
A simple bound for sequential access in splay trees

Colm Ó Dúnlaing∗

Mathematics, Trinity College, Dublin 2, Ireland

(Revised 2010)

Abstract

This note improves upon an earlier analysis of the author’s [2]. Using methods from
that paper, we give a different proof that the cost of traversing a binary tree by repeated
splay-to-root is O(n), a result originally due to Tarjan [5].

1 Introduction

Splay trees are binary trees continually modified by ‘splaying’ [4]. It was established by Tarjan
in 1985 [5] that the cost of traversing by repeated splay-to-root is O(n). Since then there have
been several other proofs of varying strength and difficulty: it is now known that the cost is at
most 4.5n [1]. Related problems are still under investigation [3].

The present author derived a weaker estimate through a detailed analysis of various recur-
rences [2]. This note extends that analysis to derive an O(n) estimate using a method different
from those already published.

2 Definitions

To splay a node, not the root, in a binary tree, means to bring it closer to the root by one
rotation if its parent is root, else two, as illustrated: see [4].

C
D A

B

C DBA
B C

A

A B

C

zig
zigzig

A
B C

D

A DCB C
D

A

Bzigzag zigzag

We consider a binary tree being traversed by fetching the nodes in inorder, by which we
mean repeatedly bringing the nodes to the root by splaying.

T (s) denotes the tree after s fetches. The spine, spine(s), is the maximal left branch in
T (s) containing the next node, the (s + 1)st, to be fetched. Analysis reveals that each fetch
modifies the tree as illustrated (depending on the parity of |spine(s)|).

∗e-mail: odunlain@maths.tcd.ie. Mathematics department website: http://www.maths.tcd.ie.

1

A0 A1
A2

A3 A4

A5

x0

A6

A1

A2

A3

A4

A5

x0

A6

A0

A4

A0

A1

A2

A3

A5

x0 A0 A1
A2

A3 A4

A5

x0

We use the following notation: x0, . . . , xr are the spine nodes, and x0 will be fetched next; Ai

is the right subtree of xi. First, fetching: splaying causes x0 to be fetched, becoming the root.
Second, halving: for i ≥ 1, xi is displaced from the spine if i is even. That is, the arrangement
xi−1Ai−1xiAi is adjusted so that xi−1 has right subtree Ai−1xiAi. Third, extending: A0 becomes
the left subtree of x1 (extending the spine if A0 is nonempty). Because of halving,

(2.1) |spine(k) ∩ spine(k + 1)| = b|spine(k)|/2c.

It can be shown (e.g., [2]) that the highest nodes on the spine have been there longest; at
the bottom is a sequence of ‘fresh’ nodes which have just been introduced; and in-between are
‘recycled’ nodes which have been on the spine before, pushed off it, and restored to the spine.
(Any of these sets could be empty.)

The overall traversal cost (in rotations) is

(2.2)

(

n−1
∑

s=0

|spine(s)|

)

− 1.

A (spine) block (B, s) [2, Definition 2.3] is a subinterval of consecutive nodes on spine(s).
Sometimes the sequence B itself will be called a block, with s understood. For the sake of
generality, B can be empty.

For every node u, there is an earliest s such that u ∈ spine(s). Let Bs be the block of nodes
whose first occurrence is on spine(s), i.e., the ‘fresh’ nodes on spine(s). If Bs 6= ∅ then Bs is
leftmost on the spine (i.e., contains the leftmost node in spine(s)).

(2.3) Definition Cs is the set of nodes in spine(s) but not in spine(s − 1) (if s > 0). That
is, C0 = B0 = spine(0) and if s > 0 then Cs contains all nodes brought onto the spine by
‘extending’ as described above. Cs is a block on spine(s) and it contains Bs (leftmost).

(2.4) Lemma Let cs = |Cs|. The total spine length, and therefore the traversal cost, is ≤
2
∑

cs.

Proof.

|spine(0)| = c0

|spine(s + 1)| ≤
|spine(s)|

2
+ cs+1 :

∑

s

|spine(s)| ≤ (c0 + c0/2 + c0/4) + (c1 + c1/2 + c1/4) + . . . + cn

< 2(c0 + c1 + . . . + cn).

2

Repeated splay-to-root operations compress blocks into shallow binary trees. As defined in
[2, Section 3], given a node v in a block (B, s), it goes through several generations: When v
first joins the spine, until it first leaves the spine, it is first generation — relative to (B, s); if
not fetched it becomes second-generation, remaining so while it rejoins the spine and until it
next leaves the spine, and so on, until it is fetched.

Given any maximal left branch in some T (t), those nodes in the branch which belong to
B form an offline branch, provided the intersection is nonempty; an offline child fragment is
an offline branch which contains at least one second-generation node1: and when an offline
child fragment gets pulled back onto the spine it becomes an (online) child fragment. Recur-
sively this spawns descendant fragments (with parents and ancestors in the obvious way). The
‘descendant’ relation is a reflexive.

