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Abstract

We present ADHM-Nahm data for instantons on the Taub-NUT
space and encode these data in terms of Bow Diagrams. We study
the moduli spaces of the instantons and present these spaces as finite
hyperkähler quotients. As an example, we find an explicit expression
for the metric on the moduli space of one SU(2) instanton.

We motivate our construction by identifying a corresponding string
theory brane configuration. By following string theory dualities we are
led to supersymmetric gauge theories with impurities.
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1 Introduction

The celebrated construction of Atiyah, Drinfeld, Hitchin, and Manin [1] pro-
vided a description of all instantons of R4 in terms of algebraic data. It has
been generalized in a number of ways. Werner Nahm in [2] discovered the
construction of calorons, i.e. instantons on R3 × S1, as well as that of mag-
netic monopoles, in terms of solutions of an integrable system of Ordinary
Differential Equations. Kronheimer and Nakajima [3] constructed instantons
on ALE spaces in terms of algebraic data organized into a quiver diagram.
Nekrasov and Schwarz [4] modified the original ADHM construction to obtain
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instantons on noncommutative R4. Here, we present data describing instan-
tons on the Taub-NUT and multi-Taub-NUT spaces [5], which combines all
elements of the above mentioned constructions.

We motivate our construction by string theory analysis of a Chalmers-
Hanany-Witten [6, 7] brane configuration that is T-dual to the the brane
realization of instantons on a Taub-NUT space. This analysis is akin to the
string theory derivation of the original ADHM and Kronheimer-Nakajima
constructions for A-type ALE spaces by Douglas and Moore [8, 9]. D-brane
analysis leading to the Kronheimer-Nakajima construction on a general ALE
space appeared in [10].

The Kronheimer-Nakajima construction was used to obtain some explicit
instanton solutions on the Eguchi-Hanson space in [11] and [12]. For the case
of calorons, the explicit solutions were found in [13] and [14].

A detailed transform from the data we present here to the gauge field
on the Taub-NUT, as well as an explicit solution of one instanton on the
Taub-NUT, will appear in [15].

Let us emphasize that the AHDM and Nahm constructions produce in-
stantons on flat backgrounds R4 and R3 × S1. Kronheimer-Nakajima con-
struction, on the other hand, leads to instantons in nontrivial geometric
backgrounds of ALE spaces, however, it is based on the fact that any ALE
space is a deformation of an orbifold R4/Γ of flat space. Here, we study Yang-
Mills instantons on essentially curved ALF spaces which do not possess any
useful flat limit.

There was a number of attempts at construction of instantons on the
Taub-NUT space. Some isolated solutions were found in [16, 17] and partic-
ular families of solutions appear in [18, 19, 20]. We claim that the construc-
tion presented here produces all solutions for generic boundary conditions.
We explore the geometry of the moduli space of solutions and present as an
illustration the explicit metric on the moduli space of charge one instanton.

2 Self-dual Connections on Taub-NUT

A Taub-NUT space is described by the following metric

ds2 =
1

4

(l +
1

|~r|
)
d~r 2 +

(dτ + ω)2(
l + 1

|~r|

)
 , (1)
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where τ ∼ τ + 4π is the periodic coordinate on the Taub-NUT, ω is a one-
form ω = ~ω · d~r such that dω = ∗3d 1

|~r| (here ∗3 is the Hodge star operation

for a flat three-dimansional space parameterized by ~r).
An instanton on this space is a Hermitian connection A with the curvature

F = dA − iA ∧ A such that it has finite action and the curvature form is
self-dual

F = ∗F. (2)

Here ∗ denotes the Hodge dual operation for the Taub-NUT space (1). There
is a number of topological invariants associated to such a connection. The
action is given by the integral of the Chern character:

S = − 1

8π2

∫
Taub−NUT

trF ∧ F, (3)

and monopole charges are defined in the following way. Since the action is
finite, the curvature tends to zero as we approach infinity, thus the connec-
tion tends to a flat connection on the squashed three-sphere S3

r : {|~r| = r}
as r → ∞. This three-sphere is Hopf fibered over S2

r, with the fiber S1 pa-
rameterized by τ. The fiber has a finite size at infinity. Since the limiting
connection is flat the monodromy of the connection along the fiber S1 has
eigenvalues independent of the point on the base S2

r. Let the limiting values
of the eigenvalues be exp(2πiλ/l) and exp(−2πiλ/l), with 0 ≤ λ ≤ l/2, as
r →∞. Generically λ 6= 0 and thus the bundle over S2

r splits into eigen line
bundles L+ → S2

r and L− → S2
r, with degrees d+ and d−. We define the

monopole charge by m = |d+ − d−|.
In intuitive physics terms, at infinity the gauge field becomes independent

of τ, and after the dimensional reduction looks like a monopole. The charge
m, defined above, is the charge of this monopole. To be more precise, let
us denote the limiting τ -independent connection along the τ -circle by Aτdτ
and the other three horizontal components of the connection by Aj, so that
A = Ajdx

j+Aτdτ. Dimensionally reducing along the finite τ circle, as in [21],

we obtain the Higgs field Φ =
(
l + 1

|~r|

)
Aτ and the gauge field A′j = Aj−ωjAτ

in R3. If F ′ denotes the three-dimensional curvature of A′, the pair (Φ, A′)
satisfies the Bogomolny equation F = ∗3[D,Φ]. Thus at infinity the pair
(Φ, A′) behaves as a monopole and m is its charge.

