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We compute charmonium spectral functions in 2-flavor QCD on anisotropic lattices using the
maximum entropy method. Our results suggest that the S-waves (J/ψ and ηc) survive up to tem-
peratures close to 2Tc, while the P-waves (χc0 and χc1) melt away below 1.2Tc.

I. INTRODUCTION

The properties of hadrons or hadronic resonances
above the deconfinement transition is a subject at the
heart of the current experimental programme at RHIC.
Questions of interest include the issue of which hadrons
survive as bound states in the quark–gluon plasma, and
up to which temperature; as well as the transport prop-
erties of light and heavy quarks in the plasma.

Of particular interest are charmonium states, follow-
ing the suggestion [1] that J/ψ suppression could be a
probe of deconfinement. Potential model calculations
using the heavy quark free energy have tended to sup-
port this picture. However, previous lattice simulations
in the quenched approximation [2–5] indicate that con-
trary to this, J/ψ may survive up to temperatures as
high as 1.5− 2Tc. Recently, potential model calculations
using the internal energy of the heavy-quark pair have
reached the same conclusion, and using the most recent
lattice data [6] these models indicate a qualitatively sim-
ilar picture in the case of Nf = 2 QCD [6–8]. Support
has also been provided by studies employing a real-time
static potential [9, 10] and a T-matrix approach which in-
cludes scattering states [11]. Note, however, that doubts
have been expressed whether any potential model can
satisfactorily describe the high-temperature behaviour of
quarkonium correlators [12], while some recent potential
model studies have questioned the survival of quarkonia
[13].

There are now high-statistics data available for J/ψ
production at SPS [14, 15] and RHIC [16], showing simi-
lar amounts of suppression at both experiments, despite
the big difference in energy density. Two different sce-
narios have been developed to explain this result. The
sequential suppression scenario [17] takes its cue from lat-
tice results, suggesting that the entire observed suppres-
sion originates from feed-down from the excited 1P and
2S states, which melt shortly above Tc, while the 1S state
survives up to energy densities higher than those reached
in current experiments. On the other hand, the regener-
ation scenario [18–21] suggests that additional charmo-
nium is produced at RHIC energies from coalescence of
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c and c̄ quarks originating from different pairs.
Lattice simulations with dynamical fermions (2 or 2+1

light flavors) will be one of the essential ingredients in
resolving several of these issues. In the present paper, we
present first results from such simulations. Preliminary
results have appeared in Refs. [22, 23].

Hadron properties are encoded in the spectral func-
tions ρΓ(ω,p), which are related to the imaginary-time
correlator GΓ(τ,p) according to

GΓ(τ,p) =

∫ ∞

0

dω

2π
K(τ, ω)ρΓ(ω,p), (1)

where the subscript Γ corresponds to the different quan-
tum numbers. The kernel K is given by

K(τ, ω) =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )
. (2)

From now on we consider zero momentum only and drop
the p dependence.

Spectral functions can be extracted from lattice corre-
lators G(τ) using the Maximum Entropy Method (MEM)
[24]. For this to work and give reliable results, it is neces-
sary to have a sufficient number of points in the euclidean
time direction: at least O(10) independent lattice points
are needed. At T ∼ 2Tc, this implies a temporal lat-
tice spacing aτ

<
∼ 0.025 fm. If the spatial lattice spacing

as were to be the same, a simulation with dynamical
fermions on a reasonable volume would be far too expen-
sive to carry out with current computing resources.

In order to make the simulation feasible, anisotropic
lattices, with aτ ≪ as, are therefore required. However,
dynamical anisotropic lattice simulations introduce addi-
tional complications not present in isotropic or quenched
anisotropic simulations. The anisotropic formulation in-
troduces two additional parameters, the bare quark and
gluon anisotropies, which must be tuned so that the
physical anisotropies are the same for gauge and fermion
fields. In the presence of dynamical fermions, this re-
quires a simultaneous two-dimensional tuning, which has
been described and carried out in Ref. [25].

In this study we attempt to determine charmonium
spectral functions in 2-flavor QCD using anisotropic lat-
tices and the Maximum Entropy Method. The MEM
analysis has been performed using Bryan’s algorithm [26]
with the modified kernel recently introduced in Ref. [27].
We found that this greatly improved the stability and
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convergence properties of MEM. In Sec. II we describe
our procedure and simulation parameters. In Sec. III we
briefly discuss the spectrum at zero temperature, while
Sec. IV contains the main body of our results above Tc. A
detailed discussion of dependence on the default model,
time range, energy cutoff and statistics is given in Sec. V.
Finally, in Sec. VI we discuss remaining uncertainties and
give our conclusions and prospects for further work.

