A Parameter–Uniform Finite Difference Method for a Singularly Perturbed Initial Value Problem: a Special Case

- P. Maragatha Meenakshi¹, S. Valarmathi², and J.J.H. Miller³
- ¹ Department of Mathematics, Periyar EVR College(Autonomous), Tiruchirappalli-620 023, Tamil Nadu, India maragathameenakship@gmail.com
- ² Department of Mathematics, Bishop Heber College(Autonomous), Tiruchirappalli-620 017, Tamil Nadu, India valarmathi07@gmail.com
- ³ Institute for Numerical Computation and Analysis, Dublin, Ireland jm@incaireland.org

Summary. A system of singularly perturbed ordinary differential equations of first order with given initial conditions is considered. The leading term of each equation is multiplied by a small positive parameter. These parameters are not necessarily equal. The components of the solution exhibit overlapping layers. A Shishkin piecewise–uniform mesh is constructed, which is used, in conjunction with a classical finite difference discretisation, to form a new numerical method for solving this problem. It is proved, in a special case, that the numerical approximations obtained from this method are essentially first order convergent uniformly in all of the parameters. Numerical results are presented in support of the theory.

1 Introduction

We consider the initial value problem for the singularly perturbed system of linear first order differential equations

$$E\mathbf{u}'(t) + A(t)\mathbf{u}(t) = \mathbf{f}(t), \ t \in (0,T], \ \mathbf{u}(0) \text{ given}$$
(1)

Here **u** is a column *n*-vector, E and A(t) are $n \times n$ matrices, $E = diag(\varepsilon_1, \ldots, \varepsilon_n)$, $\boldsymbol{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n)$ with $0 < \varepsilon_i \leq 1$ for all $i = 1 \ldots n$. We assume that $T \geq 2 \max_i(\varepsilon_i)/\alpha$, which ensures that we are solving over a domain that includes all of the layers. For this it suffices to take $T \geq 2/\alpha$. For convenience we assume the ordering

$$\varepsilon_1 < \cdots < \varepsilon_n$$

all of the inequalities being strict. We write the problem in the operator form

P. Maragatha Meenakshi, S. Valarmathi, and J.J.H. Miller

$$\mathbf{L}\mathbf{u} = \mathbf{f}, \ \mathbf{u}(0)$$
 given

where the operator \mathbf{L} is defined by

 $\mathbf{2}$

$$\mathbf{L} = ED + A(t)$$
 and $D = \frac{d}{dt}$

We assume that, for all $t \in [0, 1]$, the functions a_{ij} satisfy the inequalities

$$a_{ii}(t) > \sum_{\substack{j \neq i \\ j=1}}^{n} |a_{ij}(t)|$$
 for $i = 1, \dots, n$, and $a_{ij}(t) \le 0$ when $i \ne j$.

We take α to be any number such that

$$0 < \alpha < \min_{\substack{t \in (0,1]\\i=1, \dots, n}} (\sum_{j=1}^{n} a_{ij}(t))$$

The analogous problem to (1), with all the ε_i equal, was treated in [2].

2 Analytical results

The operator \mathbf{L} satisfies the following maximum principle

Lemma 1. Let the above assumptions on the matrix A(t) hold. Let $\psi(t)$ be any function in the domain of \mathbf{L} such that $\psi(0) \ge 0$. Then $\mathbf{L}\psi(t) \ge 0$ for all $t \in (0,T]$ imples that $\psi(t) \ge 0$ for all $t \in [0,T]$.

We remark that the maximum principle is not necessary for the results that follow, but it is a convenient sufficient condition. An immediate consequence of it is the following stability result.

Lemma 2. Let the above assumptions on the matrix A(t) hold. If $\psi(t)$ is any function in the domain of **L** such that $\psi(0) \ge 0$, then

$$\| \boldsymbol{\psi}(t) \| \leq C \max\left\{ \| \boldsymbol{\psi}(0) \|, \frac{1}{\alpha} \| \mathbf{L} \boldsymbol{\psi}(t) \| \right\}, \qquad t \in [0, T]$$

where C is a constant independent of t and ε .

