
OBSTRUCTIONS TO EMBEDDABILITY INTO HYPERQUADRICS AND

EXPLICIT EXAMPLES

DMITRI ZAITSEV

Abstract. We give series of explicit examples of Levi-nondegenerate real-analytic hypersurfaces
in complex spaces that are not transversally holomorphically embeddable into hyperquadrics of
any dimension. For this, we construct invariants attached to a given hypersurface that serve
as obstructions to embeddability. We further study the embeddability problem for real-analytic
submanifolds of higher codimension and answer a question by Forstnerič.

Contents

1. Introduction 2
2. Preliminaries and further results 4
3. Some algebraic operations with multilinear functions and transformation formulas 7
3.1. An algebra of symmetric multilinear functions 7
3.2. Transformation of submanifolds jets via embeddings 8
3.3. Relations between jets of defining functions and of the Segre varieties 11
4. Applications to embeddings of hypersurfaces 14
4.1. Linear dependence of partial derivatives 14
4.2. Polynomial relations for the partial derivatives of Q 15
5. Polynomial relations for the derivatives of the defining functions 17
6. Invariants attached to real hypersurfaces 18
7. Distinguished submanifolds of the Segre varieties and lower order obstructions 19
8. Embeddability of submanifolds of higher codimension 23
8.1. Obstructions to embeddability 23
8.2. Most generic submanifolds of higher codimension are not embeddable 25
Appendix A. Obstructions to biholomorphic equivalence to real-algebraic submanifolds 28
References 29

2000 Mathematics Subject Classification. 32H02, 32V20, 32V30, 32V40.
The author was supported in part by the RCBS grant of Trinity College Dublin and by the Science Foundation

Ireland.
1
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1. Introduction

The celebrated Whitney and Nash theorems about embeddings of general smooth and Rie-
mannian manifolds into their models (affine and euclidean spaces) provide important tools for
studying geometry of these manifolds. The corresponding embeddability phenomena for Levi-
nondegenerate real hypersurfaces in Cn (with models being the hyperquadrics in view of the
Chern-Moser theory [CM74]) proves to be more difficult: On the one hand, Webster [W78] showed
that any Levi-nondegenerate real-algebraic hypersurface is holomorphically (and transversally, see
§2) embeddable into a Levi-nondegenerate hyperquadric (of suitable dimension depending on the
hypersurface). On the other hand, it has been known since the work of Forstnerič [Fo86] and Faran
[Fa88] that there exist strongly pseudoconvex real-analytic hypersurfaces not admitting any holo-
morphic embedding into a sphere in a complex space of any dimension. (More recently Forstnerič
[Fo04] extended these results to embeddings into hyperquadrics.) In fact, such nonembeddable
hypersurfaces have been shown to form a set of the first category in a suitable natural topology.
Despite of this, it appears to be difficult to obtain explicit examples of such hypersurfaces, none of
which seems to be known.The given proofs used non-constructive Baire category arguments and
did not lead to concrete examples.

It is one of the goals of the present paper to give explicit examples of nonembeddable real-
analytic hypersurfaces of this kind. Such hypersurfaces, in particular, cannot be algebraic nor
even biholomorphically equivalent to algebraic ones in view of the mentioned result of Webster.
Thus we have to involve infinite power series:

Theorem 1.1. Any hypersurface in C
2 given by a convergent power series of the form

(1.1) Im w = zz̄ + Re

∑

k≥2

akTzkz̄(k+2)! + Re

∑
bkmlz

k z̄m(Re w)l,

where ak 6= 0 for all k and the second sum ranges over all k, m, l satisfying k, m ≥ 2, k ≤ (m + l)!
and m ≤ (k+l)!, is not holomorphically embeddable into a sphere of any dimension. More generally
(see Remark 2.1 below), it is not transversally holomorphically embeddable into a hyperquadric of
any dimension.

As a special case we have, for instance, the following explicit nonembeddable example:

Corollary 1.2. The hypersurface given in C2 by

(1.2) Imw = zz̄ + Re

∑

k≥2

zk z̄(k+2)!, (z, w) ∈ C
2, |z| < ε,

for any 0 < ε ≤ 1 is not transversally holomorphically embeddable into a hyperquadric of any
dimension.

A brief glance at (1.2) reveals the basic nature of this hypersurface: in the expansion
∑

Pk(z̄)zk

of the right-hand side, the degree of the polynomial Pk grows rapidly with respect to k. These
polynomials arise as partial derivatives in z at z = 0 of the complexified defining function of
the hypersurface. For hypersurfaces of general form, we evaluate the partial derivatives of the
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defining function along the Segre varieties (see below for a definition). The above mentioned
growth condition on the degrees of polynomials is then replaced by a rational dependence relation
for those partial derivatives (which need not be polynomials in general). The latter dependence
relations arise as obstructions to embeddability into a sphere (or a hyperquadric) (see §2 and §7).
These obstructions can also be restated in terms of invariants attached to a given hypersurface (see
§6) that can be directly calculated for given examples. We further show that the latter invariants
serve as lower bounds for the minimum possible dimension of the sphere (or hyperquadric), where
the given hypersurface can be holomorphically embeddable (resp. transversally holomorphically
embeddable). Those minimum dimensions (so-called “CR complexity”) appear to be important
(see e.g. the recent work of Baouendi-Ebenfelt-Huang [BEH06]), but to our knowledge, no bounds
for them have been previously known.

The nonembeddability into a hyperquadric also implies the nonembeddability into any Levi-
nondegenerate real-algebraic hypersurface as a consequence of the mentioned result by Webster.
Note that examples of strongly pseudoconvex real-analytic hypersurfaces that are not biholomor-
phically equivalent (rather than embeddable) to any real-algebraic one are known due to Huang-
Ji-Yau [HJY01]. See also Baouendi-Ebenfelt-Rothschild [BER00] for an earlier non-pseudoconvex
example. Gausier-Merker [GM04] gave obstructions to biholomorphic equivalence to real-algebraic
submanifolds for generic real-analytic submanifolds that are of the tube form, have minimal pos-
sible dimension of their infinitesimal CR automorphism algebra and are minimal and finitely
nondegenerate. In Appendix A we briefly illustrate how our methods can be utilized to ob-
tain further such obstructions for general generic submanifolds without any restrictions, that
can be used to obtain other examples. However, it remains open whether these examples are
transversally embeddable into real-algebraic hypersurfaces of higher dimension. Remarkably, em-
beddings into infinite-dimensional spheres or hyperquadrics always exist, see Lempert [L82, L90]
and D’Angelo [D84, D93].

Forstnerič [Fo04] furthermore obtains results on the nonembeddability of “most” generic sub-
manifolds of higher codimension into real-algebraic generic submanifolds of possibly higher di-
mension but the same codimension. However, his method does not apply to embeddings of CR
manifolds of higher codimensions into spheres or hyperquadrics (having codimension 1) and hence
he raises the question (Problem 2.3) whether also here the set of all embeddable manifolds forms
a set of the first category. We answer this question affirmatively with our method in Theorem 8.4.

The paper is organized as follows. In §2 we collect some basic material and notation, state
one of the main results about obstructions to embeddability for hypersurfaces and give large
series of explicit nonembeddable examples based on these results. In Remark 2.4 we illustrate
the sharpness of Theorem 2.2 by comparing the conclusion with the Chern-Moser theory in the
case of biholomorphic equivalence. §3 contains the algebraic core of the paper, where we establish
transformation rules for jets of submanifolds and defining functions that may be of independent
interest. The most crucial and nontrivial parts are the weight estimates. In §4 we apply the
abstract results from the previous section to embeddings of hypersurfaces into hyperquadrics.
This leads to obstructions to embeddability of hypersurfaces into hyperquadrics in terms of their
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complex defining equations of the form w = Q(z, z̄, w̄) (with (z, w) not necessarily being the normal
coordinates in the sense of [BER99]). In §5 we prove Theorem 2.2 in a slightly more general form. In
§6 we attach to every germ of a real-analytic hypersurface a series of invariant integers that can be
used as lower estimates for the dimension of a hyperquadric, where the hypersurface is transversally
embeddable. In §7 we obtain lower order obstructions than those given by Theorem 2.2 in the
cases when the CR dimension of the given hypersurface is high. This extends the phenomenon
revealed by the Chern-Moser theory that the obstructions for M ⊂ Cn+1 from being equivalent to
a hyperquadric are of lower order for n ≥ 2 than for n = 1. A new tool developed here is that of
distinguished submanifolds of the Segre varieties that are invariantly associated with real-analytic
hypersurfaces. Finally in §8 we extend some of our results to embeddings of submanifolds of higher
codimension into hyperquadrics and give an answer to the question of Forstnerič mentioned above.

2. Preliminaries and further results

Recall that a real hyperquadric in Cn+1 is a real hypersurface given by

(2.1) Imw = h(z, z̄)

in some linear coordinates (z, w) ∈ Cn × C, where h(z, z̄) is a hermitian form. By a holomorphic
embedding of a real submanifold M ⊂ Cn into a real submanifold M ′ ⊂ Cn′

we mean a holomorphic
embedding H of a neighborhood of M in C

n into C
n′

with H(M) ⊂ M ′. An embedding H is said
to be transversal to M ′ if H∗(TxCn) + TH(x)M

′ = TH(x)C
n′

whenever x ∈ M . We say that M is

transversally holomorphically embeddable into M ′ ⊂ Cn′

if there exists a transversal holomorphic
embedding of M into M ′. The transversality assumption is used to avoid trivial embeddings of M
into complex affine subspaces inside M ′. In case M and M ′ are hypersurfaces, transversality of an
embedding of M into M ′ also guarantees that the Levi form of M coincides with the restriction
of that of M ′.

Remark 2.1. An embedding of a submanifold M of positive CR dimension into a strictly pseu-
doconvex hypersurface M ′ is automatically transversal. (Recall that the CR dimension of M at
p ∈ M is the complex dimension of the complex tangent space T c

pM := TpM ∩ iTpM .) Indeed,
for p ∈ M , write L : T c

pM × T c
pM → (TpM/T c

pM) ⊗ C for the Levi form and use the correspond-

ing notation for M ′. If H is any holomorphic map of a neighborhood of M in Cn into Cn′

with
H(M) ⊂ M ′, then one has H∗(T

c
pM) ⊂ T c

H(p)M
′ and H∗L(u, u) = L′(H∗u, H∗u) for u ∈ T c

pM . If

H is an embedding, one has H∗u 6= 0 for u 6= 0. Then, since M ′ is strongly pseudoconvex, one has
L′(H∗u, H∗u) 6= 0 and therefore H∗L(u, u) 6= 0. The latter is a condition in (TH(p)M

′/T c
H(p)M

′)⊗C,
which easily implies the transversality.

The reader is referred to Ebenfelt-Rothschild [ER06] for a more general and detailed analysis of
transversality of holomorphic maps between CR manifolds of the same dimension and to Baouendi-
Ebenfelt-Rothschild [BER07] for holomorphic maps between hypersurfaces of different dimensions.

Let M ⊂ Cn+1 be a real-analytic hypersurface with a fixed reference point p ∈ M that we shall
assume to be 0 for simplicity. We choose local holomorphic coordinates Z = (z, w) ∈ Cn × C
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defined in a neighborhood of 0 and vanishing at 0, together with a real-analytic defining function
ρ(Z, Z̄) of M (that we think of as a power series in (Z, Z̄) convergent in a neighborhood of the
origin) satisfying ρw(0, 0) 6= 0. Recall that the Segre variety of a point ζ ∈ C

n+1, associated to
M , is defined by Sζ := {Z : ρ(Z, ζ̄) = 0} (see e.g. [W77] for basic facts about Segre varieties).
In particular, we shall consider the Segre variety S0 corresponding to the reference point 0. We
shall always assume that S0 is connected. We use the subscript notation (sometimes separated by
commas) for the partial derivatives, i.e.

