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Abstract. A system of singularly perturbed ordinary differential equations of first order with
given initial conditions is considered. The leading term of each equation is multiplied by a small
positive parameter. These parameters are assumed to be distinct and they determine the different
scales in the solution to this problem. A Shishkin piecewise–uniform mesh is constructed, which
is used, in conjunction with a classical finite difference discretization, to form a new numerical
method for solving this problem. It is proved that the numerical approximations obtained from this
method are essentially first order convergent uniformly in all of the parameters. Numerical results
are presented in support of the theory.
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1. Introduction. We consider the initial value problem for the singularly per-
turbed system of linear first order differential equations

E~u′(t) + A(t)~u(t) = ~f(t), t ∈ (0, T ], ~u(0) given(1.1)

Here ~u is a column n-vector, E and A(t) are n × n matrices, E = diag(~ε), ~ε =
(ε1, . . . , εn) with 0 < εi ≤ 1 for all i = 1 . . . n. For convenience we assume the
ordering

ε1 < . . . < εn

These n distinct parameters determine the n distinct scales in this multiscale problem.
Cases with some of the parameters coincident are not considered here. We write the
problem in the operator form

~L~u = ~f, ~u(0) given

where the operator ~L is defined by

~L = ED + A(t) and D =
d
dt

We assume that, for all t ∈ [0, T ], the components aij(t) of A(t) satisfy the inequalities

aii(t) >

n∑
j 6=i
j=1

|aij(t)| for i = 1, . . . , n, and aij(t) ≤ 0 when i 6= j.(1.2)

We take α to be any number such that

0 < α < min
t∈(0,1]
1≤i≤n

(
n∑

j=1

aij(t))(1.3)
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We also assume that T ≥ 2maxi(εi)/α, which ensures that the solution domain
contains all of the layers. This condition is fulfilled if, for example, T ≥ 2/α. We
introduce the norms ‖ ~V ‖= max1≤k≤n |Vk| for any n-vector ~V , ‖ y ‖= sup0≤t≤T |y(t)|
for any scalar-valued function y and ‖ ~y ‖= max1≤k≤n ‖ yk ‖ for any vector-valued
function ~y. Throughout the paper C denotes a generic positive constant, which is
independent of t and of all singular perturbation and discretization parameters.
The initial value problems considered here arise in many areas of applied mathematics;
see for example [1]. Parameter uniform numerical methods for simpler problems of
this kind, when all the singular perturbation parameters are equal, were considered in
[4]. A special case of the present problem with n = 3 was considered in [3] A general
introduction to parameter uniform numerical methods is given in [2] and [7].

2. Analytical results. The operator ~L satisfies the following maximum princi-
ple

Lemma 2.1. Let A(t) satisfy (1.2) and (1.3). Let ~ψ(t) be any function in the
domain of ~L such that ~ψ(0) ≥ 0. Then ~L~ψ(t) ≥ 0 for all t ∈ (0, T ] implies that
~ψ(t) ≥ 0 for all t ∈ [0, T ].

Proof: Let i∗, t∗ be such that vi∗(t∗) = mini,t vi(t) and assume that the lemma is
false. Then vi∗(t∗) < 0 . From the hypotheses we have t∗ 6= 0 and v′i∗(t

∗) ≤ 0. Thus

(~L~v(t∗))i∗ = εi∗v
′
i∗(t

∗) + ai∗,i∗(t∗)vi∗(t∗) +
n∑

j=1 j 6=i∗
ai∗,j(t∗)vj(t∗)

< vi(t∗)
n∑

j=1 j 6=i∗
ai∗,j < 0

which contradicts the assumption and proves the result for ~(L).
Let A′(t) be any principal sub-matrix of A(t) and ~L′ the corresponding operator.

To see that any ~L′ satisfies the same maximum principle as ~L, it suffices to observe
that the elements of A′(t) satisfy a priori the same inequalities as those of A(t).

We remark that the maximum principle is not necessary for the results that follow,
but it is a convenient tool in the analysis that follows.