As demonstrated in [21] the case of nonzero m and vanishing instanton
number reduces to the study of singular monopoles. Nahm data for singular
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monopoles was identified in [22] and further explored in [23, 24]. Explicit
singular monopole solutions were constructed in [25, 26]. In this paper we
focus on the pure instanton case, i.e we put m = 0.

3 Instanton Data as a Bow Diagram

We consider an SU(2) instanton of zero monopole charge and instanton
number N with maximal symmetry breaking, that is, with eigenvalues of
the monodromy matrix at infinity exp(±2πiλ/l) with l > λ > 0. Each
such instanton configuration is determined uniquely by the data we de-
scribe below. This data can be organized into the diagram in Figure 1.

IL IR

B10

B01

JL JR

WL WR

−l/2 l/2
−λ λ

Figure 1: Bow diagram corresponding to SU(2) Instantons on Taub-NUT

In the limit l→ 0 the Taub-NUT space degenerates to flat R4 and the above
diagram becomes the ADHM quiver diagram for instantons on R4. We shall
refer to diagrams such as the one in Figure 1 as Bow Diagrams.

Each interval represented by a wavy line connecting two dots corresponds
to U(N) Nahm data. In the diagram above there are three such intervals
[−l/2. − λ], [−λ, λ], and [λ, l/2]; we shall refer to these as ‘Left’, ‘Middle,’
and ‘Right’ intervals respectively and parameterize each by a coordinate s
taking value in these ranges. We denote the lengths of these intervals by
dL = l/2− λ, dM = 2λ, and dR = l/2− λ. Nahm data consists of a quadru-
plet (T0(s), T1(s), T2(s), T3(s)) of s-dependent Hermitian N × N matrices
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continuous on each interval and satisfying the Nahm equations

i
d

ds
T1 + [T0, T1]− [T2, T3] = 0,

i
d

ds
T2 + [T0, T2]− [T3, T1] = 0, (4)

i
d

ds
T3 + [T0, T3]− [T1, T2] = 0.

Geometrically one can think of a Hermitian vector bundle E of complex
dimension N over each interval with a connection d

ds
− iT0 and Hermitian

Higgs fields (i.e. endomorphisms of the bundle E) T1, T2, and T3. We use
subscripts and superscripts L,M, and R to specify the interval to which
the Nahm data belong. The dots on the wavy line represent the fibers of
this bundle E−l/2, E−λ, Eλ, and El/2 over the points s = −l,−λ, λ, and l.
External dots represent one dimensional vector spaces WL and WR. Each
arrow connects two dots and represents a map from the space at its tail
to the space at its head. For example, in any given trivialization B10 is
represented by an N ×N matrix corresponding to a map from E−l/2 to El/2.

This data transforms under a unitary gauge transformation g(s) ∈ U(N)
as

g(s) :



T0(s)
Tj(s)

B01

B10

IL
JL

IR
JR


7→



g−1(s)T0g(s)− ig−1(s) d
ds
g(s)

g−1(s)Tjg(s)

g−1(−l/2)B01g(l/2)
g−1(l/2)B10g(−l/2)

g−1(−λ)IL
JLg(−λ)

g−1(λ)IR
JRg(λ)


(5)

Besides the Nahm Eqs. (4), these data satisfy certain conditions at s = ±l
and ±λ; to write these in a compact form we introduce an auxiliary twistorial
variable ζ and a combination

A = T1 + iT2 + 2ζT3 − ζ2(T1 − iT2), (6)

for each interval. Then the following conditions are satisfied for all values of
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ζ :

AR(l/2) = −(B10 + ζB†01)(B01 − ζB†10) (7)

AL(−l/2) = (B01 + ζB†10)(B10 − ζB†01) (8)

AR(λ)− iAM(λ) = −(IR + ζJ†R)(JR − ζI†R) (9)

AM(−λ)− iAL(−λ) = −(IL + ζJ†L)(JL − ζI†L) (10)

Let us point out that the matching conditions (9) and (10) are identical to
those of a monopole Nahm data [27].

