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Plan
e Formulate mathematical, enumerative, problem
e Define physical, QFT, problem which computes same thing
e Explain physics role of this QFT and relation to Math
e Formulate answers (in some cases but not all)
e Discuss the results

Examples

LECTURE 1

1. Gromov-Witten theory - Top. Sigma Model, type A
2. Deformation theory - complex structures: Top. B model
3. Donaldson Theory - twisted N=2 SYM on four manifold.

LECTURE 11

4. Intersection theory on moduli space of flat connections
over Riemann surface - Topological YM theory on Riemann

surface = CS and G/G WZW.

5. Intersection theory on moduli space of Higgs Bundles
(Hitchin system) - Topological YM-Higgs theory < Nonlin-
ear Schrodinger theory and representation theory of Quan-

tum Groups = CS and G/G WZW for complexified G.



LECTURE 1

2d Topological Sigma Models: A & B

Main Math application can be summarized by:

Mirror formula

e Type A sigma model on V' = Type B sigma model on 1%
e Relates GW on V to (gen)deformations of cmplx str on V

e Manifolds V and V are called mirrors.

~

e For Kdhler manifolds: h?1(V) = h™P4(V)
e The concept extends to: V symplectic and V complex.

e Mirror exchanges kéahler (A) and complex (B) deforma-
tions.
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Type A sigma models : Gromov — Witten theory

Two dimensional sigma model - maps

d:¥ -V

>, - two dimensional manifold, world-sheet
V - some Riemannian manifold.
Let V' be complex manifold.

e Mathematical reformulation of what physicists call parti-
tion function in the topological type A sigma model:

Gwen a set of submanifolds C4,...,Cr, C; C V, compute

the number N¢, ... .c..s of rigid genus g holomorphic curves
X CV, [X]=p8¢€Hs(V;Z) passing through them

The cycles in H, (V) represented by C4, ..., C} are Poincare
dual to some cohomology classes wq, ...,w € H*(V).



Physical picture

(Supersymmetric) Sigma model - defined through action func-
tional < functional of “fields”: ¢, wi, Yl

® - a map: (X - Riemann surface) — (V - Riemannian man-
ifold of metric gr7).

Pick local coordinates: on ¥ - z,z, on V - ¢'.
o ¢!: Map ® - locally described by ¢!(z, 2).

K (K) - the canonical (anti-canonical) line bundles of ¥ (the
bundle of one forms of types (1,0) ((0,1)))

TV - complexified tangent bundle of V.
to get supersymmetry = add Grassmann variables:
e YL - a section of K12 @ ®*(TV)

/

e L - a section of K ® O*(TV).



Physical Sigma Model:

So(n o) =75 | (%gzj(qb)azqsfazw ¥ %guwiDz«pi) ;
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f? - coupling constant
Rrrxr - Riemann tensor of V.

D; - 0 operator on K'/2 @ ®*(TV) constructed using the
pullback of the Levi-Civita connection on T'V.

e Now suppose V is Kahler
Sigma model has extended SUSY: N = 2.
Map ® — local coordinates: ¢°, gbg = E

Decompose: TV =TV @ TO1V.

vl (wi) - the projection of ¥, in:
K1/2 ® (I)*(Tl,OV) (K1/2 ® (I)*(TO,lv))

Y* (%) - the projections of ¥_ in:

K’l/Q ® (D*(Tl,()v) (Kl/Q ® (I)*(To,lv>)



Action has more parameters:

1 o N1 1
— - NN I~ WX J il - I .J
So = 29/2 5 9i] <8qu 0z¢’ — 0z9"0,¢ )—I—f2 /E 2gIJ8qu 0z¢" +

+ih Dt gg; 4+ ik Dab g + Rygy sl p? b’

f-another parameter, theta-angle.