ρzβws = ρzβ ,ws =
∂|β|+sρ

∂zβ1

1 · · ·∂zβn
n ∂ws

,

for a multiindex β = (β1, . . . , βn) ∈ Nn and an integer s ∈ N (where we keep the usual convention
that N begins with 0). To the derivatives of ρ, we assign the following weights that will appear
natural in the transformation rules below:

(2.2) wt ρzαws := 2|α| + s − 1, α ∈ N
n, s ∈ N.

Thus the derivative ρw is the only one with weight 0 and hence not contributing to the total
weight. Therefore we shall count it separately, denoting by degρw

P the degree of the polynomial
P in the variable ρw (i.e. the maximal power of ρw that appears in P ).

Theorem 2.2. Let M ⊂ Cn+1 be a real-analytic hypersurface through 0 given by ρ(Z, Z̄) = 0 with
ρw(0, 0) 6= 0. Suppose that M is transversally holomorphically embeddable into a hyperquadric in
Cn+m+1. Then for any set of m + 1 multiindices αj ∈ Nn, |αj| ≥ 2, j = 1, . . . , m + 1, there exists
an integer k with K := {j : |αj | = k} 6= ∅ such that the partial derivatives of ρ satisfy a relation
of the form

(2.3)
∑

j∈K

Pj(ρzβws(0, ζ̄)) ρz
αj (0, ζ̄) = R(ρzβws(0, ζ̄)), ζ ∈ S0,

where Pj(ρzβws(0, ζ̄)) and R(ρzβws(0, ζ̄)) are polynomials in the partial derivatives ρzβws(0, ζ̄) with
0 < |β| + s ≤ k, 0 < |β| < k, such that not all Pj(ρzβws(0, ζ̄)) identically vanish in ζ ∈ S0.
Moreover, Pj and R can be chosen satisfying in addition the following weight and degree estimates:

(2.4)
wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1,
degρw

Pj ≤ (2k − 2)l, degρw
R ≤ (2k − 2)l + 1,

where l ≥ 1 is the number of all j with |αj | ≤ k.

In fact, we shall prove a more general version of Theorem 2.2 in the form Theorem 5.1 below,
where the Segre variety S0 is replaced by any irreducible subvariety through 0. In the special case
when M is rigid (in the sense of Baouendi-Rothschild), Theorem 2.2 can be stated in the following
simplier form without referring to Segre varieties. The proof is straightforward.

Corollary 2.3. Let M ⊂ Cn+1 be a real-analytic hypersurface through 0 given in its rigid form
by Imw = ϕ(z, z̄), (z, w) ∈ Cn × C. Suppose that M is transversally holomorphically embeddable
into a hyperquadric in Cn+m+1. Then for any set of m + 1 multiindices αj ∈ Nn, |αj| ≥ 2,
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j = 1, . . . , m + 1, there exists an integer k with K := {j : |αj | = k} 6= ∅ such that the partial
derivatives of ϕ satisfy a relation of the form

(2.5)
∑

j∈K

Pj(ϕzβ(0, χ̄)) ϕz
αj (0, χ̄) = R(ϕzβ(0, χ̄)), χ ∈ C

n,

where Pj(ϕzβ(0, χ̄)) and R(ϕzβ(0, χ̄)) are polynomials in the partial derivatives ρzβ(0, χ̄) with 0 <
|β| < k, such that not all Pj(ρzβ(0, χ̄)) identically vanish in χ. Moreover, Pj and R can be chosen
satisfying in addition the following weight estimates:

(2.6) wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1,

where l ≥ 1 is the number of all j with |αj | ≤ k.

Remark 2.4. We here consider the special case m = 0, where the conclusion of Theorem 2.2 can be
compared with that of the Chern-Moser theory [CM74]. For m = 0, Theorem 2.2 gives obstructions
preventing M from being (locally) biholomorphically equivalent to a hyperquadric. Of course, the
full set of such obstructions is known due to the Chern-Moser normal form [CM74], whose actual
computation, however, may be hard in concrete cases. On the other hand, Theorem 2.2 may
be applied directly in given coordinates instead of the normal coordinates obtained through the
Chern-Moser normalization. For instance, for a single multiindex |α| = 2, Theorem 2.2 yields
(with k = 2, l = 1) a relation

(2.7) ρzα = R(ρzβ , ρzβw, ρw2, ρw), |β| = 1,

where R is a polynomial of weight ≤ 3 and all derivatives are evaluated at (0, ζ̄), ζ ∈ S0. Thus, if
(2.7) is not satisfied, M is not equivalent to a hyperquadric. In particular, if M is in its Chern-
Moser normal form [CM74], we have

ρzβw(0, ζ̄) ≡ ρw2(0, ζ̄) ≡ 0, ρw(0, ζ̄) ≡ const, ρzβ(0, ζ̄) is linear in ζ̄ .

Then (2.7) means that any 2nd order derivative ρzα(0, ζ̄) is a polynomial in ζ̄ of degree ≤ 3. We
now compare this with the normal form M = {Imw =

∑
aαµsz

αz̄µ(Rew)s}, where normalization
conditions are imposed, in particular, on the coefficients aαµ0 with |µ| ≤ 3. Here (2.7) means the
vanishing of the coefficients aαµ0 with |µ| ≥ 4, which are exactly the free coefficients that appear
in the normal form and hence have to vanish in order for M to be equivalent to a hyperquadric.
Thus the estimates given by (2.4) are sharp in this case.

Based on Theorem 2.2, one can obtain explicit examples of hypersurfaces that are not transver-
sally embeddable into hyperquadrics of certain dimensions or into hyperquadrics of any dimension.

Proof of Theorem 1.1. We write

ρ(Z, Z̄) := −Im w + zz̄ + Re

∑

k≥2

zk z̄(k+2)! + Re

∑
bkmlz

kz̄m(Rew)l

with the second sum ranging as in the assumption. Then M is given by ρ(Z, Z̄) = 0, we have
S0 = {w = 0} for the Segre variety of 0 and ρw = − 1

2i
, ρz(0, ζ̄) = χ̄, where ζ = (χ, 0) ∈ S0 ⊂
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Cn × C. Furthermore, ρza(0, ζ̄) is a polynomial in χ̄ of degree (a + 2)! for every a ≥ 2, and every
other derivative ρzawb(0, ζ̄), b ≥ 1, is a polynomial in χ̄ of degree ≤ (a + b)!. By contradiction,
assume that M is transversally holomorphically embeddable into a hyperquadric in some C

2+m.
Then, in view of Theorem 2.2 applied to αj = j + 1, j = 1, . . . , m + 1, there is a k ≥ 2 with
K := {j : |αj| = k} = {k − 1} and a relation (2.3) with Pk−1(ρzβws(0, ζ̄)) and R(ρzβws(0, ζ̄))
satisfying (2.4). In particular, we have wt R ≤ (2k − 2)(k − 1) + 1 in view of l = k − 1. Since

wt ρzawb = 2a + b − 1, we have deg ρzawb(0, ζ̄) ≤ (k+1)!
2k−3

wt ρzawb for every a, b satisfying a + b ≤ k,

a < k. Then it follows that R(ρzβws(0, ζ̄)) is a polynomial in ζ̄ whose degree does not exceed

(k + 1)!

2k − 3
wt R ≤

(k + 1)!

2k − 3
((2k − 2)(k − 1) + 1) < (k + 2)!.

This is a contradiction with (2.3) since ρzk(0, ζ̄)) is of degree precisely (k + 2)!. The proof is
complete. �

3. Some algebraic operations with multilinear functions and transformation

formulas

3.1. An algebra of symmetric multilinear functions. We fix a finite-dimensional complex
vector space V and denote by Pd, d = 0, 1, . . ., the space of all symmetric d-linear functions

p : V × · · · × V = V d → C,

and by P := ⊕dPd the corresponding graded direct sum. In case d = 0 we set P0 := C, i.e. “0-
linear” functions are identified with complex numbers. We write deg p = d for p ∈ Pd \ {0}. There
is a standard one-to-one correspondence between Pd \{0} and the homogeneous polynomials on V
of degree d obtained by associating to every p ∈ Pd its evaluation p(v, . . . , v). Then the product of
polynomials induces a natural product on P. However, it will be more convenient for our purposes
to consider another product on P that differs from the mentioned “polynomial product” by certain
additional factors depending on the degree. As a result, there will be less additional factors in the
transformation formulas below.

The product we consider here can be defined as follows. For p1(v1, . . . , vd1) ∈ Pd1 and
p2(v1, . . . , vd2) ∈ Pd2 define

(3.1) (p1 · p2)(v1, . . . , vd1+d2) :=
∑

p1(vi1 , . . . , vid1
) p2(vj1, . . . , vjd2

),

where the summation is taken over all possible (disjoint) partitions

{1, . . . , d1 + d2} = {i1, . . . , id1} ∪ {j1, . . . , jd2}.

It is easy to see that p1 ·p2 so defined is again symmetric in its arguments and hence p1 ·p2 ∈ Pd1+d2 .
It is furthermore easy to check that this operation of multiplication together with the usual
addition makes P a commutative associative graded C-algebra with unit 1 ∈ P0.

Example 3.1. For V = C, p1(x1) = x1 ∈ P1 and p2(x1, x2) = x1x2 ∈ P2, we have

(p1 · p2)(x1, x2, x3) = p1(x1)p2(x2, x3) + p1(x2)p2(x3, x1) + p1(x3)p2(x1, x2) ∈ P3,
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whereas the “polynomial product” would give 1
3
(p1 · p2).

We next consider an operation of substitution (or composition). Let Aj : V νj → V , νj ≥ 0,
j = 1, . . . , m, be a set of maps, where each Aj is symmetric νj-linear. As before, a “0-linear”
map Aj : V 0 → V means by definition a vector in V . We shall write (A1, . . . , Am) = Aν1,...,νm

indicating the degrees as subscripts. For p ∈ Pd with d ≥ m, we then define the “substitution”
p ◦ Aν1,...,νm

∈ Pd−m+ν1+···+νm
as follows:

(3.2) (p ◦ Aν1,...,νm
)(v1, . . . , vd−m+ν1+···+νm

) :=
∑

p(A1(va1
1
, . . . , va1

ν1
), . . . , Am(vam

1
, . . . , vam

νm
), vb1 , . . . , vbd−m

),

where the summation is taken over all possible partitions

{1, . . . , d − m + ν1 + · · · + νm} = {a1
1, . . . , a

1
ν1
} ∪ · · · ∪ {am

1 , . . . , am
νm
} ∪ {b1, . . . , bd−m}.

Again it is easy to see that the result is symmetric in its arguments and hence is in Pd−m+ν1+···+νm
.

It will also be convenient to allow the case m = 0, i.e. consider the substitution of the empty set
∅ of maps Aj into p, where we define p ◦ ∅ := p.

What is the result of the substitution operation applied twice? It is not difficult to see that
such repeated substitution is actually a sum of single substitutions. More precisely, we have the
following elementary lemma, the proof of which is straightforward. We use the notation deg Aj = νj

if Aj : V νj → V is νj-linear.