3.1 Moduli Spaces

We claim that the bow data (T0, T1, T2, T3, IL, JL, IR, JR, B01, B10) satisfying
Eqs. (4, 7-10) determines the instanton configuration on the Taub-NUT space
up to a gauge transformation. The equivalence classes of the bow data up
to the transformation (5) are in one-to-one correspondence with such instan-
tons. Moreover, this correspondence is an isometry of the corresponding hy-
perkähler moduli spaces. For the case of the Nahm transform for monopoles
Hitchin proved that it is one-to-one in [28], and the proof of the isometry
statement was given by Nakajima in [29].

4 Structure of Moduli Spaces

The moduli space of instantons on the Taub-NUT is hyperkähler; moreover,
the corresponding bow data presents it as an infinite hyperkähler quotient of
linear spaces, since the Nahm equations (4) and the matching conditions of
Eqs. (7,8,9,10) can be viewed as moment maps with respect to the gauge
group action of Eq. (5). The moduli space can also be viewed as a fi-
nite hyperkähler quotient of a product of linear spaces and a number of
T ∗UC(N) = T ∗Gl(N). The hyperkähler structure on the the cotangent bun-
dle to a group was studied in [30], where this space emerges as a moduli space
of Nahm data with regular boundary conditions on an interval. It carries a
natural triholomorphic action of G×G with the first and second factors cor-
responding to the value of the gauge transformation on one and the other
end of the interval. In terms of these building blocs the moduli spaceMN,λ;l

of charge N instantons on the Taub-NUT space (1) is given by the following
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hyperkähler quotient:

T ∗GC
dL
×HN ×T ∗GC

dM
×HN ×T ∗GC

dR
×HN2

///G−l/2×G−λ×Gλ×Gl/2, (11)

where HN ≈ CN × CN 3 (I†, J),HN2 ≈ CN2 × CN2 3 (B†01, B10), each group
G is a U(N) and

• G−l/2 acts on T ∗GC
dL

on the left and on HN2
on the right,

• G−λ acts on the first HN factor, acting on T ∗GC
dL

on the right and on
T ∗GC

dM
on the left,

• Gλ acts on the second HN factor, acting on T ∗GC
dM

on the right and on
T ∗GC

dR
on the left,

• Gl/2 acts on T ∗GC
dR

on the right and on HN2
on the left.

This allows one to construct more or less explicitly the twistor space of
MN,λ;l. Let us now explain how this finite quotient construction arises from
our bow diagram description.

Let us use the language of the hyperkähler reduction to give geometric
meaning to the equations of Section 3. Given the bow data one views the
space of all such unconstrained data

B = {(T0(s), T1(s), T2(s), T3(s), IL, JL, IR, JR, B01, B10)} , (12)

as a direct product of infinite-dimensional vector spaces of unconstrained
Nahm quadruplets (T0(s), ~T (s)) for each interval and the linear spaces of
(B01, B10), (IL, JL), and (IR, JR). The metric on the space of Nahm quadru-
plets on each interval is given by

ds2 =

∫
tr
(
δT0δT

†
0 + δT1δT

†
1 + δT2δT

†
2 + δT3δT

†
3

)
ds, (13)

and the natural metrics on the rest of the data are

tr
(
δB01δB

†
01 + δB10δB

†
10

)
, δI†LδIL + δJLδJ

†
L, δI†RδIR + δJRδJ

†
R. (14)

There are three natural complex structures on these spaces coming from iden-
tifying T0, T1, T2, T3 as components of a quaternion and from the identifica-
tion of the spaces parameterized by B’s and the pairs (I, J) with quaternions.
These complex structures are spelled explicitly in Section 8.
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The transformations (5) leave the metric and the complex structures in-
variant. Let G denotes the group of all U(N) gauge transformations on
[−l/2, l/2]. Our claim is that the moduli space of instantons MN,λ;l is iso-
metric to the hyperkähler quotient of B by G :

MN,λ;l = B///G (15)

B///G is exactly the space of equivalence classes under the gauge transfor-
mation (5) of bow data satisfying the moment map Eqs. (4, 7-10). This is
the infinite hyperkähler quotient of linear spaces. Now we compare this for-
mula to Eq.(11). Let G0 denote the subgroup of G consisting of all gauge
transformations g(s) that equal to identity at the marked points (i.e with
g(−l/2) = g(−λ) = g(λ) = g(l/2) = 1), then

G/G0 = G−l/2 ×G−λ ×Gλ ×Gl/2. (16)

Thus, we can perform the above reduction B///G in two steps, first performing
the quotient with respect to G0 and then G/G0. The moment maps of the
G0 action are exactly the left-hand-sides of the Nahm Eqs.(4). Taking the
zero level of the moment map and dividing by the group action we are left
with T ∗GC

d on each interval. The second step of the hyperkähler reduction
amounts to formula (11).