Twist:
+ : 1p " and ¢, 7 - sections of ®*(T10X) and K@®d*(T1 X).
- ;)% and ¢, - sections of K@®*(T10X) and &* (T X).
A Model: + twist of ¥, and a — twist of ¢_.
B Model: — twists of both ¥ and 9 _

Locally the twisting does nothing at all, since locally K and
K are trivial.



e X - section of ®*(T'X) ( x* = ¢, and Y= vb);
o ¢i - (1,0) form on ¥ with values in ®*(T%!X); wi = ot
e ¢ - (0,1) form with values in ®* (T X); ¢* = L.
Topological transformation laws:

6! =iyt

ox! =0

S = — 0. — T

5¢ - = z¢ - ZXJFZ ¢

52 = 0 - on the space of solutions of equations of motion
(minimizing the action). Can be made ”off-shell” by intro-
ducing auxiliary fields.

Lett:9+f%.

So = ;2/d2z 5R+t/<I>*(w)
>
R = g;; (v10:0) +0.0'01)

/Z(I)*(w) = i/2d2z (aquiaigb‘;gﬁ - 82¢i82¢59i5)

— the integral of the pullback of the Kahler form w = —igi3dzidz5 :

Action:

[ ®*(w) - depends only on the cohomology class of w and
the homology class 3 € Ha(V) of the image of the map ®.



In physics one computes correlation functions of some oper-
ators (observables) in given theory.

Definition. Observable {O;} — a functional of the fields,
S.t. (501 = 0.

Definition. Physical observable = a § - cohomology class,

Definition. Correlator - path integral:

(][ Oa)s = e 2 D¢ Dx D e_f%SfR-HOa.

Bgs

Bz - the component of the field space for maps of degree
B =[®(X¥)] € Ho(V,Z), and ( ) - degree B contribution to
the expectation value.

Correlators of the observables depend only on their
d-cohomology class, in particular — independent of
the complex structure of > and V', and depend only
on the cohomology class of the Kahler form w.



Standard argument: ¢ ~ exterior derivative on the field
space B — (6V)3 = 0 for any reasonable W. Thus, the O;
should be considered as representatives of the d-cohomology
classes.

Thus, correlator is independent of f2. If f2 — 0 - Gaussian
model.

Bosonic part of the Action
: 1 -
zt/CI)*(w) + 72 /2 9:5(9)0.¢" 0:¢"
for given [ is minimized by holomorphic map:
0:¢' = 0,¢" = 0.

The entire path integral, for maps of degree 3, reduces to an
integral over the space of degree 3 holomorphic maps Mg.



e Descend procedure

Pick an n-form W = Wy, r,. 1. (¢)dp’t Adp'2 AL .. Adgp!™ on
V' = a local functional
Ow (P) = Wrr,..1,(®(P)x" ... X" (P).
00w = —Oaw,
d the exterior derivative on V.
= W +— Ow - natural map from the de Rham cohomol-
ogy of V to the space of physical observables, 0-cohomology,

of quantum field theory A(V'). For local operators - isomor-
phism.

Let d - be the DeRham differential on Y. We have descend

equations:

dOw = (5(9‘(41/), b (9‘(,‘1/) - 1-observable. The physical ob-
servable depends on the homology class of C' in H; (3).

d(’)‘(,[lf) = 5(’)1(,[2/) : fz (’)‘(/[2/) - 2-observable.
Deformations of the theory: change the action as follows:

SA (T) — SO + Ta / OWa
DY

T® are the formal parameters (nilpotent). The path integral
with the action Sy computes the generating function F,(T)
of the correlation functions of the two-observables:

Fa(T) = (e~ Js5@)

oS
S(0) = S, ST I7=0 = /EOWQ




Reduction to the enumerative problem
C' - submanifold of V' (only its homology class matters).
The “Poincaré dual” to C' - cohomology class that counts

intersections with C'. Represent by a differential form W (C')
that has delta function support on C"

Conclude:

Correlators of topological observables Oy (¢, - .. Ow (c,)
are integrals over Mg of the products of delta func-
tions which pick out the holomorphic maps whose
image intersects the submanifolds C',...,C),:

Let C4,...,C); C V - complex submanifolds, dimC; = d;.

wm = W(Cy,) € H*(V) - their Poincare duals.