II. SIMULATION DETAILS

We use the Two-plaquette Symanzik Improved gauge
action [28] and the fine-Wilson, coarse-Hamber-Wu
fermion action [29] with stout-link smearing [30]. The
process of tuning the action parameters, and the param-
eters used, are described in more detail in Ref. [25]. We
have performed simulations with parameters correspond-
ing to Run 6 in Ref. [25] as well as at the tuned point,
which we denote Run 7. The parameters are given in
Tables I and II. They correspond to a spatial lattice
spacing as ≈ 0.165 fm with a (renormalised) anisotropy
ξ = as/aτ ≈ 6. The sea quark mass corresponds to
mπ/mρ ≈ 0.54. The lattice spacing was determined from
the 1P–1S splitting on the 123×80 Run 7 lattice; the Run
6 lattice spacing was then determined using the 1P–1S
splitting on the 83×80 lattice corrected for finite volume
effects.

The pseudocritical temperature Tc was determined by
measuring the Polyakov loop 〈TrL〉 on 123 × Nτ lat-
tices on Run 6. A jump in the value of 〈TrL〉 was
found between Nτ = 34 and 33, so we conclude that
aτTc ≈ 1/33.5, or 205–210 MeV for both parameter sets.
We have not been able to determine the pseudocritical
temperature Tc to greater precision on these lattices be-
cause of the finite lattice size. Partly for this reason, we
have chosen to express our temperatures in units of MeV
rather than as T/Tc, as is often done in quenched stud-
ies. Since this analysis is carried out with 2 dynamical
light quark flavors, there is also less need to rescale tem-
peratures with Tc to correct for the difference between
the simulation and the real world with 2 + 1 light quark
flavors.

We have computed charmonium correlators in the
pseudoscalar (ηc) and vector (J/ψ) channels, as well as
the scalar (χc0) and axial-vector (χc1) channels. In the
nonrelativistic quark model, the former two are S-waves
and the latter two P-waves. In this study we have used
local (unsmeared) operators,

GΓ(τ) =
1

N3
sNτ

∑
x,y,t

〈M†
Γ(x, t)MΓ(y, t+ τ)〉 , (3)

where

MΓ(x, τ) = ψ(x, τ)Γψ(x, τ) , (4)

and Γ = γ5, γi, 1, γ5γi for the pseudoscalar, vector, scalar
and axial-vector channel respectively. All-to-all propaga-
tors [31] have been used to improve the signal and sample

Run ξ0g ξ0s ξg ξs a−1
τ as ξ0c aτm

0
c

6 8.06 7.52 5.90 6.21 7.06GeV 0.167fm 5.9 0.08, 0.092

7 8.42 7.43 6.04 5.84 7.23GeV 0.163fm 5.9 0.117

TABLE I: Simulation parameters. ξ0g,s,c are the bare (input)
anisotropies for gluons (g), sea quarks (s) and charm quarks
(c), while ξg,s are the renormalised (measured) anisotropies.
The charm quark anisotropy was tuned independently to give
an output anisotropy of 6. aτ and as are the temporal and
spatial lattice spacings. The bare sea quark mass is aτms =
−0.057 for both sets of parameters, with mπ/mρ = 0.54.

Run Ns Nτ T (MeV) T/Tc Ncfg

6 8 80 88 0.42 250

12 33 214 1.02 80

8 32 221 1.05 500

12 32 221 1.05 400

12 31 228 1.08 100

12 30 235 1.12 100

12 29 243 1.16 100

12 28 252 1.20 125

8 24 294 1.40 1000

12 24 294 1.40 500

8 20 353 1.68 1000

12 20 353 1.68 1000

8 18 392 1.86 1000

8 16 441 2.09 1000

12 16 441 2.09 500

7 8 80 90 0.42 250

12 80 90 0.42 250

8 32 226 1.05 1000

8 24 301 1.40 1000

8 16 451 2.09 1000

TABLE II: Lattices and parameters used in this simulation.
The separation between configurations is 10 HMC trajecto-
ries, except for the Nτ = 80 runs where configurations were
separated by 5 trajectories.