4.1 Algebraic Description

Let us give a more algebraic description of this space. Selecting a particular
complex structure leads to a description of the Nahm data as a connection D
on the vector bundle and its endomorphism T (none of these are restricted
to be Hermitian). For example, for one of the complex structures, D =
∂
∂s
− iT0 − T3 and T = T1 + iT2. With the complex structure selected, we

can combine the three Nahm equations into one complex and one real. The
complex Nahm equation within the interval simply reads [D,T ] = 0. Now, we
introduce the parallel transport H from one end of the interval to another.
Let H(s) be covariantly constant with respect to D (i.e. DH(s) = 0) such
that the value of H(s) at the left end of the coresponding interval equals
identity. Then denote the value of H(s) at the right end of the interval by
H. This gives us natural complex coordinates (H,T ) on T ∗GC, which is the
moduli space of all the regular Nahm data satisfying the Nahm equations.
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Thanks to the theorem of Donaldson [31], in a given complex structure
the moduli space MN,λ;l = {~µ = ~0}/G is equivalent as a complex variety to
{µC = 0}/GC which is given by

(TL, HL, IL, JL, TM , HM , IR, JR, TR, HR, B01, B10), (17)

where

TL,M,R ∈ gl(N,C), IL,R ∈ Hom(C,CN), B01 ∈ Hom(CN ,CN), (18)

HL,M,R ∈ Gl(N,C), JL,R ∈ Hom(CN ,C), B10 ∈ Hom(CN ,CN), (19)

satisfying the complex moment map conditions

TR −H−1
M TMHM = IRJR, H−1

R TRHR = B10B01, (20)

TM −H−1
L TLHL = ILJL, TL = B01B10, (21)

modulo the gauge equivalence
TL, HL

IL, JL
TM , HM

IR, JR
TR, HR

B01, B10

 ∼


h−1
−l/2TLh−l/2, h−1

−l/2HLh−λ
h−1
−λIL, JLh−λ

h−1
−λTMh−λ, h−1

−λHMhλ
h−1
λ IR, JRhλ

h−1
λ TRhλ, h−1

λ HRhl/2
h−1
l/2B01h−l/2, h−1

−l/2B10hl/2

 , (22)

here h−l/2, h−λ, hλ, and hl/2 ∈ Gl(N,C).
We can use the gauge transformations given by h−λ, hλ, and hl/2 to put

HL = HM = HR = 1, then TL = B01B10, TM = B01B10−IRJR, TR = B10B01,
and the only nontrivial remaining relation is

B10B01 −B01B10 = ILJL + IRJR, (23)

with the gauge equivalence given by the remaining group with the action of
an element h = h−l/2

h :

 B01, B10

IL, JL
IR, JR

 7→
 h−1B01h, h−1B10h

h−1IL, JLh
h−1IR, JRh

 . (24)

Eq.(23) with the equivalence (24) is exactly the ADHM condition for instan-
tons on the flat space.
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This establishes the isomorphism of the moduli space of instantons on
a Taub-NUT space and the moduli space of unframed instantons on R4 as
complex varieties. We would like to emphasize, however, that even though
in any given complex structure these two moduli spaces are isomorphic, their
twistor spaces and metrics differ.

5 Some Generalizations

5.1 U(n) Instantons

N instantons on the Taub-NUT space with the gauge group U(n) and with
maximal symmetry breaking at infinity are given in terms of the bow diagram
in Figure 2.

B10

B01

W1 W2
Wn

. . . . . .

λ1
λ2 λn

Figure 2: A Bow corresponding to SU(n) Instantons on Taub-NUT

Here exp(2πiλ1/l), exp(2πiλ2/l), . . . , exp(2πiλn/l) are the eigenvalues of
the monodromy at infinity and, if all of them are distinct, the auxiliary spaces
W1,W2, . . . ,Wn are one-dimensional. The moduli space is again given by a
finite hyperkähler quotient of a product of linear spaces and n + 1 copies of
T ∗Gl(N).
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5.2 Instantons on multi-Taub-NUT

Given the bow data for SU(2) instantons on the Taub-NUT it is relatively
easy to obtain the bow data on a general Ak ALF space, which is a (k + 1)-
centered multi-Taub-NUT space. In order to achieve this, similarly to [3],
one can consider the quotient of the Taub-NUT by the cyclic group Zk+1

rotating the Taub-NUT circle τ → τ + 4π
k+1

. If we are to obtain N instantons
on (k+1)-centered degenerate Taub-NUT, we should consider rank N(k+1)
ADHM data for its covering Taub-NUT space. In other words, the bundle E
of section 3 is rank N(k+1). The equivariance conditions one should impose
are

g(s) :



T0(s)
Tj(s)

B01

B10

IL
JL

IR
JR


7→



U−1T0U
U−1TjU

U−1B01Ue
2πi
k+1

e−
2πi
k+1U−1B10U

U−1ILµL
µ−1
L JLU

U−1IRµR
µRJRU



. (25)