Lemma 3.2. Let p′ := p ◦ Aν1,...,νm
be as before and let Bs : V µs → V , s = 1, . . . , l, be another

collection of symmetric multilinear maps such that the composition p′′ := p′ ◦ Bµ1,...,µl
is defined

(i.e. l ≤ deg p′). Then p′′ is a finite sum of terms of the form p ◦ Cλ1,...,λs
, each with suitable

multilinear maps Cj : V λj → V , satisfying

λ1 + · · · + λr ≤ (ν1 + · · ·+ νm) + (µ1 + · · ·+ µl).

3.2. Transformation of submanifolds jets via embeddings. Our goal here is to obtain a
relation formula between jets of complex submanifolds and of their embeddings with explicit
degree and weight estimates. We consider a holomorphic embedding H from a neighborhood of 0
in Cn+1 into Cn+m+1 and split the coordinates as follows: (z, w) ∈ Cn×C and (z′, w′) ∈ Cn×Cm+1.
Consider complex hypersurfaces S in Cn+1 passing through 0 and their images S ′ = H(S) ⊂ Cn+1,
both represented as graphs of holomorphic functions w = Q(z) and w′ = Q′(z′) respectively. Thus
we have the relation

(3.3) G(z, Q(z)) = Q′(F (z, Q(z))).

We want to express the derivatives of Q′ in terms of the derivatives of Q, F and G. In general, these
expressions are rational but we shall make a first order assumption on H making the relations
polynomial. Writing

(3.4) H(z, w) = (F (z, w), G(z, w)) ∈ C
n × C

m+1
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with respect to the chosen coordinates, our main assumption is

(3.5) Fz(0) = id, Fw(0) = 0,

where id stands for the identity n × n matrix. We write Qzk for the full kth derivative at 0, i.e.
Qzk is a k-linear function (Cn)k → C given in terms of the partial derivatives by

(3.6) Qzk(v1, . . . , vk) :=
∑

Qzj1
,...,zjk

(0)v1
j1

. . . vk
jk

,

where vs = (vs
1, . . . , v

s
n) ∈ Cn and the summation is taken over all multiindices (j1, . . . , jk) ∈

{1, . . . , n}k. In case k = 0 we set Qz0 := 1 ∈ C = P0. Similar notation will be used for G:

(3.7) Gzkwl(v1, . . . , vk) :=
∑

Gzj1
,...,zjk

,wl(0)v1
j1

. . . vk
jk

,

where the full derivative is only taken with respect to z. The derivatives of F will be regarded in
the same way but will be suppressed in our transformation formula below, whereas the derivatives
of G will appear more explicitly.

We next introduce weights of the derivative terms as follows. We first set

(3.8) wt Gzswl := 2s + l − 1, wt Qzs := 2s − 1,

and then extend them to compositions by

(3.9) wt Gzswl ◦ Aν1,...,νa
:= wt Gzswl + ν1 + . . . + νa, wt Qzs ◦ Aν1,...,νa

:= wt Qzs + ν1 + . . . + νa.

That is, for every composition, the sum of the total degrees of the multilinear maps Aν1, . . . , Aνa

is simply added to the weight of Gzswl or Qzs.

Proposition 3.3. Under the normalization assumption (3.5), the full higher order derivatives of
Q and Q′ at 0 are related by the formula

(3.10) Q′
z′k =

∑
(Gzswl ◦ Aν1,...,νa

) · (Q
zs1 ◦ Bν1

1 ,...,ν1
a1

) · . . . · (Qzsr ◦ Bνr
1 ,...,νr

ar
),

where the summation is taken over all (finitely many) indices s, l, sets of indices {s1, . . . , sr} with
r ≥ l, and finitely many sets of multilinear maps Aν1,...,νa

and B
ν

j
1 ,...,ν

j

aj
(including some of them

or all being empty sets) depending only on F , such that the degree of each term on the right-hand
side of (3.10) equals k = deg Q′

z′k
and its weight does not exceed 2k− 1 = wt Q′

z′k
. Moreover, each

term with the empty set of multilinear maps appears precisely once.

Proof. We proceed by induction on k. The case k = 1 is easy and obtained by direct differentiating
(3.3) in z and using the normalization (3.5):

Q′
z′ = Gz + Gw · Qz.

We now assume that (3.10) holds for all k < k0 and take the full k0th derivatives of both sides
in (3.3) evaluated at 0. On the left-hand side we obtain the terms

(3.11) Gzswl · Qzs1 · . . . · Qzsl , s + s1 + . . . + sl = k0,
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(with the number l of factors Qzsr being equal to the w-order in Gzswl). According to our definition
of multiplication of multilinear maps (3.1), we obtain precisely one term of the form (3.11) for
each choice of s, l and of a (possibly empty) set of indices {s1, . . . , sl}. The weight of (3.11) is

2s + l − 1 +
l∑

r=1

(2sr − 1) = 2k0 − 1,

as desired. Similarly, on the right-hand side, the terms will be of the form

(3.12) Q′
z′k

(
(F

zs1wa1 · Q
z

s11
· . . . · Q

z
s1
a1

), . . . , (F
zsk

wak · Q
z

sk
1
· . . . · Q

z
sk

ak
)
)

,

with
∑

j(s
j + sj

1 + . . . + sj

aj ) = k0, where we regard Q′
z′k

as before as a multilinear function with
k arguments. Here k ≤ k0 and there is precisely one term with k = k0, namely Q′

z′k0
itself, where

we continue using our normalization (3.5). Thus we express Q′
z′k0

as the left-hand side minus the
terms on the right-hand side with k < k0. For the latter terms we can use our induction hypothesis
that each Q′

z′k
, k < k0, is already given by the formula (3.10). Substituting it into (3.12) and using

Lemma 3.2 and the fact that each Q
zs

j
r

is scalar, we conclude that each term in (3.12) with k < k0

is expressible as a finite sum of the terms in (3.10). Clearly the total degree of each such term is
always k0.

It remains to show that the weight of each term does not exceed 2k0 − 1. Each term in (3.12)
with k < k0 arises as a composition of a term p ∈ Pm+1

k in (3.10) of weight ≤ 2k − 1 with k
multilinear maps

(3.13) (F
zs1wa1 · Q

z
s11
· . . . · Q

z
s1
a1

), . . . , (F
zsk

wak · Q
z

sk
1
· . . . · Q

z
sk

ak
).

We first look at the extreme cases, where all F -derivatives in (3.13) are Fz = id except one, which
is either Fzw · Qzk0−k or Fw2 · Qz · Qzk0−k . The corresponding compositions are (p ◦ Fzw) · Qzk0−k

and (p ◦ Fw2) ·Qz ·Qzk0−k , both having weight ≤ (2k − 1) + 1 + 2(k0 − k)− 1 = 2k0 − 1 in view of
Lemma 3.2. Note that by (3.5), there is no term with Fw.

Our strategy to estimate the weights of general terms is to compare them with these extreme
cases. More precisely, we shall consider simple moves to pass from one term to another. Our first
move consists of raising the z-order s in Fzswr by an integer t. In order to keep the total degree
constant, we decrease by the same integer t the order l in some factor Qzl. Since the increase
contributes with +t to the total weight, whereas the decrease with −2t in view of our rules (3.8)-
(3.9), we can only decrease the total weight that way. Our second move raises the w-order in Fzswr

by r′ and adds r′ new factors Qz. Again, to keep the total degree constant, we have to lower by
r′ the order of Qzl. Then the total weight increases by r′ and decreases by 2r′, hence decreases
in total. Using these two moves we shall obtain any term with all maps in (3.13) being Fz = id

except one, being

(3.14) Fzswr · Qzl · Qz . . . · Qz

with appropriate integers and appropriate number of the first order factors Qz. Our next move
exchanges derivative orders between the Q-factors here. That is, keeping the total degree constant,
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we can decrease the order of a factor in (3.14) by an integer and simultaneously increase the order
of another Q-factor by the same integer. Clearly this move does not change the weight and allows
us to obtain any other term still having all but one maps in (3.13) equal Fz = id.

Our two last moves will exchange indices between different parentheses in (3.13). The first one
decreases z-order of Fzswr for the first map by s′ and increases it by the same number for another
map. Here both degree and weight do not change. Finally, we can trade the w-order of Fzswr the
same way along with moving the appropriate number of Q-factors to the other parenthesis. For
instance, we can pass from (Fzw2 ·Qz2 ·Qz5 , Fz3) to (Fzw ·Qz5, Fz3w ·Qz2), where the Q-factor Qz2

goes to the second map together with the extra derivative in w, whereas the w-derivative of the
first map decreases. Again, also here both degree and weight stay clearly the same.

Summarizing, we see that, starting from the above extreme terms and using the moves as
described, we can obtain any other term. Hence every term has weight ≤ 2k0 − 1 as desired.
Furthermore, it follows from the proof that any term in (3.10) with all sets of maps Aν1,...,νa

and
B

ν
j
1,...,ν

j

aj
being empty, appears only once. �

3.3. Relations between jets of defining functions and of the Segre varieties. We return
to the situation, where M ⊂ Cn+1 is a real-analytic hypersurface with a reference point that
we continue to assume to be 0. As before let ρ(Z, Z̄) be any defining function of M that we
regard as a convergent power series in (Z, Z̄). We make a choice of holomorphic coordinates
Z = (z, w) ∈ Cn × C such that ρw(0) 6= 0. We can then apply the implicit function theorem to
the complexified equation ρ(z, w, ζ̄) = 0 for (z, w, ζ) ∈ Cn ×C×Cn+1 and solve it locally for w in
the form w = Q(z, ζ̄), where Q is holomorphic in (z, ζ̄) ∈ Cn × Cn+1 near 0. The function Q can
be used to parametrize the Segre varieties: Sζ = {(z, Q(z, ζ̄)) : z ∈ Cn}.

Our goal here will be to establish an explicit relation between the partial derivatives of ρ at
(0, ζ̄) ∈ Cn+1 × Cn+1 and of Q at (0, ζ̄) ∈ Cn × Cn+1 for ζ varying in S0, the Segre variety of
0 associated to M . We keep the notation Qzk for the kth full derivative of Q in z and use the
notation ρzswl analogous to Gzkwl in (3.7). That is, each ρzswl(0, ζ̄) is regarded as an s-linear
function C

n × · · · × C
n → C depending on the parameter ζ ∈ S0.

It turns out that the desired relation has a natural tree structure, for which we now introduce
the needed terminology. Recall that a (directed or rooted) tree is a connected directed graph such
that each vertex has precisely one incoming arrow except the root (one designated vertex) that
has none. We consider here a tree T together with a marking s by nonnegative integers, i.e. a
function s : V (T ) → N (with the convention N = {0, 1, . . .}), where V (T ) denotes the set of all
vertices of the tree T . The marking will correspond to the differentiation order in z. We do not
distinguish between isomorphic marked trees, i.e. trees for which there exist bijections between
their vertices respecting the arrows and the markings. Together with a marking, we use the integer
function l(a) ∈ N, a ∈ V (T ), with l(a) being the number of all outgoing arrows from a. Clearly
l(a) depends only on the tree structure (and not on the marking).
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Proposition 3.4. The derivatives of Q and ρ are related by the formula

(3.15) Qzk(0, ζ̄) =
∑

T,s

∏

a∈V (T )

ρzs(a)wl(a)(0, ζ̄)

−ρw(0, ζ̄)
, ζ ∈ S0,

where the product of the multilinear functions is understood in the sense of (3.1) and the summa-
tion is taken over the set of all possible finite trees T and their markings s satisfying

(3.16) 2s(a) + l(a) ≥ 2 ∀a ∈ V (T ),
∑

a∈V (T )

s(a) = k.

