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Abstract

It was once common to believe that the timing of spikes in spike

trains was too variable to carry information and that in the sen-

sory pathways information about stimuli was represented by spike

rates. While it is now thought possible that stimuli are also repre-

sented in spike-timing features (Bialek et al., 1991; Rieke et al., 1999a;

De Ruyer Van Steveninck et al., 1997; Borst and Theunissen, 1999;
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Ahissar et al., 2000), it is still not fully understood how to describe

the variability and coding function of these features. One approach

is to define a spike train metric, that is, a measure of the distance

between two spike trains (Victor and Purpura, 1996; Aranov and Vic-

tor, 2004; Victor, 2005). A good metric will measure a short distance

between responses to the same input and a longer distance between

responses to different inputs and can be used to quantify the signifi-

cance of variability between putative timing features. Here, we define

a new metric. It is constructed using a non-linear transformation of

spike trains into functions and is motivated physiologically by a simple

model of synaptic conductance which takes adaptation into account.

This metric proves effective at classifying neuronal responses by stim-

uli in the sample data set of electro-physiological recordings from the

field L auditory area of the zebra finch fore-brain.

1 Introduction

It is not known to what extent, or how, information propagating in the

sensory pathways is encoded in spike timing features. One approach to

this question is to use a spike train metric (Victor and Purpura, 1996).

This approach was applied to the neuronal responses of neurons in

field L of zebra finch (Narayan et al., 2006; Wang et al., 2007). In the

ascending auditory pathway, area field L is afferent to the song system

and is considered the oscine analogue of the primary auditory cortex

(Zaretsky and Konishi, 1976). It was found, using the van Rossum
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metric (van Rossum, 2001), that it is often possible to discriminate

between the spiking responses to different zebra finch songs.

The van Rossum metric first converts a spike train into a function

using a filter and a metric on the space of functions then induces a

metric on the space of spike trains. More precisely, to calculate the

van Rossum metric, the spike train is first filtered to form a function.

The spike train, considered as a list of spike times t = (t1, t2, · · · , tn)

is mapped to a real function, f(t; t) using a kernel h(t):

t 7→ f(t; t) =

n
∑

i=1

h(t − ti). (1)

The distance between two spike trains, t1 and t2, is taken to be the

distance between the two corresponding functions, using the standard

L2 metric on the space of real functions:

d(t1, t2) =

√

∫

dt[f(t; t1) − f(t; t2)]2 (2)

One common choice of kernel is the decaying exponential

h(t) =











0 t < 0

1

τ e−t/τ t ≥ 0
. (3)

where τ is a time-scale which parameterizes the metric.

In (Narayan et al., 2006) it is found that for zebra finch field L data,

setting the time-scale τ to 10 ms gives the most accurate clustering

of field L responses by song stimulus. Thus, 10 ms is an indicative
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time-scale for the encoding of information in spike times. For the song

bird data being considered here, τ = 10 ms produced the best results

and this value is used for all the analysis in this paper.

An very simple model of the synapse has a stereotypical discontin-

uous increase in conductivity in response to a pre-synaptic spike and

an exponential relaxation afterwards, modeling a diffusive unbinding

of neuro-transmitters from the ion gates. Hence,

g → g + δg (4)

whenever there is a pre-synaptic spike, with δg a constant and

τs
d

dt
g = −g (5)

with τs the constant synaptic time constant. Clearly, g(t) can be

identified with the filtered spike train f(t; t) used in the van Rossum

metric above. To make this precise τs is identified with τ and δg is

set equal to 1/τ .

2 The new metric

The next simplest model includes short-term synaptic adaptation. In

one model (Dayan and Abbott, 2001), the increase in conductivity is

4



discontinuous but is not stereotypical: g is modeled by

g → g +
δg

gmax

(gmax − g) (6)

for a pre-synaptic spike arriving and

τs
d

dt
g = −g (7)

Thus, if g is zero, it increases by δg in response to a pre-synaptic spike,

but for non-zero g, the change is smaller and, if g = gmax, there is no

change.

Here, a new metric is defined by replacing the filtering of the spike

train used in the van Rossum metric with a new map modeled on this

conductance dynamics:

t → f̃(t; t) (8)

where f̃(t; t) is the solution of

τ
d

dt
f̃ = −f̃ (9)

with discontinuities

f̃ → f̃ + µ

(

1

µτ
− f̃

)

(10)

at the spike times. The distance between two spike trains t1 and t2 is
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now given by

d̃(t1, t2) =

√

∫

dt[f̃(t; t1) − f̃(t; t2)]2 (11)

0 ≤ µ ≤ 1 and µ = 0 corresponds to the original, van Rossum metric

with the exponential filter (3). This is illustrated in Fig. 1.

2.1 Results

This new metric has been applied to the electro-physiological data pre-

viously analyzed in (Narayan et al., 2006; Wang et al., 2007); (Narayan

et al., 2006) should be consulted for a detailed description of the ex-

perimental procedures. The recordings were taken from field L of

anesthetized adult male zebra finch. There are 24 recording sites; at

each site ten responses were recorded to 20 zebra finch songs. In all

our analysis here, one second of each recording is used, beginning at

the onset of song playback. The clustering accuracy is calculated us-

ing the same simplified k-means procedure used in (Narayan et al.,

2006; Wang et al., 2007). For each site there are 200 spike trains, ten

each for 20 songs. For each clustering trial, a template spike train is

chosen randomly for each song. For each of the remaining 180 spike

trains, the metric with synaptic parameter value µ is used to calculate

the distance to each of the 20 template spike trains. γ(µ) is then the

proportion of responses for which the template for the same song is

the closest. c(µ) is the average value of γ(µ) over 400 trials.
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In Fig. 2 the performance of the metric at different values of µ is

compared for 24 neurons. The best performance corresponds to µ =

0.7 where the average improvement over µ = 0 is 15.3%. Compared to

µ = 0, only one neuron has worse clustering at µ = 0.7 and for three,

the improvement is over 30%: c(0) and c(0.7) are also compared in

Fig. 3. If the optimal value of µ was used for each individual neuron,

the average improvement would be 17.5%.