Here the multiplication by e±
2πi
k+1 rotates the circle of the Taub-NUT, and the

factors µL and µR with |µL| = |µR| = 1 are the linear transformations of the
auxiliary spaces WL and WR. µL and µR correspond to the accompanying
gauge transformation of the gauge fields on the Taub-NUT. U = IN×N⊗Ck+1,
with Ck+1 being a permutation matrix permuting the (k+ 1) blocks. We can

choose it to be a clock matrix Ck+1 = diag(1, e
2πi
k+1 , e2

2πi
k+1 , . . . , ek

2πi
k+1 ). In order

to satisfy the equivariance conditions µL and µR have to be some integer

powers of the (k + 1)st root of unity, say µL = e
2πi
k+1

pL and µR = e
2πi
k+1

pR .
The equivariant bow data thus consists of the block diagonal T0 and Tj,

B01 =


0 0 0 . . . B

(k)
01

B
(1)
01 0 0 . . . 0

0 B
(2)
01 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0

 , B10 =


0 B

(1)
10 0 . . . 0

0 0 B
(2)
10 . . . 0

0 0 0 . . . 0

...
...

...
. . .

...

B
(k)
10 0 0 . . . 0

 , (26)

11



and IL and JL are such that they have only pL-th block nonvanishing, simi-
larly IR and JR have only the pR-th block nonvanishing. The remaining gauge
transformation that respect the equivariance conditions are block diagonal.

This data is naturally arranged into a bow diagram with k + 1 wavy
lines connected cyclically by the components B

(j)
01 and B

(j)
10 and two auxiliary

spaces WL and WR connected to some points on the pL-th and pR-th wavy
lines.

If we are to start with U(n) instantons on the Taub-NUT (instead of the
SU(2) data discussed so far) the only difference would be having n auxiliary
spaces and n (instead of two) pairs of maps (Il, Jl) between these spaces and
some fibers above the points on some of the wavy intervals.

Thus, the bow data for the U(n) instantons in a nondegenerate multi-
Taub-NUT background is given by the Figure 3. The positions of the dots
on the wavy lines are given by the eigenvalues of the monodromy at infinity
while the differences of the lengths of the wavy lines are determined by the
fluxes of the B field on the multi-Taub-NUT. Just as in the ALE case [3],
for a generic (nondegenerate) multi-Taub-NUT the moment maps no longer
vanish, but are given by the multi-Taub-NUT resolution parameters.

Figure 3: A Bow corresponding to U(n) Instantons on multi-Taub-NUT

6 Brane Configuration Analysis

We begin with a setup similar to that of Douglas and Moore [8] by realizing
a U(n) charge N instanton configuration on a Taub-NUT space in Type IIA
string theory. Namely, consider Typer IIA string theory on a direct product
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of the Taub-NUT space and the six-dimensional Minkowski space-time. Let
the coordinates 0, 1, 2, 7, 8, 9 be in the Minkowski space and the remaining
coordinates 3, 4, 5 and 6 in the Taub-NUT space with the 6 coordinate being
the periodic coordinate of the circle of the Taub-NUT. Now introduce n
D6-branes wrapping the Taub-NUT space with the world-volumes in the
0, 1, 2, 3, 4, 5, 6 directions, and N D2-branes that are positioned at points
on the Taub-NUT space with world-volumes in the 0, 1, 2 directions. In the
effective world-volume theory on the D6-brane this configuration is described
by N instantons in the U(n) gauge group on the Taub-NUT.

Performing the T-duality along the periodic Taub-NUT direction 6, we
obtain a Chalmers-Hanahy-Witten configuration [6, 7] of n D5-branes, N D3-
branes and one NS5-brane in a flat ten-dimensional Minkowski space with
direction 6 periodic. The exact orientation of the branes is specified in Table
1.

0 1 2 3 4 5 6 7 8 9
D5 × × × × × ×
D3 × × × ×
NS5 × × × × × ×

Vector A0 A1 A2 Y1 Y2 Y3

Adjoint Hyper Re H2 Im H2 Re H1 Im H1

Table 1: Brane configuration and bosonic bulk matter content of the impurity
theory on the D3-branes.

Now, that we identified the relevant brane configuration, we would like to
describe the theory on the world-volume of the D3-branes. In the absence of
the five-branes this would be a maximally supersymmetric Yang-Mill theory
with the gauge group U(N). As indicated in Table 1 the Vector multiplet
consists of the three-dimensional gauge field with components A0, A1, A2 and
the Higgs fields Y1, Y2, Y3, corresponding to the transverse directions 7, 8, 9
to the D3-branes as well as two Majorana fermions. The Adjoint Hupermul-
tiplet consists of one Dirac fermion, three Hermitian Higgs fields and one
Hermitian connection. We combine these Higgs fields and this connection
into two complex fields H1 and H2, so that ReH2, ImH2,ReH1, are the Higgs
fields corresponding to the transverse directions 3, 4, 5, while ReH1 is the
gauge field connection in direction 6.
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The presence of the five-branes breaks the maximal N = 4 supersym-
metry to N = 2, d = 4 and introduces additional degrees of freedom in
the effective world-volume theory on the D3-brane. Even though the sigma
model analysis of this configuration is difficult due to the presence of both
Ramond and Neveu-Schwarz charges, let us give some local arguments for
the inhomogeneities we are about to introduce.