Note that the first condition in (3.16) eliminates precisely the pairs (s(a), l(a)) equal to (0, 0)
or (0, 1). In particular, the derivative ρw in (3.15) appears only in the denominator. Note also
that both conditions (3.16) together force the sum in (3.15) to be finite. Indeed, summing the
inequality in (3.16) for all vertices a ∈ V (T ) and using the second condition yields

(3.17) 2k +
∑

a

l(a) ≥ 2|T |,

where |T | stands for the total number of vertices. Since every vertex has precisely one incoming
arrow except the root, we have

∑
a l(a) = |T | − 1 by definition of l(a). Substituting into (3.17) we

obtain an estimate on the number of vertices:

(3.18) |T | ≤ 2k − 1.

Since the number of trees with given number of vertices is finite and also the number of markings
is finite in view of the second condition in (3.16), we conclude that the sum in (3.15) is finite as
claimed.

Remark 3.5. In the sum on the right-hand side of (3.15), there is precisely one term containing the

derivative ρzk , namely
ρ

zk (0,ζ̄)

−ρw(0,ζ̄)
, corresponding to the tree with single vertex a0 and the marking

s(a0) = k. Any other derivative ρzswl that appears in (3.15), satisfies s + l ≤ k and s < k. Indeed,
any derivative ρzswl appears at a vertex a0 ∈ T with l outgoing arrows. Each outgoing arrow
leads, after following a number or arrows, to at least one vertex with no further outgoing arrows
(hence corresponding to a derivative ρzt with t ≥ 1). Thus we have the vertex a0 with s(a0) = s
and l other vertices a1, . . . , al with s(aj) ≥ 1 for all j = 1, . . . , l. Therefore

∑
a∈V (T ) s(a) ≥ s + l

and hence s + l ≤ k in view of (3.16). For s = k, it must follow that l = 0 and s(a) = 0 for
any a 6= a0 ∈ V (T ). The inequality in (3.16) implies l(a) ≥ 2 for any a 6= a0, hence any other
vertex has at least two outgoing arrows. But we have seen that each arrow leads to a vertex a
with s(a) ≥ 1. Hence this is only possible for the tree with the single vertex a0, proving the claim.

Proof of Proposition 3.4. We shall obtain the formula (3.15) by differentiating the identity

(3.19) ρ(z, Q(z, ζ̄), ζ̄) = 0

at z = 0 and using the induction on k. Recall that Q(0, ζ̄) = 0 for ζ ∈ S0.
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For k = 1, we have

(3.20) ρz(0, ζ̄) + ρw(0, ζ̄) Qz(0, ζ̄) = 0,

implying the desired formula in this case, where the only possible tree T has one vertex a0 and
the only possible marking is s(a0) = 1.

We now assume the formula for all k < k0 and differentiate (3.19) k0 times in z at z = 0 and
ζ ∈ S0. All derivatives will be understood evaluated at (0, ζ̄) as in (3.15) for the rest of the proof
and for brevity we shall omit the argument (0, ζ̄). With this convention in mind, we obtain:

(3.21)
∑

ρzrwh · Qzk1 · . . . · Qzkh = 0,

where the summation is taken over all indices r, h ∈ N, and for each h, all unordered sets of h
indices k1, . . . , kh ∈ N, satisfying r + k1 + · · · + kh = k0. Note that we continue using the dot for
the multiplication defined in (3.1). The sum (3.21) contains precisely one term with Qzk0 , namely
ρw ·Qzk0 (which is also the only term with ρw), whereas all other derivatives of Q have lower order.
Hence we can solve (3.21) for Qzk0 in the form

(3.22) Qzk0 =
∑ ρzrwh

−ρw

· Qzk1 · . . . · Qzkh ,

where now we have the additional restriction kj < k0 in the sum and no factor ρw appears in the
numerator on the right. Hence we can use our induction hypothesis and replace each derivative
Q

z
kj by the right-hand side of (3.15) corresponding to k = kj:

(3.23) Qzk0 =
∑ ρzrwh

−ρw

∏

(a1,...,ah)∈V (T1)×···×V (Th)

ρzs1(a1)wl1(a1)

−ρw

· . . . ·
ρzsh(ah)wlh(ah)

−ρw

,

where the summation is taken over all choices of h trees T1, . . . , Th with markings s1, . . . , sh,
satisfying

(3.24) 2sj(aj) + lj(aj) ≥ 2 ∀aj ∈ V (Tj),
∑

j∈V (Tj)

sj(aj) = kj .

We now claim that each term in the sum (3.23) appears precisely once on the right-hand side
of (3.15) with k replaced by k0. To show this, we construct for each term a new tree T with
marking s as follows. The vertex set V (T ) is the disjoint union of V (T1), . . . , V (Th), and one
more vertex a0 that will become the root of T . We keep all the arrows within each Tj and add
h arrows from a0 to the root of each tree Tj. Finally we keep the marking for each tree Tj and
define s(a0) := r for the root. It is easy to see that T is again a directed tree and s is a marking
satisfying (3.16) with k = k0. The pair (T, s) constructed this way, yields precisely the same term
in the sum (3.15) as the one we started with. Vice versa, given a term in (3.15) with T and s, we
can remove the root a0 ∈ V (T ) with its outgoing arrows and obtain a finite collection of marked
trees T1, . . . , Th. Setting r := s(a0), we obtain precisely the same term in (3.23). Thus we have a
one-to-one correspondence between the terms and hence (3.23) implies the desired formula (3.15),
proving it for k = k0. �
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4. Applications to embeddings of hypersurfaces

4.1. Linear dependence of partial derivatives. We now return to our discussion of holomor-
phic embeddings. Let M ′ ⊂ Cn+m+1 be a real hyperquadric with a reference point that we shall
assume to be the origin 0 ∈ M ′ and denote by S ′

ζ the associated Segre variety of ζ ∈ Cn+m+1 (see
§3.3). Then it follows directly from the definition that all varieties S ′

ζ are hyperplanes. This simple
observation will be important in the sequel.

We next consider a real-analytic submanifold M ⊂ M ′ through 0, which is generic in a suitable
complex submanifold V ⊂ C

n+m+1, i.e. M ⊂ V and TxM + iTxM = TxV whenever x ∈ M . The
manifold V is also called the intrinsic complexification of M . Denote by d the real codimension
of M in V (which coincides with the CR-codimension of M) and set n := dimC V − d (which
coincides with the CR-dimension of M). Then the Segre varieties Sζ associated to M are n-
dimensional complex submanifolds of V defined for ζ ∈ V near 0. We choose complex-linear
coordinates (z, w) ∈ Cn ×Cm+1 vanishing at 0 such that Sζ is given by w = Q(z, ζ̄), where Q is a
holomorphic function defined in a neighborhood of 0 in Cn × V , where V denotes the conjugate
submanifold. There will be a priori no relation between these coordinates and those, where M ′ has
the form (2.1). However, we shall only consider linear changes of coordinates for M ′, and hence
the property for the Segre varieties S ′

ζ to be hyperplanes remains unchanged. In the sequel, by
the rank of a set of vectors we shall mean the dimension of their span.

Lemma 4.1. Let M ′ ⊂ Cn+m+1 be a real hyperquadric through 0 (given by (2.1) in some linear
coordinates) such that

(4.1) e := (0, . . . , 0, 1) /∈ T c
0M ′.

Let M ⊂ M ′ ∩ V be a real-analytic submanifold through 0 as above, whose Segre varieties Sζ are
given by w = Q(z, ζ̄), for (z, w) ∈ Cn×Cm+1 and ζ in the intrinsic complexification V of M . Then
for any m + 1 multiindices α1, . . . , αm+1 ∈ Nn with |αj| ≥ 2, the corresponding partial derivatives
Qz

αj (0, ζ̄), j = 1, . . . , m + 1, are linearly dependent in Cm+1 for each ζ ∈ S0. Furthermore, for
any given irreducible complex-analytic subvariety S ⊂ S0 passing through 0, set

(4.2) r := max
ζ∈S

rank {Qz
αj (0, ζ̄) : 1 ≤ j ≤ m + 1} ≤ m.

Then the first m coordinates of Cm+1 can be reordered such that, if π : Cm+1 → Cr × {0} ⊂
Cr × Cm+1−r stands for the projection to the first r coordinates, then

(4.3) max
ζ∈S

rank {π(Qz
αj (0, ζ̄)) : 1 ≤ j ≤ m + 1} = r.

Proof. Recall that M ⊂ M ′ implies Sζ ⊂ S ′
ζ for the corresponding Segre varieties (see e.g. [W77]).

Consider the parametrization maps z 7→ v(z, ζ̄) := (z, Q(z, ζ̄)) of the Segre varieties Sζ associated
to M . Since for ζ ∈ S0 ⊂ S ′

0, we have Sζ ⊂ S ′
ζ and the latter variety is a hyperplane, the derivatives

vz1(0, ζ̄), . . . , vzn
(0, ζ̄), vzα1 (0, ζ̄), . . . , vzαm+1 (0, ζ̄) ∈ C

n+m+1
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are also contained in a hyperplane Π in Cn+m+1 for each ζ ∈ S0 (with Π depending on ζ). Since
|αj| ≥ 2, we have

(4.4) vz
αj (0, ζ̄) = (0, Qz

αj (0, ζ̄)) ∈ C
n × C

m+1, 1 ≤ j ≤ m + 1,

and therefore these vectors are contained in Π ∩ ({0} × Cm+1). Since Π = S ′
0 = T c

0M ′ for ζ = 0,
we have e /∈ Π for ζ near 0 in view of (4.1). Restricting to a possibly smaller neighborhood of 0,
we may assume that e /∈ Π holds for all ζ . Here we use the irreducibility assumption on S and
its consequence that the ranks in (4.2) and (4.3) do not change after restricting ζ to any smaller
neighborhood of 0. Hence Π∩({0}×Cm+1) is a proper hyperplane in {0}×Cm+1. Thus the vectors
(4.4) are linearly dependent. Furthermore, since e is not contained in the span of the vectors (4.4),
the dimension of this span remains unchanged after projecting to the first m coordinates of the
space Cm+1. Then we can reorder the coordinates of Cm ×{0} ⊂ Cm+1 and consider the standard
projection π : C

m+1 → C
r × {0} such that (4.3) holds. �

4.2. Polynomial relations for the partial derivatives of Q. We now return to the original
situation, where M is a real-analytic hypersurface in Cn+1 with reference point p ∈ M . As before
we choose local holomorphic coordinates Z = (z, w) ∈ Cn × C vanishing at p and a defining
function ρ(Z, Z̄) for M such that ρw(0, 0) 6= 0. As in §3.3 we apply the implicit function theorem
to the complexified equation ρ(z, w, ζ̄) = 0 and solve it locally for w in the form w = Q(z, ζ̄),
where Q is a holomorphic function in (z, ζ̄) ∈ Cn × Cn+1 near 0 that can be used to parametrize
the Segre varieties: Sζ = {(z, Q(z, ζ̄)) : z ∈ Cn}. We continue to use the weights of the partial
derivatives of Q given by

(4.5) wt Qzα := 2|α| − 1

as in (3.8).