information from the entire lattice. The propagators were
constructed with no eigenvectors and two noise vectors
diluted in time, color and even/odd in space. On the 83

lattices, for Run 6, we have computed correlators for two
different bare quark masses, aτmc = 0.080 and 0.092, as
the precise charm quark mass had not been determined
on these lattices. Both masses are somewhat smaller than
the physical charm quark mass. This may result in an un-
derestimate of the melting temperatures for the P-waves.
For Run 7 we used aτmc = 0.117, tuned to reproduce the
physical J/ψ mass on the 123 × 80 lattices. The bilin-
ear operators have not been renormalised, so our results
only concern the shapes of the resulting correlators and
spectral functions, not their overall magnitude.
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Run aτmc mPS mV mAV mSC

6 0.080 2.643 2.689 3.118 3.018

0.092 2.800 2.835 3.233 3.209

7 0.117 3.145 3.174 3.637 3.615

TABLE III: Ground state masses (in GeV) at zero tempera-
ture from a variational calculation. The aτmc = 0.08 results
were obtained by extrapolation from two higher masses.
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FIG. 1: Pseudoscalar spectral function at zero temperature
on the 83

× 80 lattice (Run 7). The dashed line denotes the
standard spectroscopy result quoted in Table III.

III. ZERO TEMPERATURE

The charmonium spectrum at zero temperature (Nτ =
80) has been computed using standard spectroscopic
methods, with a variational basis of smeared operators
in S-, P- and D-wave channels. Preliminary results were
presented in Refs. [32, 33]; the full results will be re-
ported elsewhere [34]. Here we only report results for
ground state S-wave (pseudoscalar, vector) and P-wave
(axial, scalar) masses, which are given in Table III.

In Figure 1 we show the pseudoscalar spectral function
for our T = 0 lattice (83 × 80, Run 7). Each spectral
feature is fitted to a Gaussian with peak position M , full
width at half maximum Γ. The “error” bars shown in the
figure require careful interpretation. The horizontal bar’s
centre and width represent M and Γ respectively, and its
height represents the area of the Gaussian evaluated over
the range M − Γ/2 to M + Γ/2. The vertical error bar
represents the error in this area as determined by the
Bryan algorithm [26]. The width of the horizontal bar
does not correspond to the error in the peak’s position.
We expect that this width is primarily determined by
statistics, and will decrease as our correlators become
better determined, see Sec. V.

The position of the primary peak can be seen to agree
with the standard spectroscopy results within errors. The
second peak at 4.1 GeV cannot be identified with the first
radial excitation ηc(2S), which has a mass of 3.64 GeV;
rather, it is most likely a combination of the 2S, 3S and

4S states, possibly with some contamination from lattice
artefacts. With more statistics it should be possible to
resolve these states further, as has been demonstrated in
quenched QCD some time ago [35]. The third bump in
the spectral function is most likely a lattice artefact, cor-
responding to a cusp in the free lattice spectral function.
As shown in the Appendix, the free spectral function has
cusps at aτω ∼ 0.72 and 1.14, corresponding to 5 and
8 GeV respectively; these may merge or be pushed to
higher energies in the interacting case.

We find the same picture in the vector channel. In the
axial and scalar channels the spectral function is much
less well determined; however, the position of the primary
peak is found to agree within errors with the standard
spectroscopy result also in these channels.

IV. HIGH TEMPERATURE

Spectral functions just above Tc (T = 226 MeV,
T/Tc = 1.05) are presented in Fig. 2. We show results
in four channels, on the 83 × 32 lattice (Run 7). To ob-
tain these results, we used the continuum free spectral
function m(ω) = m0ω

2 as default model and discretised
the energy integral (1) using aτ∆ω = 0.005 and a cutoff
aτωmax = 5.0 (ωmax = 35 GeV). Since the first two times-
lices may contain short-distance lattice artefacts we have
usedG(τ) at τ/aτ = 2, . . . , Nτ/2 in Eq. (1). An extensive
discussion on the dependence on these choices is given in
Sec. V. In all channels we find a peak which is consis-
tent with the zero-temperature ground state mass. There
are indications that the vector, axial-vector and scalar
masses have shifted slightly upwards, although this can-
not be determined with any certainty given our current
precision. The second peak at ω ≈ 6 GeV is again most
likely a lattice artefact, as discussed in the Appendix for
the free theory. It should be noted that the proximity of
this second peak may distort the shape of the primary
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FIG. 2: Spectral functions on the 83
× 32 lattice (Run 7),

in the pseudoscalar (PS), vector (V), axial-vector (AV) and
scalar (SC) channels.
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FIG. 3: Reconstructed correlator in the vector (J/ψ) and
pseudoscalar (ηc) channel, for different temperatures, on 83

×

Nτ lattices. The filled symbols are for Run 7, while the open
symbols are for Run 6, aτmc = 0.092.

peak. In order to fully disentangle the first peak from
any lattice distortions, simulations with finer lattices are
necessary. However, at this temperature the structure in
the spectral functions is quite robust and, given the po-
sition of the first peaks, we are confident that they are
separate features corresponding to the ground states in
the respective channels.

