
A Parameter–Uniform Finite Difference
Method for a Singularly Perturbed Initial
Value Problem: a Special Case

P. Maragatha Meenakshi1 , S. Valarmathi2, and J.J.H. Miller3

1 Department of Mathematics, Periyar EVR College(Autonomous),
Tiruchirappalli-620 023, Tamil Nadu, India
maragathameenakship@gmail.com

2 Department of Mathematics, Bishop Heber College(Autonomous),
Tiruchirappalli-620 017, Tamil Nadu, India
valarmathi07@gmail.com

3 Institute for Numerical Computation and Analysis, Dublin, Ireland
jm@incaireland.org

Summary. A system of singularly perturbed ordinary differential equations of first
order with given initial conditions is considered. The leading term of each equation is
multiplied by a small positive parameter. These parameters are not necessarily equal.
The components of the solution exhibit overlapping layers. A Shishkin piecewise–
uniform mesh is constructed, which is used, in conjunction with a classical finite
difference discretisation, to form a new numerical method for solving this problem.
It is proved, in a special case, that the numerical approximations obtained from
this method are essentially first order convergent uniformly in all of the parameters.
Numerical results are presented in support of the theory.

1 Introduction

We consider the initial value problem for the singularly perturbed system of
linear first order differential equations

Eu′(t) + A(t)u(t) = f(t), t ∈ (0, T ], u(0) given (1)

Here u is a column n-vector, E and A(t) are n×n matrices, E = diag(ε1, . . . , εn),
ε = (ε1, . . . , εn) with 0 < εi ≤ 1 for all i = 1 . . . n. We assume that
T ≥ 2maxi(εi)/α, which ensures that we are solving over a domain that in-
cludes all of the layers. For this it suffices to take T ≥ 2/α. For convenience
we assume the ordering

ε1 < · · · < εn

all of the inequalities being strict. We write the problem in the operator form
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Lu = f , u(0) given

where the operator L is defined by

L = ED + A(t) and D =
d

dt

We assume that, for all t ∈ [0, 1], the functions aij satisfy the inequalities

aii(t) >

n∑
j 6=i
j=1

|aij(t)| for i = 1, . . . , n, and aij(t) ≤ 0 when i 6= j.

We take α to be any number such that

0 < α < min
t∈(0,1]
i=1, ..., n

(
n∑

j=1

aij(t))

The analogous problem to (1), with all the εi equal, was treated in [2].

2 Analytical results

The operator L satisfies the following maximum principle

Lemma 1. Let the above assumptions on the matrix A(t) hold. Let ψ(t) be
any function in the domain of L such that ψ(0) ≥ 0. Then Lψ(t) ≥ 0 for all
t ∈ (0, T ] imples that ψ(t) ≥ 0 for all t ∈ [0, T ].

We remark that the maximum principle is not necessary for the results that
follow, but it is a convenient sufficient condition. An immediate consequence
of it is the following stability result.

Lemma 2. Let the above assumptions on the matrix A(t) hold. If ψ(t) is any
function in the domain of L such that ψ(0) ≥ 0, then

‖ ψ(t) ‖≤ C max
{
‖ ψ(0) ‖, 1

α
‖ Lψ(t) ‖

}
, t ∈ [0, T ]

where C is a constant independent of t and ε.

The Shishkin decomposition of the solution u of (1) is given by u = v + w
where v is the solution of Lv = f on (0, T ] with v(0) = A−1(0)f(0) and
w is the solution of Lw = 0 on (0, T ] with w(0) = u(0)− v(0). Here v ,w
are, respectively, the smooth and singular components of u .
Bounds on the smooth component and its derivatives are contained in

Lemma 3. There exists a constant C, independent of ε, such that for each
i = 1, . . . , n, ‖ v

(k)
i ‖≤ C for k = 0, 1 and ‖ εiv

′′
i ‖≤ C.
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We define the layer functions Bi, i = 1, . . . , n, associated with the solution
u by

Bi(t) = e−αt/εi , t ∈ [0,∞).