Proposition 4.2. Let M ⊂ Cn+1 be a real-analytic hypersurface through 0, which is transver-
sally holomorphically embeddable into a real hyperquadric in C

n+m+1. Then for every irreducible
complex-analytic subvariety S ⊂ S0 passing through 0 and every set of m + 1 multiindices αj,
|αj| ≥ 2, j = 1, . . . , m + 1, there exists an integer k with K := {j : |αj| = k} 6= ∅ such that the
partial derivatives of Q satisfy a relation of the form

(4.6)
∑

j∈K

Pj(Qzβ(0, ζ̄)) Qz
αj (0, ζ̄) = R(Qzβ(0, ζ̄)), ζ ∈ S,

where Pj(Qzβ(0, ζ̄)) and R(Qzβ(0, ζ̄)) are some polynomials in the partial derivatives Qzβ of lower
order (i.e. |β| < k), having weights

(4.7) wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1,

and not all Pj(Qzβ(0, ζ̄)) identically vanish in ζ ∈ S, where l ≥ 1 is the number of all j’s with
|αj| ≤ k.
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Proof. Denote by M ′ a hyperquadric in Cn+m+1, where M can be embedded, and let H be any
embedding. Without loss generality, M ′ passes through 0 such that (4.1) holds, where we use the
transversality of the embedding. We write H = (F, G) as in (3.4). By a linear change of coordinates
in Cn+m+1, we can achieve in addition the normalization assumptions (3.5) as well as

(4.8) Gw(0) = (0, . . . , 0, 1).

Then we are in the setting of Proposition 3.3, where the complex hypersurface S is any Segre
variety Sζ of M , given by w = Q(z, ζ̄), ζ ∈ S0, and S ′ = H(S) is its image in Cn+m+1 given by
w′ = Q′(z′, ζ̄), where Q′ is an appropriate holomorphic Cm+1-valued function in z′ with parameter
ζ . The relation between the full higher order derivatives of Q and Q′ (with respect to z and z′

respectively) at 0 is given by (3.10). Since each term’s weight on the right-hand side of (3.10)
does not exceed 2k − 1, only one term can appear with Qzk(0, ζ), namely Gw(0)Qzk(0, ζ). Hence
we have

(4.9) Q′
z′α(0, ζ̄) = Gw(0)Qzα(0, ζ̄) + P α(Qzβ(0, ζ̄)),

where P α(Qzβ(0, ζ̄)) is a polynomial in the lower order derivatives Qzβ(0, ζ̄), |β| < |α|, with
wt P α ≤ wt Qzα = 2|α| − 1. Moreover, since the derivative Gw(0) satisfies (4.8) and any other
derivative Gzswl(0) is of positive weight, we can rewrite (4.9) with improved weight estimates as

(4.10) Q′
z′α(0, ζ̄) =

(
0, Qzα(0, ζ̄)

)
+

(
Rα(Qzβ(0, ζ̄)), T α(Qzβ(0, ζ̄))

)
∈ C

m × C

with Rα and T α being polynomials of weights

(4.11) wt Rα ≤ 2|α| − 2, wt T α ≤ 2|α| − 1.

We next apply Lemma 4.1 to the partial derivatives of Q′ in z′ corresponding to the given
multiindices α1, . . . , αm+1. It follows that there exists an integer r ≤ m and one can reorder the
first m coordinates of Cm+1 such that, if π : Cm+1 → Cr × {0} is the projection to the first r
coordinates, then

(4.12) max
ζ∈S

rank {Q′
z
′αj (0, ζ̄) : 1 ≤ j ≤ m + 1} = max

ζ∈S
rank {π(Q′

z
′αj (0, ζ̄)) : 1 ≤ j ≤ m + 1} = r.

Without loss of generality, we may assume that the multiindices αj are ordered such that |α1| ≤
. . . ≤ |αm+1|. We claim that an integer 1 ≤ j0 ≤ m + 1 can be chosen such that

(4.13) max
ζ∈S

rank {π(Q′
z
′αj (0, ζ̄)) : 1 ≤ j < j0} = max

ζ∈S
rank {π(Q′

z
′αj (0, ζ̄)) : 1 ≤ j ≤ j0} = j0 − 1.

Indeed, denote by r(j0) the left-hand side of (4.13). Then r(j0) is an increasing integer function
of j0 with r(1) = 0 and r(m + 2) ≤ r ≤ m. Then there must exist j0 with r(j0) = r(j0 + 1) and it
suffices to take the minimum j0 with this property to prove the claim.

We now consider the j0 × j0 matrix (Q′h
z
′αj

(0, ζ̄)) with 1 ≤ j ≤ j0 and either 1 ≤ h ≤ j0 − 1
or h = m + 1. Then (4.13) implies that, after a suitable permutation of the coordinates in Cr,
the determinant of this matrix identically vanishes, whereas the leading (j0 − 1) × (j0 − 1) minor
corresponding to 1 ≤ j, h ≤ j0 − 1, does not identically vanish. In view of (4.10), the first
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condition yields an identity of the form (4.6) and the second — the nonvanishing of the coefficient
Pj0(Qzβ(0, ζ̄)) in front of Qz

αj0 (0, ζ). Finally, the desired weight estimates follow from (4.11). �

5. Polynomial relations for the derivatives of the defining functions

We prove here a stronger version of Theorem 2.2, where we replace the Segre variety Sp of
the reference point p with any irreducible complex-analytic subvariety of Sp. As before in §2
we write ρ(Z, Z̄) for a real-analytic defining function of a hypersurface M ⊂ Cn+1 satisfying
ρw(p, p̄) 6= 0 for some fixed holomorphic coordinates Z = (z, w) ∈ Cn × C and keep the weights
wt ρzαws := 2|α| + s − 1 as in (2.2). Recall that the derivative ρw is the only one with weight 0
and we count this derivative separately, denoting by degρw

P the degree of the polynomial P in
the variable ρw. We now have the following stronger version of Theorem 2.2:

Theorem 5.1. Let M ⊂ Cn+1 be a real-analytic hypersurface through p, which is transversally
holomorphically embeddable into a hyperquadric in Cn+m+1. Then for every irreducible complex-
analytic subvariety S ⊂ Sp passing through p and every set of m + 1 multiindices αj, |αj| ≥ 2,
j = 1, . . . , m + 1, there exists an integer k with K := {j : |αj| = k} 6= ∅, such that the partial
derivatives of ρ satisfy a relation of the form

(5.1)
∑

j∈K

Pj(ρzβws(p, ζ̄)) ρz
αj (p, ζ̄) = R(ρzβws(p, ζ̄)), ζ ∈ S,

where Pj(ρzβws(p, ζ̄)) and R(ρzβws(p, ζ̄)) are some polynomials in the partial derivatives ρzβws(p, ζ̄)
with |β| + s ≤ k, |β| < k, and not all Pj(ρzβws(p, ζ̄)) identically vanish in ζ ∈ S. Moreover, Pj

and R can be chosen satisfying in addition the following weight and degree estimates:

(5.2)
wt Pj ≤ (2k − 2)(l − 1), wt R ≤ (2k − 2)l + 1,
degρw

Pj ≤ (2k − 2)l, degρw
R ≤ (2k − 2)l + 1,

where l is the number of all j with |αj| ≤ k.

Theorem 2.2 corresponds to the special case of Theorem 5.1 with S = Sp. Note that the general
case of S ⊂ Sp does not follow from that of S = Sp by restriction, because all Pj(ρzβws(p, ζ̄))
obtained from Theorem 2.2 may identically vanish on the given subvariety S even if they don’t on
Sp. The refined version in the form of Theorem 5.1 (in fact its proof) will be used in §7 to obtain
lower order obstructions to embeddability than those provided by Theorem 2.2.

Proof. The proof follows from Propositions 4.2 and 3.4. Indeed, by Proposition 4.2, we have
the relation (4.6). Furthermore, by Proposition 3.4, we can express each derivative of Q by the
appropriate expression in the derivatives of ρ according to the formula (3.15) and substitute them
into (4.6). Multiplying by a suitable power of ρw, we obtain a polynomial relation (5.1). In view of
Remark 3.5, the expression substituting for each derivative Qzα , contains the derivative ρzα with
factor 1

−ρw
and besides only the derivatives ρzβws with |β|+ s ≤ |α| ≤ k and |β| < |α| ≤ k. Hence

the nonvanishing property for the polynomial coefficient in (4.6) in front of some Qz
αj implies the

nonvanishing of the corresponding coefficient in (5.1) in front of ρz
αj .
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It remains to show the estimates (5.2). According to our construction, each derivative Qzα is
replaced by a sum of terms, each being a product of the derivatives ρzβwl corresponding to a
marked tree T in the formula (3.15), i.e. |β| = s(a) and l = l(a) for a ∈ V (T ). Summing the
weights (2.2) for all vertices of T , we obtain the total weight equal to

(5.3) 2
∑

s(a) +
∑

l(a) − |T |,

where |T | stands for the total number of vertices as before. We have
∑

s(a) = |α| in view of (3.16).
Recall that l(a) is the number of outgoing arrows from the vertex a. Each vertex has precisely
one incoming arrow except the root. Hence

∑
l(a) = |T | − 1. Substituting into (5.3) we obtain

that the total weight of a term replacing Qzα is 2|α| − 1, which is precisely wt Qzα . Hence our
substitution will not change the weights, proving the estimates in the first line of (5.2).

To estimate the degree in ρw, observe that a term substituting for each derivative Qzα in (4.6)
consists of at most 2|α|−1 = wt Qzα factors ρzβwl in view of the estimate (3.18) for the number of
all vertices. Thus the power of ρw in the denominator of a term does not exceed the total weight.
The maximal weight of a term in (4.6) is (2k− 2)l + 1, hence the power of ρw needed to eliminate
the denominators is at most (2k−2)l+1. This proves the estimates in the second line of (5.2). �

6. Invariants attached to real hypersurfaces

Inspired by Proposition 4.2, we introduce here series of invariants attached to a germ (M, p) of
a real-analytic hypersurface in Cn+1 that provide bounds on possible dimension of a hyperquadric,
where (M, p) can be (transversally) embedded. As before we choose local holomorphic coordinates
(z, w) ∈ Cn×C near p, vanishing at p, such that M is given by w = Q(z, z̄, w̄) near p with Q being
a uniquely determined holomorphic function in its arguments (z, χ, τ) ∈ Cn × Cn × C, defined in
a neighborhood of 0. We write ζ = (χ, τ) ∈ Cn × C.

In our first sequence of invariants rk(M, p) we look for possible relations of the form (4.6),
ignoring the estimates (4.7). More precisely, for every integer k ≥ 2, define rk(M, p) to be the
maximal number m of the partial derivatives Qzα1 (0, ζ), . . . , Qzαm (0, ζ) of order k satisfying no
relation of the form

(6.1)
m∑

j=1

Pj(Qzβ(0, ζ)) Qz
αj (0, ζ) = R(Qzβ(0, ζ)), ζ ∈ S0,

where Pj(Qzβ(0, ζ)) and R(Qzβ(0, ζ)) are polynomials in the lower order partial derivatives
Qzβ(0, ζ), |β| < k, and

(P1(Qzβ(0, ζ)), . . . , Pm(Qzβ(0, ζ))) 6≡ 0.

It follows from the transformation rule for the derivatives Qzα(0, ζ) (cf. Proposition 3.3) that the
integers rk(M, p) so defined, depend only on M and p but not on the choice of coordinates (z, w)
and hence are biholomorphic invariants of (M, p). Indeed, the derivatives Qz′α(0, ζ) with |α| = k
in a new coordinate system (z′, w′) are expressed as linear combinations of Qzβ(0, ζ) and 1 with
coefficients in the field R of all rational functions in the lower order derivatives Qzγ (0, ζ), |γ| < k.
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On the other hand, rk(M, p) can be interpreted as the dimension of the span of all functions
Qzα(0, ζ), |α| = k, together with the function 1, over the field R.