6.1 D3-D5 Intersection

Let us focus for now on one of the D5-branes with a number of D3-branes
ending on it on the left and the same number ending on the right as in the
left diagram in Figure 4. Assembling the D3-branes together, we can end up
in the middle configuration of Figure 4. Now, we can move the D3-branes in
the direction transverse to the D5, thus ending with the configuration on the
right diagram of Figure 4. This brane configuration contains a massive string
state corresponding to the lowest excitation of the string connecting the D3’s
and the D5’s. Its mass is proportional to the distance between the D3-branes
and the D5-brane and it is clearly in the fundamental representation of the
gauge group on the D3-branes.

Running this argument backwards, moving the D3’s so that they intersect
the D5 renders this fundamental multiplet f massless, and separating the two
parts of the D3-brane amounts to giving it a vacuum expectation value.

Figure 4: Fundamental Multiplet

6.2 D3-NS5 Intersection

Here we focus on the local configuration with the D3-branes in the vicinity
of an NS5-brane as on the left diagram in Figure 5. Moving the D3-branes

14



towards the NS5-brane, so that they intersect as in the middle diagram, we
can now separate the left and the right parts of the D3’s along the NS5-
brane, as in the right diagram of Figure 5. This configuration has a string
state corresponding to the lowest excitation of a string stretching between
the left and right D3-brane ends. This state is in the bifunamental of the
gauge group on the D3-brane and its mass is proportional to the distance
between the two D3 ends.

Again, running the arguments in reverse, we move the left and right
D3-branes’ ends together, so that the bifundamental multiplet B becomes
massless. Now moving the D3-brane off the NS5-brane amounts to giving
this multiplet some vacuum expectation value.

Figure 5: Bifundamental Multiplet

It is clear from the left diagram of Figure 5 that there appears to be
a single gauge group on the D3-brane, so one might ask how this fits with
our description of two gauge groups and a bifundamental multiplet. As
we are about to see in the next section, the D-flatness conditions state,
that the expectation value of the Higgs field corresponding to the D3-brane
position transverse to the NS5-brane equals to the bilinear combination of
the bifundamental multiplet B. As a result the Higgs breaks the product
of the left and right gauge groups to a subgroup of the skew-diagonal that
leaves the bifundamental field invariant.

7 Impurity Theory and Mirror Symmetry

7.1 Theory with Impurities and its D-flatness Condi-
tions

Supersymmetric gauge theories with impurities of codimension one and two
were studied in [32] via the T-duality. We adopt these results to our case in
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this section. We should mention here the superfield formulations of impurity
theories in N = 1, d = 4 [34] and N = 2, d = 3 [35] superspace that can be
adopted in our context by introducing defects with bifundamental multiplets.
The bosonic matter content in the bulk is

• the vector multiplet containing the gauge fields AM with M = 0, 1, 2,
three Higgs fields Y i,

• the adjoint hypermultiplet containing two complex Higgs fields H1 and
H2.

The degrees of freedom localized at the inhomogeneities in the interior at
x6 = λp are two complex fundamental scalars f1p and f2p. The main differ-
ence from [32] is that we introduce bifundamental hypermultiplet B. This
multiplet contains two scalar fields B1 and B2 transforming as bifundamen-
tals with respect to the gauge groups acting on the left (x6 = 0) and the right
(x6 = l) ends of the interval. Augmenting the Lagrangian of [32] with these
bifundamental fields we obtain the following component form of the bosonic
field Lagrangian L = L1 + L2 of the effective theory on the D3-branes. The
bulk Lagrangian L1 (with the index ranges M = 0, 1, 2 and µ, ν = 0, 1, 2, 6)
is given by

L1 =
1

l

∫
d3xMdx6

{
1

2
F 2
µν +

1

2

(
DµY

i
)2

+
1

2
|[DµH

j]|2

− 1

2

∑
i<j

|[Y i, Y j]|2 −
∑
ij

|[Y i, Hj]|2
}
, (27)

and the inhomogeneity Lagrangian

L2 =
1

l

∫
d3xMdx6

{
l
∑
p

δ(x6 − λp)
(∣∣DMf

p
∣∣2 − ∣∣Y ifp

∣∣2)
+ δ(x6)

(∣∣DMB
∣∣2 − ∣∣∣Y j|x6=0+B −BY j|x6=l−

∣∣∣2)
+

1

2
|D|2 + TriDαβ

(
[Hα, H

†β] + l
∑
p

δ(x6 − λp)fpα ⊗ f †pβ+

− δ(x6)B
†β ⊗Bα + δ(x6 − l)Bα ⊗B†β

)}
, (28)
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where ImH1 is understood to be a covariant derivative D6 in the sixth di-
rection (in other words H1 = D6 + T3 = ∂

∂x6
− iT0 + T3), the auxiliary field

Dαβ = Dj(σj)αβ , and DMB is the covariant derivative naturally acting on the
bifundamenal, e.g. DMB1 = ∂MB1 − i(AM |x6=0+)B1 + iB1(AM |x6=l−).