Let z1,..., 2, € 2, m < k be the marked points.

For a complex submanifold C C V and for 1 <[ < m define
the following submanifolds /\/l%’ ; C M, MZ, C M:

Definition. /\/l%,l ={P: X >V|de M, &(z) € C}

Definition. M4 ={®: X - V|®(X)NC # 0}



The correlation functions in the type A sigma model are
simply the intersection numbers:

<og)1>(zl>...ogg;(zm)/zog;+l.../Eogg> _

H#ME 0 MG L OME NN ME,
> dimM, ; + ) dimMg, = dimMg

otherwise (...) vanishes,

dimMg = / c1(V)+ (1 — g)dimV
B



Problem: Mg is non-compact. Need to compactify it in
order to get a nice intersection theory.

Compactification is not unique.
Option I. Kontsevich stable maps.

Option II. Freckleds — in case where V is a symplectic quo-

tient of a G-equivariant submanifold of a vector (affine) sym-
plectic space A: V C A//G.

Compactification of M - Regularization

Non-compactness of M comes from ultraviolet non-compactness
of the fields space B. (UV = ||d®||* — oo)

Physical picture

Option I = coupling to topological gravity ~ averaging over
conformal structures on X..

Option II = gauged linear sigma model with target A and
gauge group G (and perhaps superpotential).



Type B sigma models: Kodaira-Spencer theory.

Consider the space S of generalized (in the sense of Kontsevich-
Witten) deformations of complex structures of variety 1% (V
- mirror to V).

The tangent space to S at some point s represented by a
variety V! is given by:

1.5 = @ (V. A'7y,) = PH- (V)
p,q

p,q

Let T' denote special coordinates on this space.

The right-hand side of the mirror formula - essentially a par-
tition function in type B sigma model expressed in terms of
special coordinates, whose choice is absolutely necessary for
the formulation of mirror symmetry.

Note: genus dependence doesn’t enter in this definition.
Precise mathematical definition of F7(T') is not known.



Physical Picture
Yl - sections of ®*(T1V)
wi - section of K ® <I>*(T170X~/)
Yt - section of K @ ®*(THOV).
p - one form with values in ®*(T10V); pt = ¢, pL = i .

all fields above are valued in Grassmann algebra

Denote: __ _. -.
N =vL +yYL
0 = gi (v — vl ).
Transformations: |
o' =0
5% = irf
on' = 80; =0
6pt = — do'.

nilpotent symmetry: 52 = 0 on-shell, on the solutions of the
equations of motion (minimizing the action functional). Can
be made off-shell by introducing extra fields.



Action:

1 . .
S = 72 / d*» (91J3z¢13z¢‘] +in'(D2pk + Dzpl)g;;

+i0;(Dzp." — D.pz") + RiyzpLpln Org™ ) :

Again one can rewrite the action using ¢:

1
S = f2/5U+So

U = g; (pL0:07 + pL0.0" )

i 2 i 0 7
So =/Z (—&-Dp — g Ragzpt Ap'n Hkgk]> :
As in A model - define the observables as:

Definition. Observable {O;} — a functional of the fields,
S.t. 502 = 0.

Definition. Physical observable = a ¢ - cohomology class,
O; ~O; +0VY,;.



Correlators

<H Oa> —

D¢ Dp Dy e 720 V=50, I1 0.
BB a

B theory is independent of the complex structure of 3. and
the Kéhler metric of V. Change of complex structure of X
or Kahler metric of V' - Action changes by irrelevant terms

of the form 4(...).

The theory depends on the complex structure of V,
which enters 9

B model is independent of f?; take limit f?2 — 0; In this
limit, one expands around minima of the bosonic part of the
Action = constant maps ¢ : ¥ — V:

The space of such constant maps is a copy of V: the path
integral reduces to an integral over V.