Lemma 2.2. Let A(t) satisfy (1.2) and (1.3). If ~ψ(t) is any function in the
domain of ~L such that ~ψ(0) ≥ 0, then

‖ ~ψ(t) ‖≤ max
{
‖ ~ψ(0) ‖, 1

α
‖ ~L~ψ ‖

}
, t ∈ [0, T ]

Proof: Define the two functions

~ψ±(t) = max{||~v(0)||, 1
α
||~L~v||}~e± ~v(t)

where ~e = (1, . . . , 1)′ is the unit column vector. Using the properties of A it is not
hard to verify that ~ψ±(0) ≥ 0 and ~L~ψ±(t) ≥ 0. It follows then from Lemma 2.1 that
~ψ±(t) ≥ 0 for all t ∈ [0, T ]. This completes the proof.

The Shishkin decomposition of the solution ~u of (1) is given by ~u = ~v + ~w where
~v is the solution of ~L~v = ~f on (0, T ] with ~v(0) = A−1(0)~f(0) and ~w is the solution
of ~L~w = ~0 on (0, T ] with ~w(0) = ~u(0)−~v(0). Here ~v , ~w are, respectively, the smooth
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and singular components of ~u .
Bounds on the smooth component ~v of ~u and its derivatives are contained in

Lemma 2.3. Let A(t) satisfy (1.2) and (1.3). Then there exists a constant C,
independent of ε, ~u(0) and ~f , such that

‖ ~v ‖≤ C ‖ ~f ‖, ‖ ~v′ ‖≤ C(‖ ~f ‖ + ‖ ~f ′ ‖)

and, for all 1 ≤ i ≤ n,

‖ εiv
′′
i ‖≤ C(‖ ~f ‖ + ‖ ~f ′ ‖)

Proof: We introduce the two functions ~ψ±(t) = C||~f ||~e± ~v(t) where ~e is the unit
column vector. Noting that ~v(0) = A−1(0)~f(0), it is not hard to see that ~ψ±(0) ≥ 0
and ~L~ψ±(t) ≥ 0. It follows from Lemma 2.1 that ~ψ±(t) ≥ 0 for all t ∈ [0, T ] and
so ‖ ~v ‖≤ C ‖ ~f ‖. To estimate the derivative we now define the two functions
~φ±(t) = C(||~f ||+ ||~f ′||)~e±~v(t). Since ~v′(0) = 0 and ~L~v′ = ~f ′−A′~v, it may be verified
that ~φ±(0) ≥ 0 and ~L~φ±(t) ≥ 0. Again by Lemma 2.1 we have ~φ±(t) ≥ 0, which
proves the result. Finally, differentiating the equation εiv

′
i +(A~v)i = fi and using the

estimates of ~v and ~v′, we obtain the required bound on εiv
′′
i .

We define the layer functions Bi, i = 1, . . . , n, associated with the solution ~u by

Bi(t) = e−αt/εi , t ∈ [0,∞).

The following elementary properties of the layer functions, for all 1 ≤ i < j ≤ n,
should be noted:
(i) Bi(t) < Bj(t), for all t > 0.
(ii) Bi(s) > Bi(t), for all 0 ≤ s < t < ∞.
(iii) Bi(0) = 1 and 0 < Bi(t) < 1 for all t > 0.
Bounds on the singular component ~w of ~u and its derivatives are contained in

Lemma 2.4. Let A(t) satisfy (1.2) and (1.3).Then there exists a constant C, such
that, for each t ∈ [0, T ] and i = 1, . . . , n,

|wi(t)| ≤ CBn(t)
|w′i(t)| ≤ C

[
ε−1

i Bi(t) + · · ·+ ε−1
n Bn(t)

]

|εiw
′′
i (t)| ≤ C

[
ε−1
1 B1(t) + . . . + ε−1

n Bn(t)
]

Proof: First we obtain the bound on ~w. We define the two functions ~ψ± =
CBn~e ± ~w. Then clearly ~ψ± ≥ 0 and L(ψ±) = CL(Bn~e). Then, for i = 1, . . . , n,
(L~ψ±)i = C(