Some properties of the layer functions are given in

Lemma 4. Let 1 ≤ i < j ≤ n and 0 ≤ s < t < ∞. Then

Bi(t) < Bj(t), for all t > 0

Bi(s) > Bi(t), for all 0 ≤ s < t ≤ 1

Bi(0) = 1 and 0 < Bi(t) ≤ 1 for all t

Bi(t) is a monotonically decreasing function of t ∈ [0,∞).

Bounds on the singular component and its derivatives are contained in

Lemma 5. There exists a constant C, independent of ε, such that, for each
t ∈ [0, T ] and i = 1, . . . , n,

|wi(t)| ≤ CBn(t)
|w′i(t)| ≤ C

[
ε−1
i Bi(t) + · · ·+ ε−1

n Bn(t)
]

|εiw
′′
i (t)| ≤ C

[
ε−1
1 B1(t) + · · ·+ ε−1

n Bn(t)
]

For each i 6= j we now define the point ti,j by

Bi(ti,j)
εi

=
Bj(ti,j)

εj

It is easy to see that this point exists and is unique for each i and j, since for
i < j we have εi < εj and the ratio of the two sides of this equation, namely

Bi(t)
εi

εj

Bj(t)
=

εj

εi
exp (−αt(

1
εi
− 1

εj
))

is monotonically decreasing from εj

εi
> 1 to 0 as t increases from 0 to ∞.

Also, the following inequalities hold, for all i, j with 1 ≤ i < j ≤ n

ε−1
i Bi(t) > ε−1

j Bj(t) on [0, tij) (2)

ε−1
i Bi(t) < ε−1

j Bj(t) on (tij ,∞) (3)

and if εi ≤ εj/2 then tij ∈ (0, T ].

Lemma 6. The points ti,j satisfy the following inequalities

ti,j < ti+1,j , if i + 1 < j

and
ti,j < ti,j+1, if i < j
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3 The discrete problem

We define n transition points between uniform meshes of different mesh size
by

σi = min{σi+1

2
,
εi

α
ln N}

for i = 1, . . . , n− 1 and

σn = min{1
2
,
εn

α
ln N}

Clearly
0 < σ1 < · · · < σn < 1

We divide the interval [0, T ] into n + 1 subintervals using these n transition
points

[0, 1] = [0, σ1] ∪ [σ1, σ2] ∪ . . . [σn−1, σn] ∪ [σn, 1]

We construct a piecewise uniform mesh on [0, T ], consisting of N subintervals
and N + 1 mesh points tj , by placing a uniform mesh with N

2 subintervals
on [σn, 1] and uniform meshes with N

2n subintervals on each of [0, σ1] and
[σi, σi+1], i = 1, . . . , n − 1. Using these we obtain 2n Shishkin piecewise uni-
form meshes Mb, where b denotes an n–vector with bi equal to either 0 or
1 depending on whether the left–hand or right–hand value of σi is used. We
remark that, on any such mesh at any point tj , we have

|tj − tj−1| ≤ CN−1

and for i = 1, . . . , n
σi ≤ Cεi ln N

On these meshes we now consider the discrete solutions defined by the back-
ward Euler finite difference scheme

ED−U + A(t)U = f , U(0) = u(0)

or in operator form
LNU = f , U(0) = u(0)

where
LN = ED− + A(t)

and D− is the backward difference operator

D−U(tj) =
U(tj)−U(tj−1)

tj − tj−1

We have the following discrete maximum principle analogous to the continuous
case
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Lemma 7. Let the above assumptions on the matrix A(t) hold. Then, for
any mesh function Ψ, the inequalities Ψ(0) ≥ 0 and LNΨ(tj) ≥ 0 for
1 ≤ j ≤ N, imply that Ψ(tj) ≥ 0 for 0 ≤ j ≤ N.

An immediate consequence of this is the following discrete stability result.