All above can be demonstrated by considerations similar to
those in A-model.



Observables:

Consider (0,p) forms on V with values in AYT*OV the q'"
exterior power of the holomorphic tangent bundle of V.

0 0

W =dz"* dz"?...dz"* W~ - - J1J2:--Jq

11 12...1p . t e .
Ozj, 0z,

W is antisymmetric in the j’s as well as in the ¢’s.
Form local operator:
Ow =0t ... ? Wy, 5 7099,
5OW - _ng,

Ow is d-invariant if OW = 0 and §-exact if W = 9.5 for some
S.

W — Ow - natural map from &, ,HP(V, ATV to the
d-cohomology of the B model. It is isomorphism for local
operators.

The story of Correlators in B model, Descend Equations, De-
formation of the action by 2-observables, Generating func-
tion Fp(T) is completely parallel to that in A-model:

SB(T) = S—FTG/OWa

Fp(T) =< e 521) >



e Interesting examples of the deformations:

W = Ag %dﬁ - deformation of the complex structure of V.

W = W (z) - holomorphic function (for non-compact V)- sin-
gularity (Landau-Ginzburg in physical terminology) theory

W = in" (fgi A % - non-commutative deformation

e Complex structure deformations:

~

Vs — family of d complex dimensional projective varieties
with ¢1(Vs) =0 - CY.

Calibrated CY manifold - (V,Q); V - CY supplied with the
holomorphic (d, 0) form 2. Holomorphic (d, 0) form - unique
up to the multiplication by a non-zero complex number.

M - moduli of cmplx structures Vj,:

TooM =~ HIBH (V)

The moduli space ﬂffso of the calibrated CY manifolds is
a C*-bundle over MVSO‘ The normalized holomorphic (d, 0)
from )y defines locally a section of the bundle.

The choice of the complex structure provides the decompo-
sition of the external derivative D = D0 + D%l = 9 4+ 0.

Let (2%, z) be local coordinates on 1% and let A e QNNV)
be a (—1,1) differential, locally: A =" Aldz' 2.



The deformation of the complex structure may be described
in terms of the deformation of the operator D%! = 9

0—0;=0+A=> dz( a—wﬁiﬂ

subjected to the integrability condition 53—1 = 0 ( Kodaira-
Spencer equation).

Ixs(A) - functional with critical points KS-equation. For

3-complex dimensions can be written as function of Q®) via
identification Q2D = A Q.

Special coordinates on M: T, i =0,..., h4"LI(V,):

Let ar(s), 8'(s), I =0,...,h*11(Y) be a symplectic basis
in HY(V,, Z):

arNa;=p3'ng’ =0, arnp’ =6/

On the M this basis is defined uniquely once it is chosen at
some marked point pg € M.

A= [ o Apa= [ o
ar(s) BL(s)

() - defined uniquely up to a constant. Let us fix this freedom
by choosing a distinguished cycle ag and demanding A° = 1.
Then

=A", i=1,...,dimM



There exists a function F(g) 5, on M such that

dF o) = Y  ApidA’

Locally Fy can be viewed as a function of Tz - generating
function of Lagrangian sub-manifold in H¢(V, C) which co-

incides with M\ :

Form a function of one extra variable A € H(%9 (normaliza-
tion of (d,0) - form - coordinate in fibre):

ZOAT) = ¢ 2N 5 -7

If we denote base complex structure as (¢,t*), one can show
that Z(; 1+ (A, T') depends on base complex structure ¢t* which
is captured by differential equation is of heat-kernel type,
Holomorphic Anomaly equation.

A. Gerasimov & S.Sh. 2004: value of Kodaira-Spencer

action I(A) at critical points coincides with F (o) - generating
function of Lagrangian sub-manifold introduced above.

