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Abstract
The word problem for confluent Thue systems is linear-time and for almost confluent systems

it is PSPACE-complete. Here we consider a single length-preserving rule, of the form xy ↔ yx,
whose word problem could turn out to be tractable.

A search for normal forms leads to the conjecture that if xmyn ↔∗ xpyq then m = p and
n = q.

We prove a stronger version of this: in a group G with the single relator xyx−1y−1, where x

and y are positive words, if xmy−n
= 1 in G then m = n = 0.

1 Introduction
It is known [2,1] that the word problem for confluent Thue systems is solvable in linear time, but
for almost-confluent Thue systems (allowing length-preserving rules) it is PSPACE-complete. This
paper considers Thue systems with a single (length-preserving) rule of the form xy ↔ yx. Our goal
is to give efficient algorithms for such systems.

Such an algorithm should be based on some kind of normal form for strings which should be, say,
of the form xmyn for strings in {x, y}∗. This raises the question: is it possible to convert xmyn to a
different string xpyq by exchanging adjacent occurrences of x and y? Of course, if the occurrences
exchanged in a string in {x, y}∗ are only the obvious, ‘aligned’ ones, then such a conversion could
not be made.

We prove the result for groups with a single relator xyx−1y−1, using the standard ‘Freiheitsatz’
method found in [3].

The final section considers a specimen word-problem in the group and the monoid where x = a

and y = bab.
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2 Definitions, statement of theorem, and the case of a group
Fix an alphabet Σ, strings x, y ∈ Σ∗ with xy 6= yx, and the Thue system with the single rule xy ↔ yx.

We claim the following

(2.1) Theorem If xmyn ∗
↔xpyq then m = p and n = q.

More generally,

(2.2) Theorem Let G be the group with presentation 〈Σ | xy = yx〉, where x and y are positive
words. Then the subgroup 〈x, y〉 of G is free abelian of rank 2.

(2.3) Lemma If xy 6= yx in the free monoid Σ∗ (respectively, the free group F (Σ)), then x and y

generate {x, y}∗ (respectively, 〈x, y〉) freely.

Proof. The group result implies the monoid result. In order to prove the group case, assume that
there exists a nontrivial relator in 〈x, y〉. This implies that 〈x, y〉 is trivial or free on one generator, so
xy = yx which contradicts our hypothesis. Q.E.D.

In the group case we consider single-relator groups of the form

(2.1) 〈Σ | xyx−1y−1〉

where x and y are positive words.
The appropriate form for Theorem 2.2 is

(2.4) Theorem In the group (2.1), if m 6= 0 or n 6= 0 then xmyn 6= 1 in G.

Proof. An old result of Schützenberger [6] says that no non-trivial commutator is a proper power,
which implies that G is torsion-free (see [3]). This deals with the case when either n = 0 or m = 0.

Now assume that n 6= 0 and m 6= 0 and that G is a counterexample with R = xyx−1y−1 of
minimal length (w.r.t. Σ). Thus for some (non-zero) n and m we have xm = yn. Since x and y are
non-commuting positive words, it is clear that R has length at least four and involves all the letters
that occur in x or y. We use Magnus’ standard method for one-relator groups (see [3]).

First assume that some letter, a say, occurs with exponent sum zero in x or y. Then, since every
letter has exponent sum zero in xyx−1y−1, a has in fact exponent sum zero in both x and y. Let
Σ = {a, b, c, . . .} and let H be the normal subgroup of G generated by Σ \ {a}. Then x, y, R ∈ H

and H has a presentation with generators

bi = aiba−i, ci = aica−i, . . . i ∈ Z

and defining relators Ri, i ∈ Z, where Ri is obtained by rewriting aiRa−i in terms of these generators.
This rewriting is done by replacing each occurrence of b, c, . . . in R, by bk, ck, . . . where k is the
exponent sum of a in the prefix of R up to the letter to be replaced. For example, the word ab−1a−2cab