In order to make contact with our notation we let
√
l fp =

(
J†p
Ip

)
, B =(

B†01

B10

)
, and H2 = T1 + iT2, then the D-faltness conditions that are easily

read off from the above Lagrangian become

dT1

dx6

−i[T0, T1] + i[T2, T3] = −1

2

{ k∑
p=1

δ(s− λp)
(
IJ − J†I†)−

− δ(s)(B01B10 −B†10B
†
01) + δ(s− l)(B†10B01 −B†01B10)

}
, (29)

dT2

dx6

−i[T0, T2] + i[T3, T1] = i
1

2

{ k∑
p=1

δ(s− λp)
(
IJ + J†I†

)−
− δ(s)(B01B10 +B†10B

†
01) + δ(s− l)(iB10B01 +B†01B

†
10)

}
, (30)

dT3

dx6

−i[T0, T3] + i[T1, T2] = −1

2

{ k∑
p=1

δ(s− λp)
(
J†J − II†)−

− δ(s)(B01B
†
01 −B†10B

†
10) + δ(s− l)(B†01B01 +B10B

†
10)

}
. (31)

These reproduce exactly the Nahm equations (4), as well as the boundary
conditions (7,8) and the matching conditions (9,10).

7.2 Mirror Symmetry and Bow Reciprocity

The brane configuration identified in Section 6 allows for an S-dual descrip-
tion. S-duality leads to an analogous configuration with NS five-branes in
place of D5-branes and vice versa. From the point of view of the gauge theory
on the D3-brane identified in Section 7.1 this duality is the Montonen-Olive
electric-magnetic duality. The brane picture leads us to conclude that this
duality effectively interchanges the two types of inhomogeneities in our the-
ory, leading to a reciprocity among bows. The reciprocity rule is represented

17



I J ↔ B

Figure 6: Reciprocity Rule

in Figure 6. It amounts to interchanging the fundamental and bifundamental
multiplets and splitting and rejoining the Nahm data intervals accordingly.

If we are to consider a theory with impurities specified by the diagram on
the right in Figure 7, it is a theory with SU(N) gauge group with three inho-
mogeneity hyperplanes: two with fundamental and one with bifundamental
hypermultiplets. Two of the branches of vacua of this theory are described
by the two bow diagrams of Figure 7. The Coulomb branch of the theory
is isometric to the moduli space of N U(1) instantons on a two-centered
Taub-NUT (also called A1 ALF space)1, while the Higgs branch is given by
the moduli space of N U(2) instantons on a Taub-NUT space (A0 ALF). As
usual S-duality maps the above impurity theory to another U(N) impurity
theory with two bifundamental and one fundamental matter multiplets.

To give an example, we apply this rule to the bow diagram of SU(2)
instantons on the Taub-NUT space. The reciprocal pair of diagrams is pre-
sented in Figure 7. The resulting bow diagram describes Abelian self-dual
connections on a two-centered Taub-NUT space.

Let us emphasize that the moduli spaces of a bow and its reciprocal bow
are generically different. What this reciprocity suggests, however, is that
the two bows should be considered together and the moduli space of one is
viewed as a branch of a larger moduli space.

8 Moduli Space of One Instanton

For the case of a single instanton all the instanton data are Abelian and
the Nahm equations imply that all Tj’s for j = 1, 2, 3 are constant on each

1At first sight this moduli space might appear to be empty, however, in the presence
of noncommutativity, indicated here by the difference of the wavy interval lengths, this
space is not trivial.
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Figure 7: A bow pair

interval while T0 can be made constant by a gauge transformation that acts
trivially at the boundary. If the interval has length d, due to a gauge trans-
formation exp

(
2πi s−s0

d

)
, the corresponding T0 is periodically identified with

the period 2π/d. Thus we have three copies of R3×S1 parameterised by the
Nahm data on the three intervals and three copies of R4 parameterized by
(IL, JL), (IR, JR), and (B01, B10). The remaining gauge group acting on these
data is U(1)×4 with the following action

eiφ0 × eiφ1 × eiφ2 × eiφ3 :



B1

B2

IL
JL
IR
JR
TL0
TM0
TR0
Tj


7→



e−iφ0B1e
iφ3

e−iφ3B2e
iφ0

e−iφ1IL
JLe

iφ1

e−iφ2IR
JRe

iφ2

TL0 + (φ1 − φ0)/dL
TM0 + (φ2 − φ1)/dM
TR0 + (φ3 − φ2)/dR

Tj


(32)

It is convenient to introduce quaternionic notation for this data:

XB =

(
B†2 B†1
−B1 B2

)
, XL =

(
I†L −J†L
JL IL

)
, XR =

(
I†R −J†R
JR IR

)
.