Higher genus corrections to Z(A,T) - quantization of sym-
plectomorphizm relating polarization defined by Lagrangian
submanifold M to linear polarization at given base point
(t,t*) — corrections in coupling constant A\ (volume < holo-
morphic three form).

Mirror symmetry: A=B

not only for CY, but more general



Special case of CY threefolds: physical intuition

As N = 2 SCFT’s the theories A and B don’t differ (internal
authomorphism of the N/ = 2 algebra maps A to B and vice
versa)

SCFT has different large volume limits - the same theory
looks as different sigma models with different target spaces

V and V in different limits.

T-duality - the simplest example.



FOUR DIMENSIONAL THEORY A

DONALDSON-WITTEN THEORY

e X — 4 dimensional compact smooth Riemannian manifold
e b, = b;(X) — Betti numbers.

e On H*(X): intersection form (,); metric (,):

(w1,w2)=/w1 N wa, (wl,w2>:/w1 N *W2
X X

* - the Hodge star operation.

by — dim’s of the positive and negative subspaces of H?(X).

w € H3(X): w* — orthogonal projections to the spaces of
self- and antiselfdual classes: H>*(X) — (w™,:) = £{w™, ),
w=wt+w".

Y = Zfzo(—l)ibi, — the Euler characteristics of X

o = by — b, the signature of X



® ¢, is a basis in H, (X, C),
e ¢“ the dual basis in H*(X, C):

- [

for any w € H*(X).

G =SU(r+1),G=G"/Z, Z ~Z,,1, g = LieG.

T = U(1)" — maximal torus of G, W = S,., 1 the Weyl group,
g = Lie(G),t = Lie(T).

h =r + 1 — dual Coxeter number.

¢ = (wa3 k), k € Z, wy € H?*(X,Z) — generalized Stiefel-
Whitney class.

P, - a principal G bundle over X and FE, the associated
vector bundle with wq(FEy) = wo,

CQ(Eg) + %U)Q W9 = k.



A, - the space of connections in Py.
Gy - the group of gauge transformations of Py.

The Lie algebra of G, - the algebra of sections of the asso-

ciated adjoint bundle gy = Py Xaq g ¢ - an element of
Liegg.

For the connection A (= the gauge field) let F4 denote its
curvature (it is a section of A*T% ® gy).

Definition. G-instanton is the solution to the equation
Fi=F+%F=0
where + acts on the A?T% part of Fa.

Definition. a G-instanton A is called irreducible if there are
no infinitesimal gauge transformations, preserving A. This
condition is equivalent to the absence of the solutions to the
equation

dap =0, 0#¢el(g)

where d 4 is the connection on g, associated with A.

Definition. a G-instanton is called unobstructed if there
are no solutions to the equation (d})*xy = 0, 0 # x €

T (A2 T% ©g).

Definition. The moduli space M, of (z-instantons is the
space of all irreducible unobstructed G-instantons modulo
action of Gy. For the instanton A let [A] denote its gauge
equivalence class - a point in M.



The tangent space to My at A is the middle cohomology
group of the Atiyah-Hitchin-Singer (AHS) complex of bun-
dles over X:

0 - ATi g - ATy g - A>Ty g — 0

the first arrow is da, the second is d}y = P d4.

P, - the projection A*T%: @ g — A>T @ gy.
dj ody = FX = (0 — the sequence is the complex.

HY(AHS) = 0 for irred. instantons. H?(AHS) = 0 - ob-
struction space; absent for unobstructed instantons.

Lemma. The dimension of the moduli space M,:

X+o

dimM, = 4hk — dimG

Proof: index theorem applied to the AHS complex.



Remark. M, is non-compact. Sometimes it can be com-
pactified (Donaldson-Uhlenbeck) by adding the point-like in-
stantons:

Mﬁ — ./\/lg U M@—(O;l) X XU...U Mﬁ—(O;k) X SkX

For A from class [A] € M, the space Tj4 M, can be identi-
fied with the space of solutions «:

dia=0, dia=0

acl (AlT*X & gg).