In our second series, we refine the invariants rk(M, p) by adding the weight estimates (4.7) to
consideration. We fix some coordinates (z, w) as before and define the integers r̂k(M, p), k ≥ 2,
inductively as follows. Assuming that r̂k(M, p) are defined for k < k0, define r̂k0(M, p) to be the
maximal number m of the partial derivatives Qzα1 (0, ζ), . . . , Qzαm (0, ζ) of order k0 satisfying no
relation of the form (6.1) as above with the additional restriction that

(6.2) wt Pj ≤ (2k0 − 2)
( ∑

k<k0

r̂k(M, p) + m − 1
)
, wt Pj ≤ (2k0 − 2)

( ∑

k<k0

r̂k(M, p) + m
)

+ 1.

Analysing the transformation rule given by Proposition 3.3 in case of mappings between equal di-
mension spaces, we conclude that the integers r̂k(M, p) remain invariant under coordinate changes
given by H = (F, G) satisfying (3.5). On the other hand, r̂k(M, p) may potentially change under
the linear coordinate transformations, where the corresponding change of the derivatives Qzα(0, ζ)
is rational rather than polynomial. Thus, in order to obtain an invariant, we define r̃k(M, p) to be
the minimum of r̂k(M, p) taken over all possible linear changes of coordinates.

As an immediate consequence of Proposition 4.2, we now obtain the following relations between
the invariants just defined and embeddings into hyperquadrics:

Corollary 6.1. Let (M, p) be a germ of real-analytic hypersurface in Cn+1 that is transversally
holomorphically embeddable into a real hyperquadric in Cn+m+1. Then

∑

k

rk(M, p) ≤
∑

k

r̃k(M, p) ≤ m.

In particular, if
∑

k rk(M, p) = ∞ or
∑

k r̃k(M, p) = ∞, then (M, p) is not transversally holomor-
phically embeddable into any real hyperquadric.

Remark 6.2. Similarly to rk(M, p) and r̃k(M, p) we can also define further invariants using the
identities (2.3) in Theorem 2.2 instead of (6.1) and the weight estimates (2.4) instead of (4.7).
However, it follows from the proof of Theorem 2.2 (in fact from Proposition 3.4) that so defined
invariants do not exceed rk(M, p) and r̃k(M, p) respectively and hence provide a rougher estimate
for the embeddability dimension.

7. Distinguished submanifolds of the Segre varieties and lower order

obstructions

The theory of Chern and Moser [CM74] reveals some special nature of real hypersurfaces of low
dimension. For instance, in case n ≥ 2, the obstruction for a real hypersurface in Cn+1 to be a
hyperquadric is of order 4, whereas for n = 1, it is of order 6. This phenomenon turns out to arise
in a more elaborated form in our case, where we study obstructions to embeddability into higher
dimensional hyperquadrics.

In order to describe this phenomenon we shall introduce some distinguished families of subman-
ifolds of the Segre varieties. Throughout this section M will be a real-analytic Levi-nondegenerate
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hypersurface in Cn+1. Recall that the family of the Segre varieties SZ , Z ∈ Cn+1, associated to
a generic real-analytic CR-submanifold M ⊂ Cn+1, is parametrized by the points of the ambient
space. In case M is a Levi-nondegenerate hypersurface (see e.g. [BER99] for this and other basic
terminology), each SZ is a complex hypersurface and the map Sp ∋ Z 7→ TpSZ into the corre-
sponding Grassmannian is of maximal rank by an observation due to Webster [W77]. We are going
to refine this family as follows. Given any linear subspace V ⊂ TpQp = T c

pM , define

(7.1) Sp,V := {Z ∈ Sp : TpSZ ⊃ V } ⊂ Sp.

It is easy to see that the sets Sp,V are local invariants of M , more precisely, a neighborhood of
p in Sp,V is completely determined by a neighborhood of p in M and is sent to Sp,H∗V (as germ
at p) by any local biholomorphism H of Cn+1 preserving the germ (M, p). Furthermore, since the
map Z 7→ TpSZ is of the maximal rank n at p, it follows that each Sp,V is a complex submanifold
of Cn+1 through p (in fact, the tangent space TpSp,V coincides with the orthogonal complement of
V with respect to the Levi form of M).

We keep the notation from §3.2-3.3. In addition to (3.5) we assume

(7.2) Gz(0) = 0.

The reference point p ∈ M will be assumed to be 0. We also consider the standard basis e1, . . . , en

in C
n given by ej = (0, 1, 0) ∈ C

j−1 × C × C
n−j. For a subset I ⊂ {1, . . . , n}, we set

(7.3) V 0
I := span {ej : j ∈ I}, VI := (V 0

I × C) ∩ T c
0M.

For every such I, consider the distinguished submanifold S0,VI
⊂ S0. We also use the notation

supp α := {j : αj 6= 0} ⊂ {1, . . . , n}

for a multiindex α = (α1, . . . , αn) ∈ Nn.

Lemma 7.1. Let I ⊂ {1, . . . , n} be a proper subset and α be a multiindex with |α| = 2 and
supp α ⊂ I. Then

(7.4) Q′
zα(0, ζ̄) = Gw

(
Qzα(0, ζ̄) + P1(Qzβ(0, ζ̄))

)
+ P0, ζ ∈ S0,VI

,

where P1(Qzβ(0, ζ̄) is a polynomial of degree at most 1 in the derivatives Qzβ(0, ζ̄), |β| = 1, and
P0 is a constant.

Proof. We apply the transformation formula (3.10) for the 2nd full derivatives of Q(z, ζ̄) with
respect to z that we denote by Qz2(z, ζ̄). We have Q′

zα(0, ζ̄) = Qz2(z, ζ̄)(v1, v2) for suitable vectors
v1, v2 (from the standard basis e1, . . . , en). Hence, in order to obtain Q′

zα(0, ζ̄), we evaluate (3.10)
with k = 2 at (v1, v2). The key observation is that supp α ⊂ I implies Qz(0, ζ̄)(vj) being constant
in ζ̄ for j = 1, 2, and ζ ∈ S0,VI

. Hence, on the right-hand side of (3.10), the only other factors
involving Qz are of the form (Qz ◦ B0), (Qz ◦ B1)(v

j), (Qz ◦ B2)(v
1, v2) having degrees 0, 1, 2

and weights 1, 2, 3 respectively, whereas Qz(0, ζ̄)(vj) has both degree and weight 1. According
to Proposition 3.3, the degree of each term is 2 and the weight does not exceed 3. Hence all
terms contain only the first order derivatives Qzβ(0, ζ̄), |β| = 1, except GwQzα(0, ζ̄) (recall that
wt Qzα = 3), the latter giving the first term on the right-hand side of (7.4). Since the total degree
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must be 2 and total weight ≤ 3, any other term with Gw has either at most one factor Qz ◦B1 or
at most one factor Qz ◦B2. In the first case, the other factor has to be Qz which is constant, hence
the corresponding product is a polynomial in Qzβ(0, ζ̄), |β| = 1, of degree at most 1, contributing
to the polynomial P1 in (7.4). In the second case, wt Qz ◦B2 = 1+2 = 3, hence no other factor can
appear and the result is again a polynomial in Qzβ(0, ζ̄), |β| = 1, of degree at most 1, contributing
to P1.

Finally, we investigate the terms containing the other derivatives Gzkwl (i.e. with (k, l) 6= (0, 1)).
Some of them contain only constant factors with Qz and hence contribute to P0 in (7.4). Any other
term which is not constant, must have a factor Qz ◦Bν and thus is of weight at least 1. Therefore
we can only have Gzkwl or Gzkwl ◦ Aµ with total weight ≤ 2. Since (k, l) 6= (0, 1) and in view of
(7.2), we can only have Gw2, Gw3, Gzw or Gzw ◦ A0. Since the total degree has to be 2, each term
has a factor Qz ◦Bν with ν ≥ 1, having weight ≥ 2. This leaves a weight at most 1 for the factor
involving Gzkwl, which can only be Gw2. But Gw2 requires at least two factors involving Qz, each
having weight ≥ 1. The latter makes it impossible to have the total weight not exceeding 3 and
therefore no terms of that kind may occur. �

Using Lemma 7.1 we obtain low degree relations between second order derivatives:

Corollary 7.2. Let M ⊂ Cn+1 be a real-analytic hypersurface through 0 given by w = Q(z, Z̄),
Z = (z, w) ∈ Cn × C, that is transversally holomorphically embeddable into a real hyperquadric
in Cn+m+1. Fix a proper subset I ⊂ {1, . . . , n}. Then for every set of m + 1 multiindices αj,
j = 1, . . . , m + 1, with |αj| = 2 and supp αj ⊂ I, there is a relation of the form

(7.5)
∑

j

λj Qz
αj (0, ζ̄) = R1(Qzβ(0, ζ̄)), ζ ∈ S0,VI

,

where (λ1, . . . , λm+1) 6= 0 and R1(Qzβ(0, ζ̄)) is a polynomial of degree at most 1 in the first order
partial derivatives Qzβ(0, ζ̄).

Proof. The proof is analogous to that of Proposition 4.2, where we use Lemma 7.1 instead of
Proposition 3.3. The details are left to the reader. �

Using the transformation law between the derivatives of Q and of ρ given by Proposition 3.4,
we also obtain a low degree relation between the derivatives of ρ:

Corollary 7.3. Let M ⊂ Cn+1 be a real-analytic hypersurface through 0 given by ρ(Z, Z̄) = 0,
ρw(0, 0) 6= 0, that is transversally holomorphically embeddable into a real hyperquadric in Cn+m+1.
Fix a proper subset I ⊂ {1, . . . , n}. Then for any set of m + 1 multiindices αj, j = 1, . . . , m + 1,
with |αj | = 2 and supp αj ⊂ I, there is a relation of the form

(7.6)
∑

j

λj

ρz
αj (0, ζ̄)

ρw(0, ζ̄)
= R1

(
ρzβ(0, ζ̄)

ρw(0, ζ̄)
,
ρzβw(0, ζ̄)

ρw(0, ζ̄)
,
ρw2(0, ζ̄)

ρw(0, ζ̄)

)
, ζ ∈ S0,VI

,

where (λ1, . . . , λm+1) 6= 0 and R1 is a polynomial of degree at most 1 in its components involving
|β| ≤ 1.
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Proof. As mentioned before, we use the transformation law between the derivatives of Q and ρ
given by Proposition 3.4. The relation between Qzβ(0, ζ̄) and ρzβ(0, ζ̄) follows, for instance, from
(3.20). To obtain the formula for Qz

αj (0, ζ̄), we use (3.15) for k = 2:

(7.7) Qz2(0, ζ̄) =
ρz2(0, ζ̄)

−ρw(0, ζ̄)
+

ρzw(0, ζ̄)

−ρw(0, ζ̄)

ρz(0, ζ̄)

−ρw(0, ζ̄)
+

ρw2(0, ζ̄)

−ρw(0, ζ̄)

(
ρz(0, ζ̄)

−ρw(0, ζ̄)

)2

.

The partial derivative Qz
αj (0, ζ̄) is now given by the evaluation of the right-hand side of (7.7) at

the suitable pair of vectors (v1, v2). By the same key observation as in the proof of Lemma 7.1,

we conclude that Qz(0, ζ̄)(vj) = 0 and hence the ratio ρz(0,ζ̄)

−ρw(0,ζ̄)
is constant in ζ ∈ S0,VI

. Using this

information and substituting the obtained formulas in (7.5) we come to the desired conclusion. �

Note that in Corollary 7.3 there are no restrictions on ρ and the coordinates chosen other than
ρw(0, 0) 6= 0. However, if we choose (z, w) such that the complex tangent space T c

0M is given by
w = 0, the conclusion of Corollary 7.3 is substantially simplified:

Corollary 7.4. Let M ⊂ Cn+1 be a real-analytic hypersurface through 0 given by ρ(Z, Z̄) = 0 with
ρw(0, 0) 6= 0 and ρz(0, 0) = 0. Suppose that M is transversally embeddable into a real hyperquadric
in Cn+m+1. Fix a proper subset I ⊂ {1, . . . , n}. Then for any set of m + 1 multiindices αj,
j = 1, . . . , m + 1, with |αj| = 2 and supp αj ⊂ I, there is a relation of the form

(7.8)
∑

j

λj ρz
αj (0, ζ̄) = R1(ρzβ(0, ζ̄)), ζ ∈ S0,VI

,

where (λ1, . . . , λm+1) 6= 0 and R1 is a polynomial of degree at most 1 in the first order derivatives
of ρ.