gets rewritten into b−1

1 c−1d0. It follows that, if Λ denotes the set of those generators that appear in
R0, then 〈Λ | R0〉 is a presentation for the subgroup, L say, of H generated by Λ (see II.5.2 in [5]).
Since x and y are elements of L and R0 = x̄ȳx̄−1ȳ−1 where x̄ and ȳ denote the results of rewriting
x (respectively, y), we see that L is also a counterexample. But, since a occurred in R, R0 is shorter
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(w.r.t Λ) than R (w.r.t. {a, b, c, . . .}). This contradicts our assumption that G was a ’minimal’ counter
example and hence finishes this case.

Now we treat the case when all letters that occur in R have non-zero exponent sum in x, and
hence also in y. Observe that R involves at least two letters, a and b say. Let α and β be the exponent
sum of a and b, respectively, in x. Let p and q be letters not in Σ and let x̂, ŷ and R̂ denote the words
obtained by replacing a by pβ and b by qp−α in x, y and R, respectively. Now x̂, ŷ and R̂ are all
elements of a group generated by {p, q, c, d, . . .} and R̂ = x̂ŷx̂−1ŷ−1. In fact, they are all elements of
the normal closure of {q, c, d, . . .} in this group, as the exponent sum of p in x̂ and R̂, and hence in ŷ

is zero. Therefore, we can rewrite them in the generators qi = aiqa−i, ci = aica−i, . . ., i ∈ Z of this
normal subgroup, just as above. Since p occurred in R̂, the result of rewriting R̂, call it R′, is shorter
than R. It is clear that the subgroup K generated by those generators that appear in R′ contains x̂ and
ŷ and has a R′ as its sole relator. Thus K is a counterexample with a shorter relator than G which is
our final contradiction. Q.E.D.

3 Specimen algorithms
(3.1) Example: x = a, y = bab. If we first consider the group:

G = 〈a, b; abab = baba〉

Let c = ab

〈a, c; c2 = a−1c2a〉

〈a, c; ac2 = c2a〉.

That is, the relator allows a to commute with c2. Consequently a and a−1 both commute with c2 and
c−2. We can apply these rules to push even powers of c as far to the left as possible, so every word z

can be converted to the form c2sz1 where z1 is a product of powers of a, only the first and last being
possibly zero, alternating with c±1. This gives a normal form for z. Under the map a 7→ a, c 7→ c we
can map G to the group

G′ = 〈a, c; c2 = 1〉 ∼= Z ∗ Z2

which sends z1 to a word of identical appearance and sends c2s to 1. If z1 6= 1 in G then its image is
nontrivial in G′, so z1 must be unique for z. The map a 7→ a, c 7→ 1 sends c2sz1 and c2s′z1 to different
elements of 〈a〉 ∼= Z if s 6= s′. In other words, we have a normal form for elements of G, and a
polynomial-time solution to the word problem — for the group. (The textboox [4] contains several
examples like this.)

The semigroup problem is harder. Starting with a string z ∈ {a, b}∗, we can, of course, introduce
c into z to replace ab. To cut a long story short, we consider the following semi-Thue system over
{a, b, c}:

ab → c, ac2 → c2a, bc2 → c2b, bca → c2.

Two rules are length-reducing and the length-preserving rules move occurrences of c further to the
left. If we apply leftmost reductions, the quantity

length of z + maximum distance of a redex from the right-hand end of z

is reduced in every step. Therefore the system is Noetherian; in fact, no string z can be reduced more
than 2|z| times, and z can be reduced in linear time. Also it is Church-Rosser, since all critical pairs
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can be resolved:

abc2 → c3, abc2 → ac2b → c2ab → c3,

abca → c2a, abca → ac2 → c2a,

bcab → c2b, bcab → bc2 → c2b,

bcac2 → c4, bcac2 → bc3a → c2bca → c4.

This is a Noetherian confluent semi-Thue system, and the word-problem is solvable in linear
time.
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