A. Reconstructed correlators

One way of determining whether or not medium modi-
fications of hadron properties are present, is by studying
reconstructed correlators [36]. These are correlators ob-
tained by integrating up Eq. (1) with the spectral func-
tion ρ(ω;T0) obtained at some reference temperature T0,
and the temperature-dependent kernel K(τ, ω;T ). If the
spectral function is unchanged, the reconstructed corre-
lator Grec(τ) will be equal to the actual correlator G(τ),
while, conversely, if Grec(τ) 6= G(τ) this shows that the
spectral function must be modified. In this procedure
MEM is only used at the lowest temperature T0 (with
the largest value of Nτ ), making this analysis a robust
tool for higher temperatures. As we will demonstrate
shortly, we find that the conclusions drawn from the re-
constructed correlators in our dynamical simulations are
surprisingly close to those obtained in quenched lattice
QCD studies [4, 5].

Figure 3 shows the reconstructed correlator in the S-
wave (vector and pseudoscalar) channels, using the spec-
tral functions obtained at T = 221 (Run 6) and 226 (Run
7) MeV (Nτ = 32, see Fig. 2) as the reference point. In
the pseudoscalar channel we see very little change: only
at the highest temperature (T = 441 and 451 MeV for
Run 6 and 7 respectively; T/Tc = 2.1) does the recon-
structed correlator differ from the actual one by more
than 3% at large imaginary time. This suggests that ηc
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FIG. 4: Reconstructed correlator in the scalar (χc0) and axial-
vector (χc1) channel, for different temperatures, on the 123

×

Nτ lattice (Run 6, aτmc = 0.080).

survives relatively unscathed in the medium up to this
temperature, although it cannot be ruled out that even
a 2% change in the reconstructed correlator may corre-
spond to substantial modifications in the spectral func-
tion [13]. In the vector channel, somewhat larger modifi-
cations are seen, although still less than 10% at the high-
est temperatures. This may be related to the transport
contribution which can be present in vector correlators,
and is related to quark diffusion [37–39]. We have also
compared the pseudoscalar correlator at Nτ = 32 with
the reconstructed correlator from the zero-temperature
spectral function shown in Fig. 1. In that case we found
no more than a 1.5% difference at large τ .

Figure 4 shows the reconstructed correlator in the
P-wave (scalar and axial-vector) channels, again using
T = 221 MeV as reference temperature. Here we see
much greater changes in a smaller temperature range: al-
ready at T = 235 MeV (T/Tc = 1.12) the long-distance
correlator differs from the reconstructed one by 20%,
while at T = 252 MeV (T/Tc = 1.2) the difference is
up to 50%. If we instead use T = 0 as reference temper-
ature, we find that the T = 221 MeV correlator differs
from the reconstructed one by a factor 2.5 at large dis-
tances and by 20% at τ/aτ = 10. We infer that there
are considerable medium modifications in this channel
for Tc

<
∼ T <

∼ 1.2Tc. Whether this corresponds to ther-
mal broadening, a mass shift or melting of the χc1 state,
will be investigated in the following.

B. Temperature-dependent spectral functions

We now proceed to a discussion of temperature depen-
dence of spectral functions in the range Tc

<
∼ T <

∼ 2.1Tc.
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FIG. 5: Pseudoscalar spectral function for different temper-
atures on the 83

× Nτ lattice, for Run 7 (top) and Run 6,
aτmc = 0.092 (bottom). All results have been obtained using
m(ω) = 3ω2, ωmax = 35 GeV, and τ/aτ = 2, . . . , Nτ/2.

1. Pseudoscalar channel

Figure 5 shows the pseudoscalar spectral function at
various temperatures on the 83 × Nτ lattices. The ηc

peak can be seen to persist up to at least T = 392 MeV
(Nτ = 18). At our highest temperature, T = 440 −
450 MeV (Nτ = 16), no peak survives for Run 7 or for
the larger lattice on Run 6, while the smaller lattice on
Run 6 shows a distorted peak structure with a very large
uncertainty in the peak height. Since the correlators on
the two volumes differ by less than 0.5%, this discrepancy
is more a sign of a breakdown of MEM than a physical
effect. At these high temperatures the small number of
available points means that it can not be determined at
present whether the disappearance of the peak signals the
melting of the resonance or the failure of the maximum
entropy method. Indeed, the spectral function obtained
from Run 6 Nτ = 32 correlators using the same time
range (τ = 2 − 8) and default model also exhibits no
peak.