∑n
j=1 αi,j −α εi

εn
)Bn > 0. By the Lemma 2.1 ~ψ± ≥ 0, which leads to the

required bound on ~w.
To establish the bound on ~w′ we begin with the nth equation in ~L~w = 0, namely

εnw′n + an,1w1 + . . . + an,nwn = 0

from which the bound for i = n follows. We now bound w′i for i = 1, . . . , n − 1. We
define ~p = (w1, . . . , wn−1) and, taking the first n − 1 equations satisfied by ~w, we
get Ã~p = ~g where Ã is the principal sub-matrix obtained from A by deleting its last
row and last column and ~g is given by gj = −aj,nwn, 1 ≤ j ≤ n. Using the bounds
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already obtained for ~w we see that ~g is bounded by CBn(t) and its derivative by
C Bn(t)

εn
. The initial condition for ~p is ~p(0) = ~u(0)− ~u0(0) where ~u0 is the solution of

the reduced problem ~u0 = A−1 ~f . The initial condition for ~p is therefore bounded by
C(‖ ~u(0) ‖ + ‖ ~f(0) ‖). Decomposing ~p into smooth and singular components we get

~p = ~q + ~r, ~p′ = ~q′ + ~r′

Applying Lemma 2.3 to ~q, from the bounds on the inhomogeneous term ~g and its
derivative ~g′, we conclude that ‖ ~q′(t) ‖≤ C Bn(t)

εn
. We now use mathematical induc-

tion. We assume that Lemma 2.4 holds for all systems with n − 1 equations. Then
Lemma 2.4 applies to ~r and so for i = 1, . . . , n− 1

|r′i(t)| ≤ C(
Bi(t)

εi
+ . . . +

Bn−1(t)
εn−1

)

Combining the bounds for qi and ri we obtain

|p′i(t)| ≤ C(
Bi(t)

εi
+ . . . +

Bn(t)
εn

)

Recalling the definition of ~p this is the same as

|w′i(t)| ≤ C(
Bi(t)

εi
+ . . . +

Bn(t)
εn

)

We have thus proved that Lemma 2.4 holds for our system with n equations. Since
Lemma 2.4 is true for a system with one equation, we conclude by mathematical
induction that it is true for any system of n > 1 equations.

Finally, to estimate the second derivative, we differentiate the ith equation of the
system ~L~w = 0 to get

εkw′′i = −(A~w′i + A′ ~w)i

and we see that the bound on w′′i follows easily from the bounds on ~w and ~w′.

Definition 2.5. For each 1 ≤ i 6= j ≤ n we define the point ti,j by

Bi(ti,j)
εi

=
Bj(ti,j)

εj
(2.1)

In the next lemma it is shown that these points exist, are uniquely defined and have
an interesting ordering. Sufficient conditions for them to lie in the domain [0, T ] are
also provided.

Lemma 2.6. For all i, j with 1 ≤ i < j ≤ n the points ti,j exist, are uniquely
defined and satisfy the following inequalities

ε−1
i Bi(t) > ε−1

j Bj(t) t ∈ [0, tij)(2.2)

ε−1
i Bi(t) < ε−1

j Bj(t) t ∈ (tij ,∞)(2.3)

In addition the following ordering holds

ti,j < ti+1,j , if i + 1 < j and ti,j < ti,j+1, if i < j(2.4)
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and

εi ≤ εj/2 implies that tij ∈ (0, T ] for all i < j(2.5)

Proof:Existence, uniqueness, (2.2) and (2.3) all follow from the observation that for
i < j we have εi < εj and the ratio of the two sides of (2.1), namely

Bi(t)
εi

εj

Bj(t)
=

εj

εi
exp (−αt(

1
εi
− 1

εj
))

is monotonically decreasing from εj

εi
> 1 to 0 as t increases from 0 to ∞.

