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Abstract

We present explicit BPS field configurations representing one non-
abelian monopole with one minimal weight ’t Hooft operator insertion.
We explore the SO(3) and SU(2) gauge groups.

In the case of SU(2) gauge group the minimal ’t Hooft operator
can be completely screened by the monopole. If the gauge group is
SO(3), however, such screening is impossible. In the latter case we
observe a different effect of the gauge symmetry enhancement in the
vicinity of the ’t Hooft operator.
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1 Introduction

’t Hooft operators [1] play a central role in recent studies of the Montonen-
Olive duality [2] as electric-magetic duals of the Polyakov-Wilson operators
[3]. Their significance as Hecke operators in the geometric Langlands pro-
gram is elucidated in [4].

By a ’t Hooft operator we understand an insertion of a Dirac monopole
imbedded into the gauge group in question. In other words, in the vicinity
of an insertion point in the three-dimensional space, we impose the following
boundary conditions [5] on the gauge fields

F =
B

2
dΩ2, (1)

where dΩ2 is the volume form of a unit sphere surrounding the point and
B is the Lie algebra element satisfying exp(2πiB) = I. The ’t Hooft charge
of such an operator takes values in H2(S2, π1(G)). It vanishes if the gauge
group G is SU(2) and is Z/2Z valued if G is SO(3). Strictly speaking only
the operators with nonzero ’t Hooft charge are significant in [1], but here we
forgo this restriction and adopt the more general definition of [3] and [4]. A
minimal ’t Hooft operator is an insertion of a Dirac monopole of the lowest
possible charge. Here we focus on such minimal operator insertions.

BPS monopoles [7, 6] with ’t Hooft operator insertions are solutions of
the Bogomolny equation [7]

Fij = −εijk[Dk, Φ], (2)

with prescribed Dirac type singularities. Explicitly, condition (1) implies
that the Higgs field near the insertion point at ~z = ~0 is gauge equivalent to

SO(3) : Φjk = −iε1jk
1

2z
+ O(z0), (3)

SU(2) : Φαβ = σ3
αβ

1

2z
+ O(z0). (4)

Here εijk is a completely antisymmetric tensor and σ1, σ2, and σ3 are the
Pauli sigma matrices. We used the technique of the Nahm transform [8]
to obtain the explicit solutions presented here. The detailed derivation will
appear in [9]. The solutions below have been explicitly verified numerically
and analytically.
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When the separation ~d between the ’t Hooft operator insertion and the
nonabelian monopole is large, i.e. d = |~d | � 1, 1/λ, we expect the fields
Φ = (Φij) and A = (Aij) with

SO(3) : Φij = −2iεijkφ
k, Aij = −2iεijkA

k, (5)

SU(2) : Φ = ~σ · ~φ, A = ~σ · ~A, (6)

to approach those of the ’t Hooft-Polyakov BPS monopole solution [10, 11, 6]

~φ =
(
λ coth(2λr)− 1

2r

)~r

r
, (7)

~A =
( λ

sinh(2λr)
− 1

2r

)~r × d~x

r
. (8)

For the ’t Hooft operator insertion at ~p and the monopole position parameter
~m we denote the separation parameter by ~d = ~m−~p, the position with respect
to the monopole by ~r = ~x−~m, and the position with respect to the singularity
by ~z = ~x− ~p. We let r = |~r| and z = |~z|.

2 Solutions

It is convenient to introduce D = 2zd + 2~z · ~d = (z + d)2 − r2, and to

use the vector-valued functions ~φ = (φ1, φ2, φ3) and ~A = (A1, A2, A3). Then
the monopole solutions of the Bogomolny Eq. (2) satisfying the boundary

conditions (3) and (4) are provided by Eq.(5) and Eq.(6) above with ~φ and
~A given respectively as follows:

SO(3) Case:

~φ =

((
λ +

1

4z

)k

l
− 1

2r

)
~r

r
− r

2zl
√
D

(
~d− ~r · ~d

r2
~r

)
,

~A =

((
λ +

z + d

2D

)√D
l
− 1

2r

)
~r × d~x

r
(9)

− r

2l
√
D

(
~z × d~x

z
+
( k√

D
− 1
)(~r · (~z × d~x))

rz

~r

r

)
,

where

l = (z + d) sinh(2λr) + r cosh(2λr), (10)

k = (z + d) cosh(2λr) + r sinh(2λr). (11)
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SU(2) Case:

~φ =

((
λ +

1

2z

)K
L
− 1

2r

)
~r

r
− r

zL

(
~d− ~r · ~d

r2
~r

)
,

~A =

((
λ +

z + d

D

)D
L
− 1

2r

)
~r × d~x

r
(12)

− r

L

(
~z × d~x

z
+
(K
D
− 1
)(~r · (~z × d~x))

rz

~r

r

)
,

where

L = ((z + d)2 + r2) sinh(2λr) + 2r(z + d) cosh(2λr), (13)

K = ((z + d)2 + r2) cosh(2λr) + 2r(z + d) sinh(2λr). (14)

3 Analysis

The form of the expressions (9) and (12) makes the large separation limit
transparent. Indeed, in this limit the fields near the ’t Hooft operator inser-
tion (d →∞, z finite) reproduce those of Eqs. (3,4), while near the monopole
core (d →∞, r finite) they approach the ’t Hooft-Polyakov solution (7, 8).