Proof. Recall from the proof of Corollary 7.3 that the ratio ρz(0,ζ̄)

−ρw(0,ζ̄)
is constant in ζ ∈ S0,VI

. Since

now we assume ρz(0, 0) = 0, this ratio is actually zero. Then (7.7) is reduced to Qz2(0, ζ̄) =
ρ

z2 (0,ζ̄)

−ρw(0,ζ̄)
.

The rest of the proof is completely analogous to that of Corollary 7.3. �

Remark 7.5. As in Remark 2.4, we consider the special case m = 0, where Corollaries 7.2 – 7.4 give
obstructions preventing M from being (locally) biholomorphically equivalent to a hyperquadric
and make a comparison with the Chern-Moser normal form

(7.9) M =
{
Im w =

∑
aαµsz

αz̄µ(Re w)s
}
,

where, in particular, there are no pure terms zα and (Re w)s and the Levi form of M at 0 is given
by

∑
±|zj |

2. If all the first order derivatives ρzβ(0, ζ̄) are (affine) linear functions (which is the
case in the Chern-Moser normal form), Corollary 7.4 implies that, in case M is equivalent to a
hyperquadric, all second order derivatives ρzα(0, ζ̄) with supp α ⊂ I are linear in ζ ∈ S0,VI

. Since
S0 is given by w = 0, the property ζ ∈ S0,VI

means ζs = 0 for s ∈ I (i.e. ζ is orthogonal to VI

with respect to the Levi form). Now the mentioned linearity of ρzα(0, ζ̄) for ζ ∈ S0,VI
means that

aαµ0 = 0 whenever |α| = 2, |µ| ≥ 2 and

(7.10) supp α ∩ supp µ = ∅.
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On the other hand, if M is equivalent to a hyperquadric, the Chern-Moser theory implies the
vanishing of certain terms of bidegree (2, 2) and (2, 3) in (z, z̄) in the normal form. One can see
that (7.10) is closely related to the trace-free parts of the corresponding polynomials (see [CM74,
p. 233]). However, as mentioned before, the actual normal form can be hard to calculate, whereas
Corollaries 7.2 – 7.4 can be applied directly in any given coordinates.

We conclude this section by a series of explicit examples of manifolds M that are not embeddable
into hyperquadrics of certain dimensions by means of low order obstructions.

Example 7.6. Consider any submanifold M ⊂ Cn+1 given by

(7.11) ρ := −Im w +
n∑

s=1

±|zs|
2 +

∑

|α|+k,|β|+l≥2

ραkβlz
αwkz̄βw̄l = 0.

In fact, any M with nondegenerate Levi form can be written as (7.11), which is a part of the
Chern-Moser normalization. It easily follows that S0 = {w = 0}, ρw(0, ζ̄) = const and ρz(0, ζ̄)
is linear in ζ̄. We choose two sets of different multiindices α1, . . . , αm+1 and β1, . . . , βm+1 with
|αj| = 2, |βj | ≥ 2, such that

(7.12)
(⋃

j

supp αj

)
∩

(⋃

j

supp βj

)
= ∅

and consider the determinant A of the matrix (ραj0βk0)jk. Then if A 6= 0, Corollary 7.4 implies
that M is not transversally embeddable into any hyperquadric in C

n+m+1. In particular, if

m + 1 ≤
1

2

[n

2

] ([n

2

]
− 1

)
,

we can always choose βk with |βk| = 2 and thus have an obstruction of order 4. Indeed, given
(7.12), we can split the set {1, . . . , n} into disjoint subsets I1 and I2 with [n/2] elements each and
choose αj , βk with |αj| = |βk| = 2 such that supp αj ⊂ I1 and supp βk ⊂ I2.

8. Embeddability of submanifolds of higher codimension

8.1. Obstructions to embeddability. Our goal here will be to extend some of the preceding
results from hypersurfaces to generic submanifolds M ⊂ C

n+d of arbitrary codimension d.
We begin by giving a version of Proposition 3.3, where we adopt all the notation from §3.2,

except that we consider a holomorphic embedding H = (F, G) : (Cn+d, 0) → (Cn × Cm+d, 0) (i.e.
1 is replaced with general codimension d), S ⊂ Cn+d is a complex submanifold of codimension
d through 0, and choose the coordinates (z, w) ∈ C

n × C
d. As before, S and S ′ are respectively

graphs of holomorphic functions w = Q(z) and w′ = Q′(z′) near 0 with Q(0) = 0, Q′(0) = 0
and all derivatives of Q and Q′ will be assumed taken at 0. We continue writing Qzα ∈ Cd for a
partial derivative with respect to a multiindex α ∈ Nn and denote by Qi

zα ∈ C the components
for 1 ≤ i ≤ d. Similar notation is used for Q′. We regard the derivative Gw as an m × d matrix.
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Proposition 8.1. Under the normalization assumption (3.5), the partial derivatives of Q and Q′

at 0 are related by the formula

(8.1) Q′
z′α = GwQzα + Pα(Qi

zβ),

where Pα(Qi
zβ) is a Cm-valued polynomial in the components of the lower order derivatives Qi

zβ ,
|β| < |α|.

Proof. The proof follows the line of the proof of Proposition 3.3, involving differentiation of (3.3)
and using induction on |α|. It is clear that GwQzα is the only term on the right-hand side of (8.1)
involving derivatives of Q of order k. The remainder is a polynomial in the components of the
lower order derivatives. The details are left to the reader. �

We next give a version of Proposition 3.4, relating the derivatives of Q and ρ in the same
coordinates (z, w) ∈ C

n × C
d. This time both Q(z, ζ), (z, ζ) ∈ C

d × C
n+d, and ρ(z, ζ) are C

d-
valued and the coordinates are chosen such that ρw(0, 0) is an invertible d × d matrix. We write
ρi

zβwγ ∈ C for the components of the partial derivatives corresponding to integers 1 ≤ i ≤ d and
multiindices β ∈ Nn and γ ∈ Nd.

Proposition 8.2. The derivatives of Q and ρ are related by the formula

(8.2) Qzα(0, ζ̄) = −ρ−1
w (0, ζ̄)ρzα(0, ζ̄) +

Rα(ρi
zβwγ (0, ζ̄))

(det ρw(0, ζ̄))lα
, ζ ∈ S0,

where Rα(ρi
zβwγ(0, ζ̄)) is a Cd-valued polynomial in the partial derivative components ρi

zβwγ(0, ζ̄)
with |β| + |γ| ≤ |α|, |β| < |α|, and lα is a positive integer.

Proof. Here we follow the line of the proof of Proposition 3.4. As in that proof, we differentiate
(3.19), this time a vector identity, and subsequently use induction on |α| when substituting for
the components of Qzβ(0, ζ̄) with |β| < |α|. The details are left to the reader. �

We now turn to a version of Theorem 5.1 for higher codimension.

Theorem 8.3. Let M ⊂ Cn+d be a real-analytic generic submanifold through 0 given by ρ(Z, Z̄) =
0 with ρw(0, 0) being invertible d × d matrix. Suppose that M is transversally holomorphically
embeddable into a hyperquadric in Cn+m+d. Then for any set of m + d multiindices αj ∈ Nn,
|αj| ≥ 2, j = 1, . . . , m + d, there exist integers i0 ∈ {1, . . . , d} and k with K := {j : |αj| = k} 6= ∅
such that the partial derivative components of ρ satisfy a relation of the form

(8.3)
∑

j∈K

Pj(ρ
i
zβwγ(0, ζ̄)) ρi0

z
αj (0, ζ̄) = R(ρi

zβwγ (0, ζ̄)), ζ ∈ S0,

where Pj(ρ
i
zβwγ (0, ζ̄)) and R(ρi

zβwγ(0, ζ̄)) are polynomials in the partial derivative components
ρi

zβwγ (0, ζ̄) with |β| + |γ| ≤ k and either |β| < k or i 6= i0, such that not all Pj(ρ
i
zβwγ(0, ζ̄))

identically vanish in ζ ∈ S0.
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Proof. We follow the strategy of the proof of Theorem 5.1. We first establish a version of Propo-
sition 4.2. As in the proof of the latter, assuming a transversal embedding H = (F, G) is given,
we can perform a linear change of the coordinates in the target space and a possible permutation
of the components of w ∈ Cd in the source to obtain

(0, . . . , 0, 1) /∈ T c
0M ′, Gw(0) = (0, id) : C

d → C
m × C

d.

Then we apply Proposition 8.1 (in place of Proposition 3.3) to obtain a relation

(8.4) Q′
z′α(0, ζ̄) =

(
0, Qzα(0, ζ̄)

)
+

(
Rα(Qj

zβ(0, ζ̄)), T α(Qj

zβ(0, ζ̄))
)
∈ C

m × C
d,

with Rα and T α being polynomials in the lower order derivatives components Qj

zβ(0, ζ̄), |β| < |α|.
As in the proof of Proposition 4.2, we next apply Lemma 4.1 to the given m+d (instead of m+1)

multiindices α1, . . . , αm+d (assumed to be ordered as |α1| ≤ . . . ≤ |αm+d|) to obtain an integer j0

and a j0 × j0 matrix (Q′h
z
′αjs

(0, ζ̄)) with vanishing determinant, whose leading (j0 − 1) × (j0 − 1)
minor does not identically vanish. Then substituting the right-hand side expressions from (8.4)
for the matrix entries, we obtain a relation

(8.5)
∑

j∈K

Pj(Q
i
zβ(0, ζ̄)) Qd

z
αj (0, ζ̄) = R(Qi

zβ(0, ζ̄)), ζ ∈ S,

where K := {j : |αj | = k} 6= ∅ for k := |αj0| and Pj(Q
i
zβ(0, ζ̄)) and R(Qi

zβ(0, ζ̄)) are polynomials
in the partial derivatives components Qi

zβ(0, ζ̄) with either |β| < k or |β| = k and i 6= d, and such
that not all Pj(Q

i
zβ(0, ζ̄)) identically vanish. Note that we previously made a possible permutation

of the components of w, so that the last component Qd
z

αj (0, ζ̄) in (8.5) may actually correspond

to another component Qi0
z

αj (0, ζ̄) in the original numeration.
Finally we follow the line of the proof of Theorem 5.1, where we apply Proposition 8.2 instead

of Proposition 3.4 to pass from the identity (8.5) to an identity of the form (8.3) as desired. �

8.2. Most generic submanifolds of higher codimension are not embeddable. Our goal
here is to use Theorem 8.3 in order to give an affirmative answer to a question by Forstnerič [Fo04].
Informally speaking, this question is whether the set of all generic submanifolds of higher codimen-
sion, which are holomorphically embeddable into algebraic strongly pseudoconvex hypersurfaces, is
of the first category.