Consider the product M, x X and form the universal bundle
Er - the bundle whose restriction onto [A] x X C My x X
coincides with FE.

d be the differential in the DeRham complex on M, x X
and d,,,d be its components along My, X respectively.

Definition. The universal connection is the G-connection
a in &, with the following properties:

L. a|[A]><X c [A]

2. a|M6X{x} = ﬁd;dm.ﬁl with Ay = dikqu

Lemma. The curvature of the universal connection can be
expanded as:

fa:FA+¢+¢

1 is the fundamental solution to the equations:

dip =0, diyp =0

@ is given by:

¢ = —v, <]

1
Ax

Comments. We view 1 as the mixed (My, X) component
of the curvature of a. It means that locally we view ¢ as
one-form on M, with values in g. Using metric on X and
the induced metric on M, we identify Tj 4 M, with T [’54]/\/1 0.



Similarly ¢ is the (Mg, My) component of the curvature of
a.

)G

Q

{I} - additive basis in the space of invariants: Fun(g
Fun(t)".

dr - the degree of I}.
Pty +Fa
fea I ( 271 N ) ’

Examples. I1(¢) = Tr¢?, di = 2, Ix(¢) = Trg>, I3 =
Trot, I = (Trg?)’, dy = 3,d3 = dy = 4.

Denote M = IlI,M,, & = 1IE,. There is a a characteristic
class c;(€) associated to each invariant I € Fun(g)®.

Let Q¢ be the slant product [, cr, () € H*¥n=dimea (M),



Definition. The following integral over M is the attempt
to define the intersection theory of (2%

<Q§;;...Q§;:>:Z/ O N ... N\OS
¢ IMe

Definition. The prepotential of the refined Donaldson-
Witten theory is the generating function:

Za(T) = (exp (T32))

Z%Tgf TR0 QO



Physical Picture

The fields: twisted N' = 2 vector multiplet

Bosons: gauge field A = A, dx", the complex scalar ¢ and
its conjugate ¢, self-dual two form H

Fermions: the one-form 1, the scalar n and the self-dual
two-form .

All fields take values in the adjoint representation.

Nilpotent  Symmetry:

3¢ =0, dp=mn, om=][p,¢
ox =H, O0H =|¢,x]
0A =1, 0¢Y=Dag¢
6% = L4 = infinitesimal gauge transformation generated by

¢ = nilpotent on the gauge invariant functionals of the fields
(equivariant cohomology).

Definition. Observables - gauge invariant functionals of the
fields, annihilated by 9.

The correlation functions of observables do not change under
a small variation of metric on the four-manifold X.



Observables: Invariant polynomial P = >, t*I; on the alge-
bra g, C¥, k=0,...4 — closed k-cycles on X. Their homol-

ogy cycles are denoted as [C*] € Hi(X; C). The observables
form the descend sequence:

0O =P(g), 00 =0

400 = _s0® (OO (1)) = oW — opP o
c) o1 00
do) = _s0(2) (@(2)’ [02]) :/ 02 —
CQ
oP 1 0P
e - N b
0ol T 2ggmap? MY
top degree observable: (’);f ) = % agjg;gbb Fapby
1 837? a c 1 647) a c
Fobye + o gyl

T3 96908006 11 96000001



Action S equals the sum of the 4-observable, constructed out
of the prepotential F and the d-exact term:

S=0% +6R
The standard choice: F = (&% + %) Tr¢?,

R= G%Tr(xFJr—xHJrDAqb*"lﬂJr??*[ﬁb d]) .