There is a substantial difference in the behavior of these solutions as we
decrease d and the nonabelian monopole and the ’t Hooft operator collide.
The SO(3) solution at d = 0 becomes another ’t Hooft operator with the
Higgs field

~φ =

(
λ− 1

4r

)
~r

r
, (15)

while the SU(2) solution in this limit becomes trivial with F = 0, and Φ
constant. The latter illustrates the screening effect, in which a nonabelian
monopole completely screens the point-like singularity of the ’t Hooft oper-
ator. A priori one might think such screening impossible since the ’t Hooft-
Polyakov monopole has a finite size of order 1/λ and finite energy density
in the core, while the Dirac singularity of the ’t Hooft operator is pointlike
with the energy density divergent at one point. Electric-magnetic duality,
however, suggests such screening as a possible dual explanation of screening
of Wilson line operators by quarks. Our solution (12) resolves this seeming
contradiction as we now explain.
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(a) Gauge group SO(3). (b) Gauge group SU(2).

Figure 1: Higgs field profiles for λ = 1. Dashed lines correspond to |Φ|2 = 1
2
,

the shaded area |Φ|2 ≤ 1
2
, and the dark region indicates the position of the

monopole core.

There is a number of ways to explore the size of the monopole. One is via
the energy density distribution E ∼ 1

2
Tr(F 2 +(DΦ)2) = (∂2

x1
+∂2

x2
+∂2

x3
)TrΦ2

and another is by how much the gauge symmetry is broken by the Higgs field.
In particular, we might think of the position of the monopole as the point
where the Higgs field vanishes and the gauge symmetry is fully restored. A
word of caution is due here. Even though the parameter ~d is a good indication
of the monopole relative position when d is large, it is not the point where
the Higgs field vanishes, rather, at ~d (i.e. at ~r = ~0) we have

SO(3) : |~φ| = 1

4d(1 + 4λd)
, SU(2) : |~φ| = 1

4d(1 + 2λd)
. (16)

For the two gauge groups the profiles of |Φ|2 = 1
2
TrΦ2 at large separation

parameter d look remarkably similar to each other. They do differ drastically,
however, for small values of d. One can infer from Figs. 1(a) and 1(b) how
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the position and size of the monopole vary with d. The shaded areas in
these graphs corresponds to the values of |Φ|2 ≤ 1/2 and we choose the
asymptotic condition to be |Φ(∞)| = λ = 1. z3 is the coordinate along the
line originating at the ’t Hooft operator and passing through the monopole.
The dark area in the middle corresponds to the values of |Φ|2 < 0.007, giving
a good indication of the position of the monopole center.

In the case of the SU(2) gauge group, Fig. 1(b), the monopole shrinks to
zero size as it approaches the singularity and screens the ’t Hooft operator
completely. In the case of the SO(3) gauge group, as the parameter d →
0, the longitudinal size of the monopole decreases somewhat, approaching
a constant. Instead of the monopole shrinking to zero size, we observe it
spreading transversely and eventually encircling the singularity. This is also
indicated by the expression (15) representing the limiting configuration to
be an ’t Hooft operator surrounded by a sphere of vanishing Higgs field at
z = 1

2λ
.

(a) Gauge group SO(3). (b) Gauge group SU(2).

Figure 2: Energy density contour plots for λ = 1.

Energy density plots of Figs. 2(a) and 2(b) support this picture. They

present the contour levels of ∆~φ
2
, which is proportional to the energy density
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E , due to Bogomolny Eq. (2) and the Bianchi identity. As d → 0 the energy
density for the SO(3) gauge group case approaches a steady distribution
diverging at the origin, while for the SU(2) case the energy density decreases
uniformly and, at d = 0, vanishes everywhere.

4 Comments

One can view the two solutions discussed here as part of the same picture
since every SU(2) solution can be viewed as one with the gauge group SO(3)
by factoring out the center of the group. Thus, we can reinterpret Eq.(12)
combined with Eq.(5) as an SO(3) monopole with the charge two ’t Hooft
operator insertion. Such an interpretation provides a topological reason for
our observations in the previous section. For the gauge group SO(3) the
’t Hooft charge takes value in Z/2Z. The solution (5, 9) has ’t Hooft charge
one operator insertion and thus it is topologically protected. The solution
(5, 12), however, has Dirac charge two and thus vanishing ’t Hooft charge
operator insertion which, as a result, can be screened completely. One can
view the latter charge two configuration as a limit of two minimal ’t Hooft
operators approaching each other. We explore such a limit in more detail in
the near future [9].
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