Rearranging (2.1) gives

ti,j =
ln( 1

εi
)− ln( 1

εj
)

α( 1
εi
− 1

εj
)

Writing εk = exp(−pk) for some pk > 0 and all k gives

ti,j =
pi − pj

α(exp pi − exp pj)

The inequality ti,j < ti+1,j is equivalent to

pi − pj

exp pi − exp pj
<

pi+1 − pj

exp pi+1 − exp pj

which can be written in the form

(pi+1 − pj) exp(pi − pj) + (pi − pi+1)− (pi − pj) exp(pi+1 − pj) > 0

With a = pi − pj and b = pi+1 − pj it is not hard to see that a > b > 0 and
a− b = pi − pi+1. Moreover, the previous inequality is then equivalent to

exp a− 1
a

>
exp b− 1

b

which is true because a > b and proves the first part of (2.4). The second part is
proved by a similar argument.

Finally, to prove (2.5) it suffices to rearrange (2.1) in the form

ti,j =
ln( εj

εi
)

α( 1
εi
− 1

εj
)

Since T > 2
α and εi ≤ εj

2 it follows that ln( εj

εi
) ≤ εj

εi
and ti,j ∈ (0, T ].//



6 S. Valarmathi and John J.H. Miller

3. The discrete problem. We construct a piecewise uniform mesh with N
mesh-intervals and mesh-points {ti}N

i=0 by dividing the interval [0, T ] into n + 1 sub-
intervals as follows

[0, T ] = [0, σ1] ∪ (σ1, σ2] ∪ . . . (σn−1, σn] ∪ (σn, T ]

Then, on the sub-interval [0, σ1], a uniform mesh with N
2n mesh-intervals is placed,

and similarly on (σi, σi+1], 1 ≤ i ≤ n − 1, a uniform mesh of N
2n−i+1 mesh-intervals

and on (σn, T ] a uniform mesh of N
2 mesh-intervals. In practice it is convenient to

take N = 2nk where k is some positive power of 2. The n transition points between
the uniform meshes are defined by

σi = min{σi+1

2
,
εi

α
ln N}

for i = 1, . . . , n− 1 and

σn = min{T

2
,
εn

α
ln N}

Clearly

0 < σ1 < . . . < σn ≤ T

2

This construction leads to a class of 2n possible Shishkin piecewise uniform meshes
M~b, where ~b denotes an n–vector with bi = 0 if σi = σi+1

2 and bi = 1 otherwise.
Writing δj = tj − tj−1 we remark that, on any M~b, we have

δj ≤ CN−1, 1 ≤ j ≤ N

and

σi ≤ Cεi ln N, 1 ≤ i ≤ n

On any M~b we now consider the discrete solutions defined by the backward Euler
finite difference scheme

ED−~U + A(t)~U = ~f, ~U(0) = ~u(0)

or in operator form

~LN ~U = ~f, ~U(0) = ~u(0)

where

~LN = ED− + A(t)

and D− is the backward difference operator

D−~U(tj) =
~U(tj)− ~U(tj−1)

δj

We have the following discrete maximum principle analogous to the continuous case.
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Lemma 3.1. Let A(t) satisfy (1.2) and (1.3). Then, for any mesh function ~Ψ, the
inequalities ~Ψ(0) ≥ ~0 and ~LN~Ψ(tj) ≥ ~0 for 1 ≤ j ≤ N, imply that ~Ψ(tj) ≥ ~0
for 0 ≤ j ≤ N.

Proof: Let i∗, j∗ be such that Vi∗(tj∗) = mini,j Vi(tj) and assume that the lemma
is false. Then Vi∗(tj∗) < 0 . From the hypotheses we have j∗ 6= 0 and Vi∗(tj∗) −
Vi∗(tj∗−1) ≤ 0. Thus

( ~LN ~V (tj∗))i∗ = εi∗
Vi∗(tj∗)− Vi∗(tj∗−1)

δj∗
+ ai∗,i∗(tj∗)Vi∗(tj∗) +

n∑

k=1 k 6=i∗
ai∗,k(tj∗)Vk(tj∗)