The possibility that at higher temperatures there is no
bound state, but only a threshold enhancement, must
also be considered. Because of the proximity of the
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FIG. 6: As in the lower panel of Fig. 5, for the vector spectral
function, using m(ω) = 8ω2.

second peak, our spectral functions are nonzero every-
where, and we are therefore not able to unambiguously
distinguish the two possibilities. However, a threshold
enhancement would be expected to become smaller as
the temperature is increased, while we find a remarkably
constant peak, consistent with a bound state. Because of
these uncertainties, we are not in a position to conclude
exactly when the ηc melts. However, our results suggest
that the ηc state is bound up to T ≈ 392 MeV.

In general, we see very little volume dependence in this
channel, with the Ns = 12 data for the most part being
completely compatible with the Ns = 8 data. This is
consistent with ηc being a compact bound state with a
diameter much smaller than our lattice size, and indicates
that this remains the case in the plasma up to the point
where it melts.

2. Vector channel

The spectral function in the vector channel is shown
in Fig. 6. We observe the same pattern as in the pseu-
doscalar channel. The ground state peak appears to melt
around 350 MeV (T/Tc ≈ 1.7, Nτ = 20), although it is
again difficult to draw firmer conclusions, especially at
higher temperature. At the highest temperature no peak
is visible any more. Instead, we find nonzero spectral
weight at all energies. This may be related to a trans-
port contribution, signalling a nonzero charm diffusion
coefficient. We hope to address this in the near future.

3. Axial channel

Fig. 7 shows the temperature dependence of the axial-
vector spectral function on the 12 × Nτ lattice (Run 6,
aτmc = 0.08). Since the P-waves are much more sensi-
tive to finite volume effects than the S-waves, we use the
larger volume in this analysis. The ground state peak
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FIG. 7: Axial-vector spectral function for different temper-
atures on the 123

× Nτ lattice (Run 6, aτmc = 0.080). All
results have been obtained using m(ω) = 2ω2, ωmax = 35
GeV, and τ/aτ = 1, . . . , Nτ/2.
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FIG. 8: As in Fig. 7, for the scalar spectral function, using
m(ω) = ω2.

appears to survive up to T = 243 MeV (T/Tc = 1.16,
Nτ = 29), while at T = 252 MeV (T/Tc = 1.2, Nτ = 28)
there is no sign of any χc1 peak. We interpret this as
a sign of the melting of χc1 somewhere in this tempera-
ture range. A more detailed study of the 123 × 28 data
reveals that by varying m(ω) or ωmax it is, however, pos-
sible to reproduce a weak χc1 peak, indicating that the
bound state may still not have completely disappeared
at this point. Higher statistics and lattices closer to the
continuum limit will be required to resolve this issue.

4. Scalar channel

Finally, in Fig. 8 the scalar spectral function is shown
for temperatures ranging from 219 MeV to 252 MeV. We
see a similar pattern as in the axial channel, although
the χc0 state appears to melt at somewhat lower temper-
ature than the χc1 state: at T = 235 MeV (T/Tc = 1.12,

Nτ = 30) there is no sign of any surviving bound state.
However, the scalar correlators are considerably noisier
than the axial-vector correlators, so it is possible that we
simply do not at present have sufficient statistics to ob-
tain a signal in this channel. Indeed, given the slightly
smaller change in the correlators shown in Fig. 4, a lower
melting temperature seems surprising. Increased statis-
tics will be required to resolve this issue.

V. MEM SYSTEMATICS

In order to study the robustness of the spectral func-
tions shown in the previous section, we now consider the
dependence of the MEM output on the parameters that
can be varied. This includes the default model depen-
dence, dependence on the energy cutoff and discretisa-
tion, dependence on the time range used in the analysis
and the role of finite statistics. We focus on the pseu-
doscalar and axial-vector spectral functions on lattices
with a time extent of Nτ = 32, since we find that the
vector and scalar channels behave qualitatively similar
to the pseudoscalar and axial channels respectively.