The Shishkin decomposition of the solution \mathbf{u} of (1) is given by $\mathbf{u} = \mathbf{v} + \mathbf{w}$ where \mathbf{v} is the solution of $\mathbf{L}\mathbf{v} = \mathbf{f}$ on (0,T] with $\mathbf{v}(0) = A^{-1}(0)\mathbf{f}(0)$ and \mathbf{w} is the solution of $\mathbf{L}\mathbf{w} = \mathbf{0}$ on (0,T] with $\mathbf{w}(0) = \mathbf{u}(0) - \mathbf{v}(0)$. Here \mathbf{v} , \mathbf{w} are, respectively, the smooth and singular components of \mathbf{u} .

Bounds on the smooth component and its derivatives are contained in

Lemma 3. There exists a constant C, independent of ε , such that for each $i = 1, \ldots, n, \parallel v_i^{(k)} \parallel \leq C$ for k = 0, 1 and $\parallel \varepsilon_i v_i'' \parallel \leq C$.

We define the layer functions $B_i, i = 1, ..., n$, associated with the solution **u** by

$$B_i(t) = e^{-\alpha t/\varepsilon_i}, \ t \in [0,\infty)$$

Some properties of the layer functions are given in

Lemma 4. Let $1 \le i < j \le n$ and $0 \le s < t < \infty$. Then

$$B_i(t) < B_j(t), \text{ for all } t > 0$$

$$B_i(s) > B_i(t), \text{ for all } 0 \le s < t \le 1$$

$$B_i(0) = 1 \text{ and } 0 < B_i(t) \le 1 \text{ for all }$$

 $B_i(t)$ is a monotonically decreasing function of $t \in [0, \infty)$.

t

Bounds on the singular component and its derivatives are contained in

Lemma 5. There exists a constant C, independent of ε , such that, for each $t \in [0,T]$ and $i = 1, \ldots, n$,

$$|w_i(t)| \leq CB_n(t)$$

$$|w'_i(t)| \leq C\left[\varepsilon_i^{-1}B_i(t) + \dots + \varepsilon_n^{-1}B_n(t)\right]$$

$$|\varepsilon_i w''_i(t)| \leq C\left[\varepsilon_1^{-1}B_1(t) + \dots + \varepsilon_n^{-1}B_n(t)\right]$$

For each $i \neq j$ we now define the point $t_{i,j}$ by

$$\frac{B_i(t_{i,j})}{\varepsilon_i} = \frac{B_j(t_{i,j})}{\varepsilon_j}$$

It is easy to see that this point exists and is unique for each i and j, since for i < j we have $\varepsilon_i < \varepsilon_j$ and the ratio of the two sides of this equation, namely

$$\frac{B_i(t)}{\varepsilon_i} \frac{\varepsilon_j}{B_j(t)} = \frac{\varepsilon_j}{\varepsilon_i} \exp\left(-\alpha t (\frac{1}{\varepsilon_i} - \frac{1}{\varepsilon_j})\right)$$

is monotonically decreasing from $\frac{\varepsilon_j}{\varepsilon_i} > 1$ to 0 as t increases from 0 to ∞ . Also, the following inequalities hold, for all i,j with $1 \leq i < j \leq n$

$$\varepsilon_i^{-1} B_i(t) > \varepsilon_j^{-1} B_j(t) \qquad \text{on } [0, t_{ij})$$
(2)

$$\varepsilon_i^{-1} B_i(t) < \varepsilon_j^{-1} B_j(t) \qquad \text{on } (t_{ij}, \infty)$$
(3)

and if $\varepsilon_i \leq \varepsilon_j/2$ then $t_{ij} \in (0, T]$.