Tr denotes the Killing form.
The bosonic part of the action S is then:

Sz/ TIrF N F+
X

+ 12 (TxF AxF + TrDa¢ A*D a¢p + Tr[¢, ¢] )
(&

The e?-dependence — only via § (...) terms:

0
F F+ —
S = o A —|— 5( )

= can take e? — 0 limit for correlators of observables: the
path integral measure gets localized near solutions to F't =

0, Dacp =0

Moral. The correlation functions of observables re-
duce to the integrals over M,.



e Donaldson theory (G = SU(2) or G = SO(3)): aim is to
compute:

(exp((0P), w) + A0)),
for w € H*(X,R), C’)&O) =u = Tro?,

1
(OF w) =~ | Te(oF + Su) Aw

e Refinement: generating function of all correlators of all
observables:

k,x (4—da)€
Za(TF) = (e )

TF =T"%, €V =a;_(H(X,C)

This is a physical definition of the four dimensional
type A theory

Very important tool of computing infinite-dimensional path
integral over all fields entering in the definition of correlators
= Abelianization.



Problem. M, is non-compact. Need to compactify it in
order to have a nice intersection theory.

e Donaldson compactification: add point-like instantons as
above (for high enough instanton charges get a manifold,
perhaps with orbifold singularities)

e For Kahler X a refinement of the compactification above:
Gieseker compactification:

Idea: On Kahler X with Kahler form w :

Ft=003=0, FAw=0

04 defines a holomorphic bundle & over X: its local sec-
tions are annihilated by d4. Then F' A w = 0 is a stability
condition.

Replace £ by its (holomorphic) sheaf of sections. Consider

the moduli space Mf of sheaves which are torsion free as
Ox-modules. The latter has sheaves which are not locally
free, i.e. which are not holomorphic bundles. However, for
each such sheaf & there is a zero-dimensional subscheme

Z C X, such that on X\Z £ is a holomorphic bundle and
has a connection.



Problem. Find an analogue of Kontsevich compactifica-
tion.

Problem. Find a physical realization of all these compact-
ifications.

Partial answer to the last problem: On X = CP? the
compactification by sheaves corresponds to the gauge theory
on a non-comimutative space.



Intersection theory in four dimensions

Take X = CP?, G = U(r), w - Kéhler form.
pe H2(X,Z),k € HY(X, Z).

e Monad construction of the torsion free sheaves on X: Let
Vo, Vi, Vo be the complex vector spaces of dimensions vg 1 2
respectively. Consider the complex of bundles over X:

0-1p®0(-1) % Vo0 1L,e0(1)—=0

In down-to-earth terms this sequence has the following mean-
ing. The maps a,b in the homogeneous coordinates (z° :
2zt : 2?) are the matrix-valued linear functions: a(z) =

2%, b(2) = 2%b,. The words “complex” mean that
b(2)-a(z) = 2%2°baas = 0 <

bata =0, a=0,1,2, byag+bgay, =0, a #

For the pair (b,a) of the maps between the sheaves obeying
this condition we can define a sheaf F over X, whose space
of sections over an open set U is

I (Fly) = Kerb(z)/Ima(z), for (2°:2':2%)eU
B(2)W9(2) =0, modulo W (z) = a’*(2)T"(2)

Definition: The space of monads is the space Mp,on of

triples of matrices ag € Hom(Vy, Vi), b, € Hom(Vi,Vs)

obeying b(z)a(z) = 0. This space is acted on by the group
GC

mon

= (GL(Vo) x GL(V1) x GL(V2)) /C”
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The sheaves defined by the pairs (b,a) and g - (b,a) are iso-

morphic. The maximal compact subgroup of G¢ .

Gmon ~ (U(Vb> X U(Vl) X U(VQ)) /U(l)

acts in My,on preserving its natural symplectic structure

1 1
_ E : T E ( T
) = % e Tr(sag A\ 5&6 + % 4 Tr5ba A 0b,,

Fix the real numbers rg,r1,7r2, such that ) v,rqa = 0,
ro, T2 > 0. Write the moment maps:

1 = —roly,, + ZCLEQB
B

o = —r1l,, + Z bLba — Z agag
o B

ps = —raly, + Y babl,
Then the moduli space of the semistable sheaves is

M., = (p17(0) Nz (0) Nz (0)) /Ginon

This is typical example of hyperkéhler quotient (Integration
over Higgs Branches - MNS’97). The compactness of the
space is obvious: if we first perform a reduction with re-
spect to the groups U (V) x U(V3) then the resulting space is
the product of two Grassmanians: Gr(vg, 3vy) X Gr(ve, 3v1)
which is already compact. The subsequent reduction does
not spoil this.