We start with a discussion of the choice of default
model. Since we are primarily interested in the prop-
erties of the spectral functions in the 3 − 5 GeV region,
we have mostly used the continuum free spectral function
m(ω) = m0ω

2 as default model, rather than the default
model m(ω) = m0ω(b + ω) proposed in Ref. [27], which
allows for nontrivial behaviour in the ω → 0 limit. At
the intermediate energies considered here, we find that
the two models result in the same spectral function if
the same value for the model parameter m0 is used, al-
though the second one tends to yield lower values for m0,
when m0 is determined by a single parameter fit to the
correlator, using Eq. (1). In addition, we have also used
two other default models: m(ω) = m0 and m(ω) = m0ω,
which have very different high-energy behaviour. To as-
sess the sensitivity of our results to the choice of default
model, we have varied the parameter m0 over a wide
range. The output using these different models gives an
indication of how tightly the data constrain the spectral
function.

Fig. 9 (top) shows the pseudoscalar spectral function
for a large class of default models. The first three de-
fault models vary in their normalisation over more than
two orders of magnitude. Since the vertical axis of Fig. 9
is ρ(ω)/ω2, these three default models could be plotted
as horizontal lines, at 0.3, 8, and 80 respectively. The
fourth and the fifth default model differ from the first
three particularly at small ω. The final two default mod-
els (m(ω) = m0 and m(ω) = m0ω) behave in a qualita-
tively different manner, as 1/ω2 and 1/ω respectively in
this plot. In the absence of any input information from
the euclidean correlators, the MEM output reproduces
the default model. Since this is not happening here,
we conclude that the MEM procedure is fairly robust
against variations in the default model. In particular,
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FIG. 9: Pseudoscalar spectral functions on the 83
×32 lattice

(Run 7), for different default models (top) and energy cutoffs
(bottom).

we find that the leading edge of the spectral function is
very robust, while also the height and position of the first
peak are reasonably independent of the choice of default
model.

For some choices of default models parameters (espe-
cially for larger values ofm0) there appears to be a middle
peak just above 4 GeV, or a broadening of the primary
peak. This second peak, when it appears, coincides more
or less with the second peak in the zero-temperature spec-
tral function. This is too high to correspond directly to
the radial excitation, η′c (3638MeV), but it might corre-
spond to a radial excitation modified by medium effects
and the nearby lattice doubler. However, since this peak
is not reproduced for most of the parameters shown, we
are cautious attaching too much physical value to it.

The energy integral (1) has been discretised with
aτ∆ω = 0.005 and a cutoff at ωmax. We have studied the
sensitivity of the results to the cutoff by varying ωmax,
while keeping ∆ω fixed; in practice we find that varying
∆ω does not change the results. In Fig. 9 (bottom) we
show the dependence of the pseudoscalar spectral func-
tion on the energy cutoff ωmax. We find little sensitivity,
provided that ωmax

>
∼ 28 GeV, or aτωmax

>
∼ 4.

We have performed the same analysis also on the Run 6
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FIG. 10: Axial-vector spectral function on the 123
×32 lattice

(Run 6) with aτmc = 0.092, for different default models (top)
and different energy cutoffs (bottom).

lattices, for both charm quark masses and both volumes,
and find very little dependence on either energy cutoff or
default model in this case.

In the axial-vector and scalar channel we expect finite
volume effects to be significant. Therefore we will here
analyse the larger lattice, 123 × 32.

In the top panel of Fig. 10 we show the effect of vary-
ing the default model m(ω) on the axial-vector spectral
functions. There is a great deal of variation, but in all
cases we find either a ground state peak corresponding
to the χc1 state and a second peak at 6 − 7 GeV, or a
broad structure encompassing the two, with a plateau in
the middle. In this case, we cannot say with any con-
fidence whether what we see is a bound state peak or
a continuum threshold, but the presence of a structure
near the χc mass may indicate that χc1 survives at this
temperature, close to but just above Tc, albeit possibly
in a modified form. Generically, we find that the spec-
tral function analysis is less robust for P-waves than for
S-waves, which may be due to the local operators used
in this study.

In the lower panel of Fig. 10 we show the effect of
varying the energy cutoff ωmax on the axial-vector corre-
lator. We see very little dependence on the cutoff, in the
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FIG. 11: Pseudoscalar spectral function on the 83
×32 lattice

(Run 7) for different time ranges used in the MEM analysis:
fixed τmin (top) and fixed τmax (bottom).

range shown here, but for lower energy cutoffs, ωmax
<
∼ 28

GeV, the peaks become more “washed out”. We take this
as evidence that although the maximum energy for free
fermions is aτωmax = 1.48, in the interacting theory the
spectral function reaches higher energies, which must be
included in the integral.