Lemma 6. The points $t_{i,j}$ satisfy the following inequalities

$$t_{i,j} < t_{i+1,j}, \text{ if } i+1 < j$$

and

$$t_{i,j} < t_{i,j+1}$$
, if $i < j$

4 P. Maragatha Meenakshi , S. Valarmathi, and J.J.H. Miller

3 The discrete problem

We define n transition points between uniform meshes of different mesh size by

$$\sigma_i = \min\{\frac{\sigma_{i+1}}{2}, \frac{\varepsilon_i}{\alpha} \ln N\}$$

for i = 1, ..., n - 1 and

$$\sigma_n = \min\{\frac{1}{2}, \frac{\varepsilon_n}{\alpha} \ln N\}$$

Clearly

$$0 < \sigma_1 < \dots < \sigma_n < 1$$

We divide the interval [0, T] into n + 1 subintervals using these n transition points

$$[0,1] = [0,\sigma_1] \cup [\sigma_1,\sigma_2] \cup \dots [\sigma_{n-1},\sigma_n] \cup [\sigma_n,1]$$

We construct a piecewise uniform mesh on [0, T], consisting of N subintervals and N + 1 mesh points t_j , by placing a uniform mesh with $\frac{N}{2}$ subintervals on $[\sigma_n, 1]$ and uniform meshes with $\frac{N}{2n}$ subintervals on each of $[0, \sigma_1]$ and $[\sigma_i, \sigma_{i+1}], i = 1, \ldots, n - 1$. Using these we obtain 2^n Shishkin piecewise uniform meshes $M_{\mathbf{b}}$, where **b** denotes an *n*-vector with b_i equal to either 0 or 1 depending on whether the left-hand or right-hand value of σ_i is used. We remark that, on any such mesh at any point t_j , we have

$$|t_j - t_{j-1}| \le CN^{-1}$$

and for $i = 1, \ldots, n$

$$\sigma_i \le C\varepsilon_i \ln N$$

On these meshes we now consider the discrete solutions defined by the backward Euler finite difference scheme

$$ED^{-}\mathbf{U} + A(t)\mathbf{U} = \mathbf{f}, \qquad \mathbf{U}(0) = \mathbf{u}(0)$$

or in operator form

$$\mathbf{L}^N \mathbf{U} = \mathbf{f}, \qquad \mathbf{U}(0) = \mathbf{u}(0)$$

where

$$\mathbf{L}^N = ED^- + A(t)$$

and D^- is the backward difference operator

$$D^{-}\mathbf{U}(t_{j}) = \frac{\mathbf{U}(t_{j}) - \mathbf{U}(t_{j-1})}{t_{j} - t_{j-1}}$$

We have the following discrete maximum principle analogous to the continuous case

5

Lemma 7. Let the above assumptions on the matrix A(t) hold. Then, for any mesh function Ψ , the inequalities $\Psi(0) \geq \mathbf{0}$ and $\mathbf{L}^N \Psi(t_j) \geq \mathbf{0}$ for $1 \leq j \leq N$, imply that $\Psi(t_j) \geq \mathbf{0}$ for $0 \leq j \leq N$.

An immediate consequence of this is the following discrete stability result.

Lemma 8. Let the above assumptions on the matrix A(t) hold. Then, for any mesh function Ψ ,

$$\| \boldsymbol{\Psi}(t_j) \| \leq C \max\left\{ \| \boldsymbol{\Psi}(0) \|, \frac{1}{\alpha} \| L^N \boldsymbol{\Psi}(t_j) \| \right\}, 0 \leq j \leq N,$$

where C is a constant independent of j and ε

4 The local truncation error

From the Lemma 8, we see that in order to bound the error $\| \mathbf{U} - \mathbf{u} \|$ it suffices to bound $L^{N}(\mathbf{U} - \mathbf{u})$. But this expression satisfies

$$L^{N}(\mathbf{U} - \mathbf{u}) = L^{N}(\mathbf{U}) - L^{N}(\mathbf{u}) = \mathbf{f} - L^{N}(\mathbf{u}) = L(\mathbf{u}) - L^{N}(\mathbf{u}) =$$
$$(L - L^{N})\mathbf{u} = -E(D^{-} - D)\mathbf{u}$$

which is the local truncation of the first derivative. We have

$$E(D^{-} - D)\mathbf{u} = E(D^{-} - D)\mathbf{v} + E(D^{-} - D)\mathbf{w}$$

and so, by the triangle inequality,

$$\parallel L^{N}(\mathbf{U}-\mathbf{u}) \parallel \leq \parallel E(D^{-}-D)\mathbf{v} \parallel + \parallel E(D^{-}-D)\mathbf{w} \parallel$$

