a new coordinate ρ = r2/4 for which
the Eguchi-Hanson metric (4.45) takes the form

gEH =
ρ

ρ2 − a2
dρ2 + ρ(σ2

1 + σ2
2) +

ρ2 − a2

ρ
σ2

3 (4.51)

11



being

σ1 =
1

2
(cos θdϕ + sin θ sin ϕdτ),

σ2 =
1

2
(− sin θdϕ + cos θ sin ϕdτ),

σ3 =
1

2
(dθ + cos ϕdτ).

The problem is now to find a function G satisfying the laplace type equation (3.33) and the
condition (3.32) on the curved space (4.51). As this function is necessarily defined on a complex
sub-manifold it will be necessary to find a complex coordinate system for (4.51). A well known
coordinate system is the one which diagonalize the complex structure J3 corresponding to the
Kahler form

ω3 = e0 ∧ e3 − e1 ∧ e2,

being ei the basis for (4.51) defined by

e0 =

√
ρ

ρ2 − a2
dρ, e1,2 =

√
ρσ1,2, e3 =

√
ρ2 − a2

ρ
σ3.

These coordinates are [29]

z1 = (ρ2 − a2)1/4 cos(
ϕ

2
) exp(i

θ + τ

2
),

z2 = (ρ2 − a2)1/4 sin(
ϕ

2
) exp(i

θ − τ

2
). (4.52)

The Eguchi-Hanson metric (4.51) expressed in this coordinates is

g11 =
ρ2|z2|2 + η2|z1|2

ρη2
,

g22 =
ρ2|z1|2 + η2|z2|2

ρη2
, (4.53)

g12 =
η2 − ρ2

ρη2
z2z1,

which is symmetric under the interchange z1 ↔ z2. We have denoted η = |z1|2 + |z2|2 =√
ρ2 − a2. The advantage to consider these coordinates becomes clear when calculating the

laplacian

∆EH =
1

√
det(g)

∂i(
√

det(g)gij∂j),

In this coordinates det(g) = 1 and the inverse metric is simply

g11 = g22, g22 = g11, g12 = −g21.

Moreover, after certain calculation is obtained that

∂1(g
11) = −∂2(g

21), ∂1(g
11) = −∂2(g

21).

12



The last equalities are more easily checked by using Mathematica than by hand. By virtue of
them it follows that the action of the laplacian acting on a function U(z1, z1) is

∆EHU = g11∂1∂1U. (4.54)

For the linearization of the Monge-Ampere equation (3.30) to work the dependence of G with
respect to the complex coordinates should be of the form G = G(w, w) being w = w(z1, z2) an
holomorphic function of z1 and z2. We assume that w(z1, z2) = z1 in order to apply the simple
expression (4.54) for the laplacian. Then G = G(µ, z1, z1) and the equation (3.33) becomes

µ(1 + g11∂1∂1G) = ∂2
µG. (4.55)

But g11 is a function of z2 and G, by assumption, is not. In consequence

∂1∂1G = 0,

which together with (4.55) implies that

∂2
µG = µ.

The most general solution G of (4.55) is simply

G =
µ3

3
+ µ

(
F (z1) + F (z1)

)
+ H(z1) + H(z1), (4.56)

being F and H functions on the complex coordinate z1 and F and H their complex conjugated.
Once the solution G is found, it is direct to construct the corresponding G2 and Spin(7)

metrics. From (3.28) and (4.56) it follows that

u =
µ

2
.

Also
d4 = ∂zi

dzi + ∂zi
dzi, dc

4 = i∂zi
dzi − i∂zi

dzi

and the action of these operators over (4.56) gives

d4d
c
4G = 0.

From (3.27) and the last equation it is seen that

ω̃1(µ) = ω1,

and in this case g4 = g4 will coincide with the Eguchi-Hanson metric gEH. From (3.31) it is
obtained that

H1 = iµ(F
′

dz1 − F
′

dz1) + i(H
′

dz1 − H
′

dz1) = =
(
(µF

′

+ H
′

)dz1

)
(4.57)

which takes real values. Here ’ means the derivative with respect to the argument. With all
the quantities described above the corresponding G2 and Spin(7) metrics are easily read from
(2.5) and (2.24). By redefining dβ by a total differential the resulting G2 metric is

g7 =
µ2

2
dµ2 + (dβ + =(F )dµ)2 +

(dα + H2)
2

µ2
+ µ gEH, (4.58)
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and the Spin(7) one is

g8 =
(dz + H3)

2

(aµ + b)3/2
+ (aµ + b)1/2

(
µ2

2
dµ2 + 2(dβ + =(F )dµ)2 +

(dα + H2)
2

µ2
+ µ gEH

)
, (4.59)

where H1 and H2 are any of (4.48) or (4.49).
It is worthy to check if the metrics constructed above has a signature change problem or

not. By defining the proper coordinate τ = µ2/2 the G2 metric (4.58) becomes

g7 = dτ 2 +
(τdβ + =(F )dτ)2

τ
+

(dα + H2)
2

τ
+ τ 1/2gEH, (4.60)

and we see from the square root that τ take positive values and there is no change in the
signature. Also, by selecting a = 1, b = 0 in the Spin(7) metric and defining η = µ9/4 it is
obtained the following expression

g8 = dη2 +
(η5/9dβ + =(F )dη)2

η8/9
+

(dz + H3)
2

η2/3
+

(dα + H2)
2

η2/3
+ η2/3gEH (4.61)

for (4.59) and in this case the powers of η are all even and there is not signature change problem
as η goes from positive to negative values.

The metrics (4.59) and (4.58) depend on an arbitrary choice of an holomorphic function
F (z1). This is the only freedom to construct them. In fact both metrics arise as an Rβ-
fibration and by reduction along this isometry the same 6 or 7 dimensional metric is obtained.
The function F indicate how the uplift of these 6 or 7 dimensional metrics to a G2 or Spin(7)
holomy one is performed. Therefore (4.59) and (4.58) describe an infinite family of special
holonomy metrics.

To conclude, we mention that the metrics (4.61) can be extended to a purely geometrical
solution of 11 dimensional supergravity of the form

g11 = g(1,2) + g8, (4.62)

and of course with all the other fields equal to zero. With respect to the isometry generated
by z this metric can be rewritten in the IIA form

g11 = e−φg10 + e2φ(dz + H3)
2, (4.63)

where the dilaton φ is defined through the relation e2φ = η−2/3. The usual reduction to ten
dimensions gives

gIIA = η1/3g(1,2) + η−1/9g7, F = ω3, (4.64)

being g7 the G2 holonomy metric. Then the seven dimensional internal part of the background
(4.64) is conformal to the G2 metric. This is in agreement with the results of [26]. The same
consideration will follow for all the Spin(7) metrics constructed here. We would like also to
mention that our metrics are probably non conical, therefore not suitable for studying com-
pactifications giving chiral matter or non trivial gauge groups [38]. Nevertheless there exist
several contexts in which the conical property does not have special relevance [39]-[57] and in
which the construction of these metrics could be of interest.
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