The effect of varying the time range (τmin, τmax) used in
the MEM analysis is shown in Fig. 11 for the pseudoscalar
correlators. We find a reasonable stability in our results
as long as at least 10 data points are included; for τmin =
2 or 3 even fewer points are required to reproduce the
spectral function.

We have carried out the same analysis at all tempera-
tures, in order to try to clarify whether the presence or
absence of a ground state peak is a physical effect or an
artefact of the MEM. This is illustrated in Fig. 12 for
the pseudoscalar channel at T = 294 MeV (83 × 24) and
T = 392 MeV (83 × 18). We see evidence of a surviving
ground state (ηc) peak, but there is a quite strong de-
pendence on both default model and energy cutoff, which
becomes stronger as the temperature is increased. This
means that our data are not sufficient to unambiguously
determine whether the bound state survives at these tem-
peratures, much less to say anything quantitative about
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FIG. 12: Pseudoscalar spectral function at higher tempera-
ture on the 83

× 24 (top) and 83
× 18 (bottom) lattice (Run

6), for different default models.

changes to the spectral function.
Finally, spectral functions reconstructed using MEM

on a finite sample will always display a finite peak width,
so the width of the peaks found here cannot be di-
rectly interpreted as a thermal width of the correspond-
ing mesonic states. (A further limitation is given by the
finite resolution offered by the singular value decomposi-
tion procedure used in our MEM analysis, but we believe
we are not yet in this regime when Nτ = 32.) One may
attempt to disentangle the unphysical statistical width
from a possible physical thermal width by varying the
number of configurations used. Specifically, if the shape
of the spectral function is found to be independent of the
statistics above a certain number of configurations, one
can be more confident in the physical relevance of the
results.

In Fig. 13 we show the pseudoscalar spectral function
on the 83×32 lattice, obtained using different numbers of
configurations. We see that as the number of configura-
tions is reduced, the primary peak at first gets narrower,
then remains approximately constant before broadening
somewhat for the lowest statistics. The rather surprising
initial narrowing may be related to the disappearance of
the weak secondary peak discussed above, in which case
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FIG. 13: Pseudoscalar spectral function on the 83
× 32 lat-

tice for varying statistics, with ωmax = 35 GeV, τ/aτ =
2, . . . , Nτ/2 and m(ω) = 3ω2 (top), m(ω) = 16ω2 (bottom).

it may be argued that the peak width for intermediate
statistics is in fact a real thermal width. To test this hy-
pothesis, we also show, in the bottom panel of Fig. 13,
the spectral functions obtained from the same data but
with m(ω) = 16ω2, where we already have seen that
three peaks are produced. We see that as the statistics
are reduced, the middle peak vanishes, but the primary
peak remains unchanged. Only for very low statistics
did we find a broadening. This lends some support to
the hypothesis that the middle peak is indeed related to
a surviving η′c state. However, this result must be treated
with caution because of the proximity of the lattice arte-
fact peak at ω ∼ 6 GeV.

VI. DISCUSSION AND CONCLUSIONS

We have computed charmonium correlators at a range
of different temperatures on anisotropic lattices with two
light sea quark flavors. We find that the S-wave (vector
and pseudoscalar) correlators remain largely unchanged
as the temperature is increased up to about twice the
pseudocritical temperature, or 400 MeV. The P-wave
correlators, on the other hand, exhibit substantial mod-

ifications already between 220 and 250 MeV. This be-
haviour of the correlators is in good agreement with
what has been found in quenched QCD studies [2–5].
Using the maximum entropy method to obtain the cor-
responding spectral functions, our results indicate that
the ground state S-wave peak survives largely unchanged
up to T ∼ 390 MeV, while at our highest temperature,
T ≈ 440 MeV, uncertainties in the MEM procedure pre-
vents us from drawing any conclusion about the presence
or absence of a ground state. In the axial-vector (P-wave)
channel, we find that the ground state appears to melt
between 240 and 250 MeV, although higher statistics will
be needed to draw definite conclusions. The scalar me-
son χc0 appears to melt earlier, although this may be a
function of limited statistics. Generically, we find that
the spectral function analysis for S-waves is more robust
than for P-waves, which may be related to the local oper-
ators used to represent the meson states. There is some
indication that a radial S-wave excitation may survive in
the plasma phase just above Tc, but it is premature to
draw any conclusions about this. Again these results are
in qualitative agreement with most corresponding calcu-
lations in the quenched approximation [2–5].