Thus, we can treat the smooth and singular components of the local truncation error separately We note first that, for any smooth function ψ , we have the following two distinct estimates of the local truncation error of the first derivative

$$|(D^{-} - D)\psi(t_{j})| \le \max_{s \in [t_{j-1}, t_{j}]} |\psi''(s)| \frac{(t_{j} - t_{j-1})}{2}$$
(4)

$$|(D^{-} - D)\psi(t_j)| \le 2 \max_{s \in [t_{j-1}, t_j]} |\psi'(s)|$$
(5)

Note that the first involves just the first derivative, while the second involves the second derivative. 6 P. Maragatha Meenakshi , S. Valarmathi, and J.J.H. Miller

5 Error estimate: the special case n=3

We estimate the smooth component of the local truncation error in the following lemma.

Lemma 9. For each $i = 1, \ldots, n$ and $j = 1, \ldots, N$ we have

$$|\varepsilon_i (D^- - D) v_i(t_j)| \le C N^{-1}$$

For the singular component we obtain a similar estimate, but we must distinguish between the different types of mesh. We need the following preliminary lemmas.

Lemma 10. On each mesh of the form $M_{\mathbf{b}}$, for i = 1, 2, 3 we have the estimate

$$|\varepsilon_i (D^- - D) w_i(t_j)| \le C \frac{t_j - t_{j-i}}{\varepsilon_1}$$

Lemma 11. On each mesh of the form $M_{1b_2b_3}$, for i = 1, 2, 3 there exists a decomposition

$$w_i = w_{i,1} + w_{i,2}$$

for which we have the estimates

$$\begin{aligned} |\varepsilon_i w_{i,1}'(t)| &\leq CB_1(t) \\ |\varepsilon_i w_{i,1}''(t)| &\leq C \frac{B_1(t)}{\varepsilon_1}, \qquad |\varepsilon_i w_{i,2}''(t)| \leq C (\frac{B_2(t)}{\varepsilon_2} + \frac{B_3(t)}{\varepsilon_3}) \end{aligned}$$

Furthermore

$$|\varepsilon_i(D^- - D)w_i(t_j)| \le C(B_1(t_{j-1}) + \frac{t_j - t_{j-i}}{\varepsilon_2})$$

Lemma 12. On each mesh of the form $M_{b_11b_3}$, for i = 1, 2, 3 there exists a decomposition

$$w_i = w_{i,1} + w_{i,2} + w_{i,3}$$

for which we have the estimates

$$\begin{aligned} |\varepsilon_i w'_{i,j}(t)| &\leq CB_j(t) \ \text{for} \ j = 1,2 \\ |\varepsilon_i w''_{i,j}(t)| &\leq C\frac{B_j(t)}{\varepsilon_j} \ \text{for} \ j = 1,2,3 \end{aligned}$$

Furthermore

$$|\varepsilon_i(D^- - D)w_i(t_j)| \le C(B_2(t_{j-1}) + \frac{t_j - t_{j-i}}{\varepsilon_3})$$

Lemma 13. On each mesh of the form $M_{\mathbf{b}}$, for i = 1, 2, 3 we have the estimate

$$|\varepsilon_i(D^- - D)w_i(t_j)| \le CB_3(t_{j-1})$$

Using the above preliminary lemmas on appropriate subintervals we obtain the desired estimate of the singular component of the local truncation error in the following.

Lemma 14. For i = 1, 2, 3 and $j = 1, \ldots, N$, we have the estimate

$$|\varepsilon_i (D^- - D) w_i(t_i)| \le C N^{-1} \ln N$$

Let **u** denote the exact solution of 1 and **U** the discrete solution. Then, using Lemmas 9, 14, we have the following ε -uniform error estimate

Theorem 1. There exists a constant C, independent of N and ε , such that

$$\| \mathbf{U} - \mathbf{u} \| \le C N^{-1} \ln N$$

for all N > 1

6 Numerical results

The above numerical method is applied to the following singularly perturbed initial value problem

$$\varepsilon_1 u_1'(t) + 4u_1(t) - u_2(t) - u_3(t) = t$$
(6)

$$\varepsilon_2 u_2'(t) - u_1(t) + 4u_2(t) - u_3(t) = 1 \tag{7}$$

$$\varepsilon_3 u_3'(t) - u_1(t) - u_2(t) + 4u_3(t) = 1 + t^2 \tag{8}$$

for $t \in (0,1]$ and $\mathbf{u}(0) = 0$. For various values of ε_1 , fixed values $\varepsilon_2 = 2^{-10}$, $\varepsilon_3 = 2^{-7}$ and N = 128, the computed order of ε -uniform convergence and the computed ε -uniform error constant are found using the general methodology from [1],[3]. The results, presented in Table 1 below, exhibit the behaviour expected from an ε -uniform method.