< Vi∗(tj∗)
n∑

k=1 k 6=i∗
ai∗,k < 0

which contradicts the assumption and completes the proof.
An immediate consequence of this is the following discrete stability result.
Lemma 3.2. Let A(t) satisfy (1.2) and (1.3). Then, for any mesh function ~Ψ,

‖ ~Ψ(tj) ‖ ≤ max
{
‖ ~Ψ(0) ‖, 1

α
‖ ~LN ~Ψ ‖

}
, 0 ≤ j ≤ N

Proof: Define the two functions

~Ψ±(t) = max{||~V (0)||, 1
α
|| ~LN ~V ||}~e± ~V (t)

where ~e = (1, . . . , 1) is the unit vector. Using the properties of A it is not hard
to verify that ~Ψ±(0) ≥ 0 and ~LN ~Ψ±(tj) ≥ 0. It follows then from Lemma 3.1 that
~Ψ±(tj) ≥ 0 for all 0 ≤ j ≤ N . This completes the proof.

4. The local truncation error. From Lemma 3.2, we see that in order to
bound the error ‖ ~U−~u ‖ it suffices to bound ~LN (~U−~u). But this expression satisfies

~LN (~U − ~u) = ~LN (~U)− ~LN (~u) = ~f − ~LN (~u) = ~L(~u)− ~LN (~u) =

(~L− ~LN )~u = −E(D− −D)~u

which is the local truncation of the first derivative. We have

E(D− −D)~u = E(D− −D)~v + E(D− −D)~w

and so, by the triangle inequality,

‖ ~LN (~U − ~u) ‖≤‖ E(D− −D)~v ‖ + ‖ E(D− −D)~w ‖(4.1)

Thus, we can treat the smooth and singular components of the local truncation error
separately. In view of this we note that, for any smooth function ψ, we have the
following two distinct estimates of the local truncation error of its first derivative

|(D− −D)ψ(tj)| ≤ max
s∈[tj−1,tj ]

|ψ′′(s)| δj

2
(4.2)

|(D− −D)ψ(tj)| ≤ 2 max
s∈[tj−1,tj ]

|ψ′(s)|(4.3)
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5. Error estimate. Here we establish the error estimate by generalizing the ap-
proach based on Shishkin decompositons used in [3]. For a reaction-diffusion boundary
value problem in the special case n = 2 a parameter uniform numerical method was
analyzed in [6] by a similar technique and in the general case in [5] using discrete
Green’s functions.

We estimate the smooth component of the local truncation error in the following
lemma.

Lemma 5.1. Let A(t) satisfy (1.2) and (1.3). Then, for each i = 1, . . . , n and
j = 1, . . . , N , we have

|εi(D− −D)vi(tj)| ≤ CN−1

Proof: Using (4.3), Lemma 2.3 and the geometry of the mesh we obtain

|εi(D− −D)vi(tj)| ≤ Cδj max
sεIj

|εiv
′′
i (s)| ≤ Cδj ≤ CN−1

For the singular component we obtain a similar estimate, but we must distinguish
between the different types of mesh. We need the following preliminary lemmas.

Lemma 5.2. Let A(t) satisfy (1.2) and (1.3). Then, for each i = 1, . . . , n and
j = 1, . . . , N on each mesh M~b, we have the estimate

|εi(D− −D)wi(tj)| ≤ C
δj

ε1

Proof: From (4.3) and Lemma 2.4, we have

|εi(D− −D)wi(tj)| ≤ Cδj maxsεIj |εiw
′′
i (s)|

≤ Cδj

[
ε−1
1 B1(t) + . . . + ε−1

n Bn(t)
]