(33)
Then the complex structures are given by I = −iσ3,J = −iσ, and K =
−iσ2. The following computation is close to that of [33]. For each of the
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XL, XM , and XR we introduce coordinates ΨL,ΨM , and ΨR via the following
decomposition X = Q exp(−iσ3Ψ/2), with an anti-Hermitian Q and Ψ ∼
Ψ + 4π. For any such X the combination Xσ3X

† is traceless and Hermitian,
thus it can be written in terms of a real three vector ~R, so that ~R·~σ = Xσ3X

†.
The decomposition of X in terms of Q and Ψ was unique up to a change of
the sign of Q assisted by a 2π shift in Ψ, thus X is determined uniquely in
terms of ~R and Ψ. Moreover, the flat metric

I2×2 · ds2
X = dXdX† =

1

4

(
1

|~R|d
~R2 + |~R|(dΨ + Ω)2

)
I2×2, (34)

where dΩ = ∗d 1

|~R|
. If X transforms as X 7→ X exp(−iσ3φ) (i.e. Ψ 7→ Ψ + 2φ)

the corresponding moment map is ~µ = 1
2
~R. On the other hand if the Nahm

data transforms as (T0, ~Tj) 7→ (T0 + φ, ~Tj) the moment map is ~µ = ~T . With
this in mind, we find the following moment maps for the U(1)×4 action of
Eq. (32)

~µ0 = −1

2
~RB − ~TL, ~µ1 = ~TL − ~TM − 1

2
~RL, (35)

~µ3 = −~TR +
1

2
~RB ~µ2 = ~TM − ~TR +

1

2
~RR. (36)

The following invariants of the gauge transformations (32)

θ = ΨB − 2dLT
L
0 −ΨL +

dR
dL

(ΨR + 2dRT
R
0 ), (37)

α = ΨL + ΨR − 2dMT
M
0 , (38)

provide two periodic coordinates of period 4π on the moduli space. In our
case dL = dR = d/2, l = dL + dM + dR, dM = 2λ. Imposing the vanishing of
the moment maps above we have

~TL = ~TR = −1

2
~RB = ~R1, ~TM = ~R2, ~r =

1

2
~RL =

1

2
~RR = ~R1 − ~R2 (39)

ds2 =

(
l +

1

2R1

)
d~R2

1 − 4λd~R1d~r + +

(
2λ+

1

r

)
d~r2 (40)

+

(
1
2
dθ − 1

4
ωR1

)2
l − 2λ+ 1/r + 1/(2R1)

+
1

4

(dα + ωr)
2

2λ+ 1/r
, (41)
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where θ ∼ θ + 4π, α ∼ α + 4π and dωR1 = ∗d(1/R1), dωr = ∗d(1/r). This
metric matches that of [36], where the moduli spaces of the corresponding
three-dimentional gauge theories were studied.

We interpret this moduli space metric in the following way. Just as in the
case of a caloron, an instanton on the Taub-NUT space has two monopole-like
constituents. These constituents are characterized by their positions in the
three-space given by the vectors ~R1 and ~R2 and phases θ1 and θ2 respectively.
The metric above is written in terms of the coordinates and the phase of the
first constituent ~R1 and θ = θ1 and the relative position ~r = ~R1 − ~R2 and
the relative phase α = θ2 − θ1.

9 Conclusions

We presented Bow Diagram formalism which encodes the data determin-
ing instanton configurations on the Taub-NUT and multi-Taub-NUT spaces.
Our discussion here was limited to zero monopole charge and generic Wilson
line at infinity. We motivated our construction by identifying a correspond-
ing string theory brane configuration and analyzing the theory on D-branes’
world-volume. The resulting impurity theory on a four-dimensional space-
time with one compact dimension contains two types of impurities localized
on hyperplanes perpendicular to the periodic direction. We formulate a reci-
procity rule that interchanges the two types of impurities. Applying this
rule to all impurities in a bow leads to a dual bow. Supersymmetry condi-
tions defining the moduli space of the quantum gauge theory are exactly the
moment maps of the corresponding bow.

The bow formulation allows us to find the moduli space of instantons on
the Taub-NUT. We identify it as a finite hyperkähler quotient and establish
its holomorphic equivalence with the moduli space of instantons on R4. As
an example we find the metric on the moduli space of a single instanton on
the Taub-NUT space.
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