3 Discussion

When used to cluster these data, the new metric shows a significant

improvement over the van Rossum metrics; if this improvement holds

for other data, the new metric has potential practical application for

classifying neuronal responses. What is most striking though is the

manner in which the new metric differs from the van Rossum metric. If

a spike train is changed by adding a single spike, the distance between

the new and the old spike train will be the same under the van Rossum

metric, no matter where the spike is added. For the new metric,

however, this distance will depend on the precise location of the extra

spike. Thus, the space of spike timing features lying within a fixed

variability radius of a given feature will be different in the two metrics.

The new metric induces a different geometry on the space of spike

timing features and this happens because the metric is based on the

synaptic response to the spike train. Of course, the real dynamics

of synapses is much more complicated and it would be interesting
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to understand synaptic potentiation and adaptation and spike rate

adaptation (Fairhall et al., 2001) as components in an information

process.

The van Rossum and Victor-Purpura metrics (Victor and Purpura,

1996) have a similar clustering performance on the data considered

here. However, the correlation-based similarity measure defined in

(Schreiber et al., 2003) is better. The correlation-based similarity

measure, like the van Rossum metric, is defined on the filtered spike-

trains: f(t, t); however, it uses a Gaussian filter

h(t) =
1√
2π

σ exp

(

− t2√
2πσ

)

(12)

and the similarity s(t1, t2) between two spike trains, t1 and t2 is set

equal the correlation of the two functions

s(t1, t2)) =

∫

f(t; t1)f(t; t2)dt
√

∫

f(t; t1)2dt
∫

f(t; t2)2dt
(13)

With σ = 3.6 this similarity measure gives similar clustering accuracies

to the new metric: it shows a 16.1% improvement over the van Rossum

metric, the results are compared in Fig. 4. This is interesting because

the two measurement are quite different; whereas the new metric is

physiologically motivated, the correlation-based similarity measure is

motivated statistically. It seems that they are both superior to the van

Rossum metric when used to analysis these data, but the reason they

perform better may be different in each case. This is evidence that
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there is further progress to be made in defining spike train metrics and

in understanding how they capture relevant features of spike trains.

Acknowledgments

C.J.H. was supported by a International Human Frontiers Science Pro-

gram Organization short-term fellowship and by Science Foundation

Ireland grant 06/RFP/BIM020. K.S. was supported by a grant from

NIDCD: 1 RO1 DC-007610-01A1.

References

E. Ahissar, R. Sosnik, and S. Haidarliu. Transformation from tempo-

ral to rate coding in a somatosensory thalamocortical pathway.

Nature, 406(6793), 2000.

Dmitriy Aronov and Jonathan D. Victor. Non-euclidean properties of

spike train metric spaces. Physical Review E, 69:061905, 2004.

W Bialek, F Rieke, RR de Ruyter van Steveninck, , and D Warland.

Reading a neural code. Science, 252(5014):1854–1857, 1991.

Alexander Borst and Frederic E. Theunissen. Information theory and

neural coding. Nature Neuroscience, 2:947–957, 1999.

P. Dayan and L. F. Abbott. Theoretical Neuroscience. MIT Press,

2001.

9



Adrienne L. Fairhall, Geoffrey D. Lewen, William Bialek, and

Robert R. de Ruyter van Steveninck. Efficiency and ambiguity

in an adaptive neural code. Nature, 412, 2001.

R. Narayan, G. Graña, and K. Sen. Distinct time scales in cortical

discrimination of natural sounds in songbirds. Journal of Neuro-

physiology, 96:252–258, 2006.

F. Rieke, D. Warland, R.R. van Steveninck, and W. Bialek. Spikes:

exploring the neural code. MIT Computational Neuroscience Se-

ries, 1999.

S. Schreiber, J. M. Fellous, D. Whitmer, P. Tiesinga, and T. J. Se-

jnowski. A new correlation-based measure of spike timing relia-

bility. Neurocomputing, 52–54:925–931, 2003.

R. R. De Ruyter Van Steveninck, G. D. Lewen, S. P. Strong,

R. Koberle, and W. Bialek. Reproducibility and variability in

neural spike trains. Science, 275(5307):1805–1808, 1997.

M. van Rossum. A novel spike distance. Neural Computation, 13:751–

763, 2001.

J. D. Victor and K. P. Purpura. Nature and precision of temporal

coding in visual cortex: a metric-space analysis. Journal of Neu-

rophysiology, 76(2):1310–1326, 1996.

Jonathan D. Victor. Spike train metrics. Current Opinion in Neuro-

biology, 15(5), 2005.

L. Wang, R. Narayan, G. M. Graña, Shamir, and K. Sen. Cortical

10



discrimination of complex natural stimuli: can single neurons

match behavior? Journal of Neuroscience, 27(3):582–9, 2007.

M.D. Zaretsky and M. Konishi. Tonotopic organization in the avian

telencephalon. Brain Research, 111:167–71, 1976.

11