Acknowledgement The first author wishes to acknowledge the support of the UGC, New Delhi, India, to carry out the research work under the Faculty Improvement Programme-X Plan period. Also, the second author wishes to acknowledge the support of the UGC, New Delhi, India, to carry out the research work under the Minor Research Project-X Plan period.

References

P.A. Farrell, A. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, *Robust Computational Techniques for Boundary Layers*, Applied Mathematics & Mathematical Computation (Eds. R. J. Knops & K. W. Morton), Chapman & Hall/CRC Press (2000).

Table 1. Values of D_{ε}^{N} , D^{N} , p^{N} , p^{*} , and $C_{p^{*}}^{N}$ for various ε_{1} and fixed $\varepsilon_{2} = 2^{-6}$, $\varepsilon_{3} = 2^{-4}$

Number of mesh points N									
ε_1	128	256	512	1024	2048	4096	8192	16384	32768
2^{-7}	0.135-2	0.832-3	0.485-3	0.276-3	0.154-3	0.853-4	0.466-4	0.253-4	0.136-4
2^{-11}	0.195-2	0.118-2	0.688-3	0.391-3	0.215-3	0.117-3	0.625-4	0.332-4	0.175-4
2^{-15}	0.230-2	0.136-2	0.808-3	0.469-3	0.262-3	0.145-3	0.792-4	0.430-4	0.232-4
2^{-19}	0.232-2	0.138-2	0.810-3	0.476-3	0.266-3	0.147-3	0.805-4	0.436-4	0.235-4
2^{-23}	0.232-2	0.138-2	0.810-3	0.477-3	0.266-3	0.147-3	0.806-4	0.437-4	0.236-4
2^{-27}	0.232-2	0.138-2	0.810-3	0.477-3	0.266-3	0.147-3	0.806-4	0.437-4	0.236-4
2^{-31}	0.232-2	0.138-2	0.810-3	0.477-3	0.266-3	0.147-3	0.806-4	0.437-4	0.236-4
2^{-35}	0.232-2	0.138-2	0.810-3	0.477-3	0.266-3	0.147-3	0.806-4	0.437-4	0.236-4
2^{-39}	0.232-2	0.138-2	0.810-3	0.477-3	0.266-3	0.147-3	0.806-4	0.437-4	0.236-4
2^{-43}	0.232-2	0.138-2	0.810-3	0.477-3	0.266-3	0.147-3	0.806-4	0.437-4	0.236-4
D^N	0.232-2	0.138-2	0.810-3	0.477-3	0.266-3	0.147-3	0.806-4	0.437-4	0.236-4
p^N	0.753 + 0	0.767 + 0	$0.765 {+} 0$	0.842 + 0	0.855 + 0	0.867 + 0	0.882 + 0	0.891 + 0	
$C_{0.753}^{N}$	0.221 + 0	0.221 + 0	0.219 + 0	0.217 + 0	0.204 + 0	0.190 + 0	0.176 + 0	0.161 + 0	0.146 + 0
Computed order of ε -uniform convergence = 0.753									
Computed ε -uniform error constant = 0.221									

- 2. S.Hemavathi, S. Valarmathi, A parameter uniform numerical method for a system of singularly perturbed ordinary differential equations, Proceedings of the International Conference on Boundary and Interior Layers, BAIL 2006, Goettingen (2006).
- J. J. H. Miller, E. O'Riordan, G.I. Shishkin, *Fitted Numerical Methods for Singular Perturbation Problems*, World Scientific Publishing Co., Singapore, New Jersey, London, Hong Kong (1996).