To state the question more precisely, let us recall some notation from [Fo04]. Recall that every
germ of a generic real-analytic submanifold M ⊂ Cn+d of codimension d is biholomorphically
equivalent to one of the form

(8.6) M =
{
Im w = r(Re z, Im z, Re w)

}
, (z, w) ∈ C

n × C
d,

where

(8.7) r(x, y, u) =
∑

α,β∈Nn,γ∈Nd

cαβγx
αyβuγ, x, y ∈ R

n, u ∈ R
d,



26 D. ZAITSEV

is a Rd-valued convergent power series without constant and linear terms. Then all convergent
power series in (8.7) can be written as ∪t>0R

t, where Rt is the space of all series (8.7) for which
the norm

(8.8) ‖r‖t :=
∑

α,β,γ

|cαβγ |t
|α|+|β|+|γ|

is finite. Clearly Rt is a Banach space with the norm ‖r‖t. Finally recall that a real submanifold
M ⊂ Cn+d is called algebraic if it is contained in a real-algebraic variety of Cn+d ∼= R2(n+d) of the
same dimension as M .

We now state our main result of this section.

Theorem 8.4. For every t > 0, the set of all r ∈ Rt, for which the germ (M, 0) given by (8.6)
is transversally holomorphically embeddable into a hyperquadric in any dimension, is of the first
category (in the Banach space Rt).

Theorem 8.4 answers the above question by Forstnerič in view of the result by Webster [W78]
stating that any Levi-nondegenerate real-algebraic hypersurface is always transversally holomor-
phically embeddable into a Levi-nondegenerate hyperquadric (of possibly high dimension depend-
ing on the hypersurface).

Proof of Theorem 8.4. We first rewrite the power series r in the complex form:

(8.9) r =
∑

α,β∈Nn,γ∈Nd

rαβγz
αz̄βuγ, z ∈ R

n, u ∈ R
d.

Then we can identify the elements of Rt with the power series (8.9) without constant and lin-
ear terms whose coefficients rαβγ satisfy the reality condition rαβγ = rβαγ . As the next step we
eliminate all pure terms rα00z

α by subtracting them from r. The corresponding transformation is
biholomorphic and hence does not change the biholomorphic equivalence class of (M, 0). Denote
by Rt

0 ⊂ Rt the subspace of all series with rα00 = 0 for all α. Then it is sufficient to prove the
statement for Rt

0, i.e. to show that the set of all (M, 0) corresponding to elements in Rt
0, that are

transversally embeddable into a hyperquadric, is of the first category in Rt
0.

We now consider germs (M, 0) given by some r ∈ Rt
0 that are transversally embeddable into a

hyperquadric in Cn+m+d for some fixed m. For every such (M, 0), we can apply Theorem 8.3 using
the defining function ρ of M given by

ρ(z, w, z̄, w̄) := −Imw + r(Re z, Im z, Re w)

and obtain a relation (8.3). Since r has no pure terms with zα, we have ρ(z, 0, 0, 0) ≡ 0, implying
that S0 = {w = 0}. Then Theorem 8.3 yields, in particular, for some i0 and k, a polynomial
identity

(8.10)
∑

|α|=k

Pα(ρi
zβwγ(0, χ̄, 0)) ρi0

zα(0, χ̄, 0) = R(ρi
zβwγ (0, χ̄, 0)), ζ = (χ, τ) ∈ C

n × C
d,
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with Pα and R being polynomials as in Theorem 8.3 and not all Pα(ρi
zβwγ(0, χ̄, 0)) identically

vanishing.
In our next step we consider the following standard lexicographic order on the set of all mul-

tiindices α = (α1, . . . , αn) ∈ Nn. We write α < β if either |α| < |β| or |α| = |β| and for some
1 ≤ s ≤ n, αj = βj for all j < s but αs < βs. We also write α ≤ β if either α < β or α = β. Then
the set Nn becomes linearly ordered with the following additive property:

(8.11) α1 ≤ β1, α2 ≤ β2 =⇒ α1 + α2 ≤ β1 + β2.

We now fix i0, k and a multiindex α0 with |α0| = k and consider the set of all r ∈ Rt
0, for

which a relation (8.10) holds with the coefficient Pα0(ρ
i
zβwγ(0, χ̄, 0)) 6≡ 0. Using the lexicographic

order introduced above we may consider the minimal multiindex ν0 = ν0

(
Pα0(ρ

i
zβwγ(0, χ̄, 0))

)

corresponding to a nonzero monomial in the expansion of Pα0(ρ
i
zβwγ (0, χ̄, 0)). In addition to the

previous data, we also fix this minimal multiindex ν0 as well as the degrees of the polynomials Pα

and R. It is clearly sufficient to prove that the set of all r ∈ Rt
0 with ρ satisfying (8.10) with the

above data fixed, is of the first category.
Going back to (8.10), we expand both sides as power series in χ̄ and obtain recursive relations

for the terms of ρi0
zα0 (0, χ̄, 0) as follows. For every multiindex µ, |µ| ≥ 1, identify the monomials

in the expansion with χ̄ν0+µ. Then, since Pα0(ρ
i
zβwγ(0, χ̄, 0)) contains a nontrivial monomial with

χ̄ν0, we have a nontrivial contribution of the corresponding monomial with χ̄µ in the expansion
of ρi0

zα0 (0, χ̄, 0). (The latter monomial may be assumed nonvanishing, since it vanishes only for a
set of r’s of the first category.) Furthermore, it follows from the property of ν0 and (8.11) that
the contributing multiindices corresponding to all other nontrivial monomials in the expansion of
ρi0

zα0 (0, χ̄, 0) are smaller than µ. Thus we can express the coefficient in front of χ̄µ in the expansion
of ρi0

zα0 (0, χ̄, 0) as a rational function of its other coefficients corresponding to smaller monomials
(with respect to our lexicographic order), the coefficients of other derivatives ρi

zβwγ(0, χ̄, 0) and
the coefficients of Pα and R. By induction, we can then express the coefficients of χ̄µ as a rational
function only of the coefficients of other derivatives and the polynomials Pα and R. The denom-
inator of this rational function is precisely the minimal multiindex coefficient in the expansion
of Pα0(ρ

i
zβwγ (0, χ̄, 0)), and hence it does not vanish since we have assumed this coefficient to be

nonzero.
The final observation involves sufficiently large truncations of the series in Rt

0 (similar to
[Fo04]). It is clear that the dimension of the corresponding truncation space for the coefficients of
Pα0(ρ

i
zβwγ (0, χ̄, 0)) is arbitrarily large, whereas the dimension of the polynomial coefficients of Pα

and R is fixed by our choice. Hence, choosing sufficiently large truncations, the condition for the
coefficients of ρi0

zα0 (0, χ̄, 0) to be given by a rational function as above, defines a nowhere dense
subset. Going back to the space Rt

0 before the truncation, we can see that the corresponding
subset there is also nowhere dense, hence is of the first category as desired. The details are left to
the reader. �
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Appendix A. Obstructions to biholomorphic equivalence to real-algebraic

submanifolds

Here we briefly illustrate how our methods can be used to obtain obstructions to biholomorphic
equivalence to real-algebraic submanifolds. The proofs are self-contained and do not depend on
the previous sections. In particular, no elaborate weight estimates are needed here.

Theorem A.1. Let M ⊂ Cn+d be a real-analytic generic submanifold of codimension d through
0 given by an equation w = Q(z, z̄, w̄), (z, w) ∈ Cn × Cd, where Q is a Cd-valued holomorphic
function in a neighborhood of the origin. Suppose that M is biholomorphically equivalent to a real-
algebraic generic submanifold of Cn+d. Then any set of n+1 partial derivatives of the components,
Qi1

zα1 (0, ζ̄), . . . , Q
in+1

zαn+1 (0, ζ̄), with ζ varying in the Segre varity S0, is algebraically dependent, i.e.

satisfies a nontrivial polynomial equation P (Qi1
zα1 (0, ζ̄), . . . , Q

in+1

zαn+1 (0, ζ̄)) = 0.

Proof. Let H = (F, G) : (Cn × Cd, 0) → (Cn × Cd, 0) be a local biholomorphic map sending
a neighborhood of 0 in M into a real-algebraic generic submanifold M ′ ⊂ Cn+d that we may
assume being given by w′ = Q′(z′, z̄′, w̄′), where Q′ is a (complex-)algebraic holomorphic C

d-
valued function satisfying Q′

z′(0, 0, 0) = 0. The latter implies that the d × d matrix Gw(0) is
invertible. Then for every k ≥ 1, the holomorphic map

(A.1) µQ′,k : ζ̄ ′ ∈ S ′
0 7→ (Q′j

z′β
(0, ζ̄ ′))1≤j≤d,|β|≤k ∈ C

N ,

with appropriate N , is algebraic. Recall that dim S ′
0 = n. Then by Chevalley’s theorem (see e.g.

[M88], p. 72), the image of µQ′,k is contained in an algebraic variety of dimension n.
The property that H sends M into M ′ can be expressed (after complexification) as

(A.2) G(z, Q(z, ζ̄)) = Q′(F (z, Q(z, ζ̄)), H̄(ζ̄)).

Differentiating in z at (z, ζ̄) ∈ {0} × S0 and using the properties Q(0, ζ̄) = 0 for ζ ∈ S0, we
conclude by induction on |α| that each derivative Qi

zα(0, ζ̄), 1 ≤ i ≤ d, |α| ≤ k, can be expressed

as a rational function of Q′j
z′β

(0, H̄(ζ̄)), 1 ≤ j ≤ d, |β| ≤ k, with poles away from µQ′,k(0). In

particular, applying Chevalley’s theorem we see that, for ν(ζ̄) := (Qi1
zα1 (0, ζ̄), . . . , Q

in+1

zαn+1 (0, ζ̄)) the
image of ν ◦ H̄ is also contained in in an algebraic variety of dimension n. Furthermore, since H̄
maps S0 locally biholomorphically onto S ′

0 near 0, it follows that the image ν(S0) is contained in
the same algebraic variety of dimension n. The claimed algebraic dependence now immediately
follows. �

As in case of Theorem 2.2 above, we obtain an immediate consequence in the special case when
M is rigid:

Corollary A.2. Let M ⊂ Cn+d be a real-analytic generic submanifold of codimension d through
0 given in its rigid form by Imw = ϕ(z, z̄), (z, w) ∈ Cn ×Cd. Suppose that M is biholomorphically
equivalent to a real-algebraic generic submanifold of Cn+d. Then any set of n + 1 partial deriva-
tives of the components, ϕi1

zα1 (0, χ̄), . . . , ϕ
in+1

zαn+1 (0, χ̄) with χ ∈ Cn near the origin, is algebraically
dependent.
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In particular, specializing further to the tube case, we have:

Corollary A.3. Let M ⊂ C
n+d be a real-analytic generic submanifold of codimension d through

0 given in its tube form by Imw = ϕ(Im z), (z, w) ∈ Cn ×Cd. Suppose that M is biholomorphically
equivalent to a real-algebraic generic submanifold of Cn+d. Then any set of n+1 partial derivatives
of the components, ϕi1

zα1 (x), . . . , ϕ
in+1

zαn+1 (x) with x ∈ Rn near the origin, is algebraically dependent.

Some of the algebraic dependence relations in Corollary A.3 (with i1 = . . . = in+1, |αs| ≤ 2, in
case M is minimal and finitely nondegenerate and its infinitesimal CR automorphism algebra has
minimum possible dimension) are contained in [GM04] as mentioned before in the introduction.

We conclude by mentioning that Proposition 3.4 can be used to obtain a version of Theorem A.1
with algebraic dependence relations for the derivatives of (the components of) any defining function
rather than the function Q, similarly to Theorem 2.2 (or Theorem 5.1) being obtained from
Proposition 4.2.
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