≤ C
δj

ε1

In what follows we make use of second degree polynomials of the form

pi;θ =
2∑

k=0

(t− tθ)k

k!
w

(k)
i (tθ)

where θ denotes a pair of integers, for example θ = 2, 3.
Lemma 5.3. Let A(t) satisfy (1.2) and (1.3) and consider, for k = 1, . . . , n−1,

any mesh M~b with bk = 1. Then, for each i = 1, . . . , n and j = 1, . . . , N , there
exists a decomposition

wi =
k+1∑
p=1

wi,p

for which we have the following estimates for q = 1, . . . , k

|εiw
′
i,q(t)| ≤ CBq(t), |εiw

′′
i,q(t)| ≤ C

Bq(t)
εq
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and

|εiw
′′
i,k+1(t)| ≤ C

n∑

p=k+1

Bp(t)
εp

Furthermore

|εi(D− −D)wi(tj)| ≤ C(Bk(tj−1) +
δj

εk+1
)

Proof: Since bk = 1 we have εk ≤ εk+1/2, so tk,k+1 ∈ (0, T ] and we can define the
decomposition

wi =
k+1∑
p=1

wi,p

where the components of the decomposition are defined by

wi,k+1 = pi;k,k+1 on [0, tk,k+1)

wi,k+1 = wi otherwise

and, for k ≥ m ≥ 2,

wi,m = pi;m−1,m on [0, tm−1,m)

wi,m = wi −
k+1∑

p=m+1

wi,p otherwise

and

wi,1 = wi −
k+1∑
p=2

wi,p on [0, T]

We note that, for 1 ≤ m ≤ k, wi,m = 0 on [tm,m+1, T].
For the bounds on the second derivatives we observe that:

in [tk,k+1, T ], using Lemma 2.4 and t ≥ tk,k+1, we obtain

|εiw
′′
i,k+1(t)| = |εiw

′′
i (t)| ≤ C

n∑
p=1

Bp(t)
εp

≤ C

n∑

p=k+1

Bp(t)
εp

in [0, tk,k+1], using Lemma 2.4 and t ≤ tk,k+1 , we obtain

|εiw
′′
i,k+1(t)| = |εiw

′′
i (tk,k+1)| ≤

n∑
p=1

Bp(tk,k+1)
εp

≤
n∑

p=k+1

Bp(tk,k+1)
εp

≤
n∑

p=k+1

Bp(t)
εp

and for 2 ≤ m ≤ k taken in the reverse order m = k; . . . 2 we see that

in [tm,m+1, T ], w′′i,m = 0
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in [tm−1,m, tm,m+1], using Lemma 2.4, we obtain

|εiw
′′
i,m(t)| ≤ |εiw

′′
i (t)|+

k+1∑
p=m+1

|εiw
′′
i,p(t)| ≤ C

n∑
p=1

Bp(t)
εp

≤ C
Bm(t)

εm

in [0, tm−1,m], using Lemma 2.4 and t ≤ tm−1,m, we obtain

|εiw
′′
i,m(t)| = |εiw

′′
i (tm−1,m)| ≤ C

n∑
p=1

Bp(tm−1,m)
εp

≤ C
Bm(tm−1,m)

εm
≤ C

Bm(t)
εm

in [t1,2, T ], w′′i,1 = 0
in [0, t1,2], using Lemma 2.4,

|εiw
′′
i,1(t)| ≤ |εiw

′′
i (t)|+

k+1∑
p=2

|εiw
′′
i,p(t)| ≤ C

n∑
p=1

Bp(t)
εp

≤ C
B1(t)

ε1

For the bounds on the first derivatives we observe that for 1 ≤ j ≤ k :
in [tj,j+1, T ], w′i,j = 0
in [0, tj,j+1]

∫ tj,j+1

t
εiw

′′
i,j(s)ds = εiw

′
i,j(tj,j+1)− εiw

′
i,j(t) = −εiw

′
i,j(t) so

|εiw
′
i,j(t)| ≤

∫ tj,j+1

t

|εiw
′′
i,j(s)|ds ≤ C

εj

∫ tj,j+1

t

Bj(s)ds ≤ CBj(t)

Finally, since

|εi(D− −D)wi(tj)| ≤
n−1∑
m=1

|εi(D− −D)wi,m(tj)|+ |εi(D− −D)wi,n(tj)|

using (4.3) on the last term and (4.2) on all other terms on the right hand side, we
obtain

|εi(D− −D)wi(tj)| ≤ C(
n−1∑
m=1

max
s∈Ij

|εiw
′
i,m(s)|+ δj max

s∈Ij

|εiw
′′
i,n(s)|)

The desired result follows by applying the bounds on the derivatives in the first part
of this lemma.