Our results appear to be compatible with the sequen-
tial charmonium suppression scenario [17], which requires
that S-waves melt at T >

∼ 2Tc while P-waves melt close
to Tc. A simple hydrodynamical model calculation based
on the sequential suppression picture [40] gave melting
temperatures of 2.1Tc for the S-waves and 1.34Tc for the
P-waves and radial excitation. The former is quite com-
patible with our results, while the latter appears quite
high; however, given the simplicity of the model calcula-
tion and the systematic uncertainties in our calculation,
the discrepancy is relatively minor.

There are several features of this calculation which
must be improved before any firm, quantitative conclu-
sion can be reached. The most important of these re-
late to the use of a single, fairly coarse lattice spacing,
as ≈ 0.17 fm and aτ ≈ 0.028 fm. As a result, we are un-
able to reach temperatures much beyond 2Tc or 440 MeV,
and our results at the highest temperatures are subject
to uncertainty due to the small number of points in the
imaginary-time direction. Furthermore, lattice artefacts
at larger energies expected from free fermion calculations
are close to the first peak representing the groundstate
at lower temperatures, which complicates a straightfor-
ward interpretation. A finer lattice would help overcome
both of these problems. Simulations on finer lattices,
bringing the main systematic uncertainties in this study
under control, are currently underway.

We also note that the fairly heavy sea quarks bring
Tc up from its physical value of 150–200 MeV [41–43],
as does the absence of a third active flavor. Lighter sea
quarks will also facilitate charmonium dissociation and
thus bring down the melting temperature. Simulations
with lighter sea quark masses are planned.

In terms of addressing the experimental situation, two
further developments are possible. Firstly, the RHIC



10

experiment corresponds to a small but nonzero baryon
chemical potential, while the calculations presented here
have been carried out at zero chemical potential. It
would be useful to calculate the response of the meson
correlators to a small chemical potential to determine
what, if any, effect this has. Secondly, and perhaps more
importantly, the J/ψ particles which escape from the
plasma and are observed as dileptons in detectors will
have nonzero (transverse) momentum, and the momen-
tum and rapidity dependence of the J/ψ yields is a cru-
cial factor in differentiating different models [16, 20]. It
is therefore important to study the temperature depen-
dence of charmonium correlators and spectral functions
also at nonzero momentum. This is currently underway.
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APPENDIX A: FREE LATTICE SPECTRAL

FUNCTIONS

In order to estimate lattice artefacts, we have studied
meson spectral functions in the free lattice theory, fol-

lowing the approach of Refs. [44–46]. Since the temporal
discretisation in the fermion action used in this paper is
identical to the standard Wilson fermions, most details
can be found in Section 3.1 of Ref. [45]. Here we only list
the expressions that are different.

The fermion dispersion relation is determined by

cosh (aτEk) = 1 +
K2

k + M2
k

2(1 + Mk)
, (A1)

where in this case

Kk =
µr

6ξ

3∑
i=1

γi (8 sin ki − sin 2ki) ,

Mk = µraτm+
2s

ξ

3∑
i=1

(3 − 4 cos ki + cos 2ki) , (A2)

with µr = 1 + aτm/2 and s = 1/8. The free meson
spectral functions take the same form as in Ref. [45]; the
only change is in the coefficient Si(k), which now reads

Si(k) =
iµr

6ξ

8 sin ki − sin 2ki

2Ek cosh(Ek/2T )
. (A3)

The finiteness of the Brillouin zone results in lattice arte-
facts in spectral functions. In particular there are cusps
at ω = 2Ek, when k = (π, 0, 0) and (π, π, 0). The maxi-
mal energy is given by ω = 2Ek, when k = (π, π, π). For
aτm = 0.1, this corresponds to cusps at aτω = 0.72 and
1.14, and a maximal energy of aτω = 1.48.
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[25] R. Morrin, A. Ó Cais, M. Peardon, S. M. Ryan and



11

J.-I. Skullerud, Phys. Rev. D74, 014505 (2006), [hep-
lat/0604021].

[26] R. K. Bryan, Eur. Biophys. J. 18, 165 (1990).
[27] G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Phys.

Rev. Lett. 99, 022002 (2007), [hep-lat/0703008].
[28] C. Morningstar and M. J. Peardon, Nucl. Phys. Proc.

Suppl. 83, 887 (2000), [hep-lat/9911003].
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