Lemma 8. Let the above assumptions on the matrix A(t) hold. Then, for any
mesh function Ψ,

‖ Ψ(tj) ‖ ≤ C max
{
‖ Ψ(0) ‖, 1

α
‖ LNΨ(tj) ‖

}
, 0 ≤ j ≤ N,

where C is a constant independent of j and ε

4 The local truncation error

From the Lemma 8, we see that in order to bound the error ‖ U − u ‖ it
suffices to bound LN (U− u). But this expression satisfies

LN (U− u) = LN (U)− LN (u) = f − LN (u) = L(u)− LN (u) =

(L− LN )u = −E(D− −D)u

which is the local truncation of the first derivative. We have

E(D− −D)u = E(D− −D)v + E(D− −D)w

and so, by the triangle inequality,

‖ LN (U− u) ‖≤‖ E(D− −D)v ‖ + ‖ E(D− −D)w ‖

Thus, we can treat the smooth and singular components of the local trunca-
tion error separately We note first that, for any smooth function ψ, we have
the following two distinct estimates of the local truncation error of the first
derivative

|(D− −D)ψ(tj)| ≤ max
s∈[tj−1,tj ]

|ψ′′(s)| (tj − tj−1)
2

(4)

|(D− −D)ψ(tj)| ≤ 2 max
s∈[tj−1,tj ]

|ψ′(s)| (5)

Note that the first involves just the first derivative, while the second involves
the second derivative.
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5 Error estimate: the special case n=3

We estimate the smooth component of the local truncation error in the fol-
lowing lemma.

Lemma 9. For each i = 1, . . . , n and j = 1, . . . , N we have

|εi(D− −D)vi(tj)| ≤ CN−1

For the singular component we obtain a similar estimate, but we must distin-
guish between the different types of mesh. We need the following preliminary
lemmas.

Lemma 10. On each mesh of the form Mb, for i = 1, 2, 3 we have the esti-
mate

|εi(D− −D)wi(tj)| ≤ C
tj − tj−i

ε1

Lemma 11. On each mesh of the form M1b2b3 , for i = 1, 2, 3 there exists a
decomposition

wi = wi,1 + wi,2

for which we have the estimates

|εiw
′
i,1(t)| ≤ CB1(t)

|εiw
′′
i,1(t)| ≤ C

B1(t)
ε1

, |εiw
′′
i,2(t)| ≤ C(

B2(t)
ε2

+
B3(t)

ε3
)

Furthermore

|εi(D− −D)wi(tj)| ≤ C(B1(tj−1) +
tj − tj−i

ε2
)

Lemma 12. On each mesh of the form Mb11b3 , for i = 1, 2, 3 there exists a
decomposition

wi = wi,1 + wi,2 + wi,3

for which we have the estimates

|εiw
′
i,j(t)| ≤ CBj(t) for j = 1, 2

|εiw
′′
i,j(t)| ≤ C

Bj(t)
εj

for j = 1, 2, 3

Furthermore

|εi(D− −D)wi(tj)| ≤ C(B2(tj−1) +
tj − tj−i

ε3
)

Lemma 13. On each mesh of the form Mb, for i = 1, 2, 3 we have the esti-
mate

|εi(D− −D)wi(tj)| ≤ CB3(tj−1)
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Using the above preliminary lemmas on appropriate subintervals we obtain
the desired estimate of the singular component of the local truncation error
in the following.

Lemma 14. For i = 1, 2, 3 and j = 1, . . . , N , we have the estimate

|εi(D− −D)wi(tj)| ≤ CN−1 ln N

Let u denote the exact solution of 1 and U the discrete solution. Then,
using Lemmas 9, 14, we have the following ε-uniform error estimate

Theorem 1. There exists a constant C, independent of N and ε, such that

‖ U− u ‖≤ CN−1 ln N

for all N > 1

6 Numerical results

The above numerical method is applied to the following singularly perturbed
initial value problem

ε1u1
′(t) + 4u1(t)− u2(t)− u3(t) = t (6)

ε2u2
′(t)− u1(t) + 4u2(t)− u3(t) = 1 (7)

ε3u3
′(t)− u1(t)− u2(t) + 4u3(t) = 1 + t2 (8)

for t ∈ (0, 1] and u(0) = 0. For various values of ε1, fixed values ε2 =
2−10, ε3 = 2−7 and N = 128 , the computed order of ε–uniform conver-
gence and the computed ε–uniform error constant are found using the general
methodology from [1],[3]. The results, presented in Table 1 below, exhibit the
behaviour expected from an ε–uniform method.
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