Lemma 5.4. Let A(t) satisfy (1.2) and (1.3). Then, for each i = 1, . . . , n and
j = 1, . . . , N , on each mesh M~b, we have the estimate

|εi(D− −D)wi(tj)| ≤ CBn(tj−1)

Proof: From (4.2) and Lemma 2.4, for each i = 1, . . . , n and j = 1, . . . , N , we have

|εi(D− −D)wi(tj)| ≤ C maxsεIj |εiw
′
i(s)|

≤ Cεi

[
ε−1

i Bi(t) + . . . + ε−1
n Bn(t)

]
≤ CBn(tj−1)

Using the above preliminary lemmas on appropriate subintervals we obtain the desired
estimate of the singular component of the local truncation error in the following.



Parameter–Uniform Finite Difference Method 11

Lemma 5.5. Let A(t) satisfy (1.2) and (1.3). Then, for each i = 1, . . . , n and
j = 1, . . . , N , we have the estimate

|εi(D− −D)wi(tj)| ≤ CN−1 ln N

Proof: We consider each subinterval separately.
In the subinterval (0, σ1] we have δj ≤ CN−1σ1.

On any mesh M~b, using Lemma 5.2, we get |εi(D− − D)wi(tj)| ≤ CN−1 σ1
ε1
≤

CN−1 ln N .
In the subinterval (σ1, σ2] we have δj ≤ CN−1σ2.

On any mesh M~b with b1 = 0, we have σ2 = 2σ1. Using Lemma 5.2 we get
|εi(D− −D)wi(tj)| ≤ CN−1 σ2

ε1
≤ CN−1 σ1

ε1
≤ CN−1 ln N .

On any mesh M~b with b1 = 1, we have σ1 = ε1
α ln N . Using Lemma 5.3 with

k = 1 we get |εi(D− −D)wi(tj)| ≤ C(B1(σ1) + N−1 σ2
ε2

) ≤ CN−1 ln N .
In a general subinterval (σm, σm+1] 2 ≤ m ≤ n− 1, we have δj ≤ CN−1σm+1.

On any mesh M~b with bq = 0, q = 1, . . . , m, we have σm+1 = Cσ1. Using
Lemma 5.2 we get |εi(D− −D)wi(tj)| ≤ CN−1 σm+1

ε1
≤ CN−1 σ1

ε1
≤ CN−1 ln N .

On any mesh M~b with b1 = 1, bq = 0, q = 2, . . . ,m, we have σ1 = ε1
α ln N, σm+1 =

Cσ2. Using Lemma 5.3 with k = 1 we get |εi(D− − D)wi(tj)| ≤ C(B1(σm) +
N−1 σm+1

ε2
) ≤ C(B1(σ1) + N−1 σ2

ε2
) ≤ CN−1 ln N .

On any mesh M~b with bk = 1, bq = 0, q = k + 1, . . . , m, we have σk =
εk

α ln N, σm+1 = Cσk+1. Using Lemma 5.3 with general k we get |εi(D−−D)wi(tj)| ≤
C(Bk(σm) + N−1 σm+1

εk+1
) ≤ C(Bk(σk) + N−1 σk+1

εk+1
) ≤ CN−1 ln N .

On any mesh M~b with bm = 1, we have σm = εm

α ln N . Using Lemma 5.4 we get
|εi(D− −D)wi(tj)| ≤ CN−1Bm(σm) ≤ CN−1 ln N .
In the subinterval (σn, T ] we have δj ≤ CN−1.

On any mesh M~b with bq = 0, q = 1, . . . , n, we have 1/ε1 ≤ C ln N . Using
Lemma 5.2 we get |εi(D− −D)wi(tj)| ≤ CN−1/ε1 ≤ CN−1 ln N .