There is an obvious thinning-out effect which dictates that a fragment is usually much
shorter than its parent, but not always so.

(2.5) Definition A fragment F is short if |F | ≤ 2, long if |F | ≥ 3.
Suppose that (F, s) is a child fragment of (G, r). F is exceptional if F = G, i.e., the nodes

in G recur in spine(s).

(2.6) Proposition (i) Only short fragments can be exceptional. (ii) There exists a constant γ
such that for every block B, the total length of all its non-exceptional descendant fragments is
≤ γ|B| [2, Corollary 6.5].

The qualifier ‘non-exceptional’ is needed because a short fragment can recur arbitrarily
often.

(2.7) Corollary The total length of all long descendant fragments, together with their short
children, is at most 3γ|B|.

Proof. If F is a long fragment, then it has at most |F | first-generation children relative to
F . Counting only the short ones, the total length is ≤ 2|F |. Summing over all long descendants
F , it adds at most 2γ|B| to the total length.

Colour scheme. In Lemma 2.4 Cs is the set of nodes x where x is introduced or restored
to the spine at time s. Note Cs ⊇ Bs and Cs occurs leftmost in spine(s). Let us colour the
nodes x ∈ Cs green if x ∈ Bs or the fragment (descendant of some earlier block) containing x
is a long fragment, otherwise red. Nodes in spine(s) ∩ spine(s − 1) are colourless.

By the above proposition the total number of green nodes (summed over all s) is at most
γn.

It remains to count the red nodes. At each time-step s, the spine contains an alternating
set of red and green blocks. Each block will be allocated a set of credits which so that the total
credit bounds the total size of all red blocks.

The ‘child fragment’ relation prompts us to think of the descendant fragments of a (nonempty)
block B as a tree. From Proposition 2.6, the long fragments form a prefix subtree whose total
fragment length is ≤ γ|B|.

1Offline nodes are second generation and higher.

3

The credit system below, allotted to red and green blocks, is intended to cover the cost
(i.e., length) of all red blocks.

The coloured nodes in a spine occur alternating in red and green intervals. Let us call each
such interval a red or green band. A band is a block under a new name. The red bands will be
organised into clusters. Clusters are trees whose nodes are red bands. Each cluster has a root
band, and a child of a band is a fragment in the earlier sense. Now, however, fragments may
be absorbed in new clusters.

All the credits will first be allocated to the fetch steps and the green bands, subsequently
transferred to the red bands. This transfer is legitimised by the following easy

(2.8) Lemma If (X, s) and (Y, s) are blocks and X ⊆ Y , then every fragment of X is contained
in a fragment of Y .

The allocation scheme is dictated by Corollary 2.7. From a red band R one expects at most
3γ|R| red nodes in long descendant fragments together with any short children. Thus a root
band R must receive 3γ|R| credits.

A red band R is designated a root band if it is long, and it is a concatenation of fragments
F1F2 . . . Fr, where either r = 1 and the parent of F1 is green, or r > 1.

So, when creating a new cluster rooted at R, for each fragment Fi it is required to obtain
3γ|Fi| credits from elsewhere. There are several cases.

• Case 1. The parent Gi of Fi is green. Take 3γ|Fi| credits from Gi.

• Case 2. Gi is long and red. Take 3γ|Fi| credits from the root of the cluster containing
Gi (Fi and its descendants are deleted from that cluster).

• Case 3. Gi is short (and red). Take 3γ|Fi| credits from Gi. Note |Gi| ≤ 2 and its child
fragments add up to at most |Gi|.

We need 3γ|B|+ |B| credits for each short red band B, |B| for the band itself and the rest
to cover Case 3. If there are k red bands in Cs, then there are at least k − 1 green bands. If
2 + 6γ credits are allocated to the fetch step and to each of the k − 1 green bands, they can be
transferred to the adjacent short red bands.

Case 1 can be covered with by allocating 3γ|B| more credits to each green band B. Thus
(2 + 6γ)n + (2 + 9γ)T credits are enough, where T is the total number of green nodes. But
T ≤ γn, so in the notation of Lemma 2.4,

∑

cs ≤ δn where δ = 2 + 8γ + 9γ2.

There are at most 2δn rotations (Lemma 2.4). This is a new O(n) estimate, but the constant
is huge ([2, Section 6]).

3 References

1. Amr Elmasry (2004). On the sequential access conjecture and deque conjecture for splay
trees. Theoretical Computer Science 314:3, 459–466.

4

2. Colm Ó Dúnlaing (2003). Inorder traversal of splay trees. Electronic Notes in Theoretical
Computer Science 74, 24 pages.

3. Seth Pettie (2008). Splay trees, Davenport-Schinzel sequences, and the deque conjecture.
Proc. 19th ACM-SIAM Symposium on Discrete Algorithms, 1115–1124.

4. Robert E. Tarjan (1983). Data structures and network algorithms. SIAM.

5. Robert E. Tarjan (1985). Sequential access in splay trees takes linear time. Combinatorica
5:4, 367–378.

5