On any mesh M~b with b1 = 1, bq = 0, q = 2, . . . , n, we have σ1 = ε1
α ln N, 1/ε2 ≤

C ln N . Using Lemma 5.3 with k = 1 we get |εi(D− − D)wi(tj)| ≤ C(B1(σn) +
N−1 /ε2) ≤ C(B1(σ1) + N−1 /ε2) ≤ CN−1 ln N .

On any mesh M~b with bk = 1, bq = 0, q = k + 1, . . . , n, 2 ≤ k ≤ n − 1,
we have σk = εk

α ln N, 1/εk+1 ≤ C ln N . Using Lemma 5.3 with general k we get
|εi(D−−D)wi(tj)| ≤ C(Bk(σn)+N−1/εk+1) ≤ C(Bk(σk)+N−1/εk+1) ≤ CN−1 ln N .

On any mesh M~b with bn = 1, we have σn = εn

α ln N . Using Lemma 5.4 we get
|εi(D− −D)wi(tj)| ≤ CN−1Bn(σn) ≤ CN−1 ln N .

It is not hard to verify that on each of the n + 1 subintervals we have obtained
the required estimate for all of the 2n possible meshes. This completes the proof of
the lemma.
Let ~u denote the exact solution of (1.1) and ~U the discrete solution. Then, the main
result of this paper is the following ε-uniform error estimate

Theorem 5.6. Let A(t) satisfy (1.2) and (1.3). Then there exists a constant C
such that

‖ ~U − ~u ‖≤ CN−1 ln N

for all N > 1
Proof: This follows immediately by applying Lemmas 5.1 and 5.5 to (4.1) and

using Lemma 3.2.
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Table 6.1
Values of DN

ε , DN , pN , p∗, and CN
p∗ for various ε1 and N with fixed ε2 = 2−6, ε3 = 2−4

Number of mesh points N
ε1 128 256 512 1024 2048 4096 8192 16384 32768
2−7 0.135-2 0.832-3 0.485-3 0.276-3 0.154-3 0.853-4 0.466-4 0.253-4 0.136-4
2−11 0.195-2 0.118-2 0.688-3 0.391-3 0.215-3 0.117-3 0.625-4 0.332-4 0.175-4
2−15 0.230-2 0.136-2 0.808-3 0.469-3 0.262-3 0.145-3 0.792-4 0.430-4 0.232-4
2−19 0.232-2 0.138-2 0.810-3 0.476-3 0.266-3 0.147-3 0.805-4 0.436-4 0.235-4
2−23 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2−27 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2−31 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2−35 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2−39 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2−43 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
DN 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
pN 0.753+0 0.767+0 0.765+0 0.842+0 0.855+0 0.867+0 0.882+0 0.891+0

CN
0.753 0.221+0 0.221+0 0.219+0 0.217+0 0.204+0 0.190+0 0.176+0 0.161+0 0.146+0

Computed order of ε1–uniform convergence = 0.753
Computed ε1–uniform error constant = 0.221

6. Numerical results. The above numerical method is applied to the following
singularly perturbed initial value problem

ε1u1
′(t) + 4u1(t)− u2(t)− u3(t) = t(6.1)

ε2u2
′(t)− u1(t) + 4u2(t)− u3(t) = 1(6.2)

ε3u3
′(t)− u1(t)− u2(t) + 4u3(t) = 1 + t2(6.3)

for t ∈ (0, 1] and ~u(0) = 0. For various values of ε1, fixed values ε2 = 2−6, ε3 = 2−4

and N = 2r, r = 7, . . . 15 , the computed order of ~ε1–uniform convergence and the
computed ~ε1–uniform error constant are found using the general methodology from
[2],[7]. The results, presented in Table 1 below, exhibit the behaviour expected from
an ~ε1–uniform method. Similar numerical experiments illustrate separate ~ε2– and ~ε3

uniform behaviour.
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