The Chern classes, ¢, = {r,c1, ca}, of the sheaf F determined
by the pair (b, a) are:
1

r =11 —vg—U2, ¢1 = (Vg — V2), Co = 5 ((vg — vo)2 + vg + ’UQ)

Let (iv),i¢,ix) denote the elements of the Lie algebra of
Gmon, 1-€. 1 € u(Vp),i¢p € u(Vy),ix € u(Va) and (¢, ¢, x) ~
(¢ + 1y, + 1y, x + 1,,). We are interested in computing
certain integrals over M, . This can be accomplished by
computing an integral over M,,,, with the insertion of the
delta function in p; and dividing by the volume of Gon
provided that the expression we integrate is Gyon-invariant:

/m* (...) =
1

dirdaod tTrypp +1Tropus+1Trxpus
Vol(Gmon) /Liegmon pdodxe )

The useful fact is that the observables of the gauge the-
ory we are interested in are the gauge-invariant functions on
(v, ¢, x) only. More specifically, there is a universal sheaf
U over M. x X, defined again as Kerb(z)/Ima(z) but now
the space of parameters contains (b, a) in addition to z. Its

Chern character is given by:

Ch(U) = Tre® — Tre¥™* — TreX™v

In particular:

1
(91(2) =3 (TI‘X2 + Tryp? — Tr¢2) ;/ B (9&21) = Try — Try
X



Since the observables are expressed through 1, ¢, x only we
can integrate out ag, b, to obtain:

<exp tl(jig) + Ty /Sw A 0(2) torsion free f H dwdejdwk
0,9,k

1L <o (Wir = pin)? [ cn (95 — Gin)’
[T, (&5 — i +1i0)°

Hk’<k” (Xk’ - Xk”)2 sz; (Xk — %‘)6
Hj,k (XK — &5 + io)g

(3, 0y, wi-) @3 )F T (30, 0020, i) X
67;7“1 Zl Yi+ire Zj Pj+irs Zk Xk




Abelianization - Theory B, Physical Picture

e Integrate out non-abelian components of all fields (quadratic,
Gaussian, integral). Result - some abelelain theory, defined
on Cartan subgroup of Gauge group with abelian fields:
¢’L’ qbl’ nl7 A’L’ wlj X’L

e Again, on the space of fields J-operators acts (original topo-
logical, 6, symmetry is preserved - not broken): 62 = 0. De-
fine observables for abelian theory as in original, non-abelian
theory: O°.

e Find for every observable in non-abelian theory corre-
sponding observable after abelianization.

e Write the action in abelian theory as 4-observable desced-
ning from some function F(u), where uq, ..., uy are invariant
polynimials of ¢, functions of ¢*.

ekrom general principles the abelian action must have the
form:

So = 0% +6R
and deformed action is:
S =S+ ;0"

The generating function for correlators is given by partition
function on B side by:

Zp(t) =< e >= / D' D Diji DA Dy DHe=S0=+'0"

and finally:
Za(T) = Zp(t(T))



This shows that one needs:

1. Explicit expression for ¢ in terms of abelian fields,
2. Explicit form of F(u)(u = Tr¢? for SU(2))

3. Explicit relation between observables Q! between non-
abelian and abelian theories

4. Explicit relation between parameters 7" in non-abelian
theory and ¢’ in abelian theory - t*(7).

1. & 2. ¢ and formula for prepotential F was found by
Seiberg & Witten in 1994 (for SU(2)). Other groups - var-
ious authors after SW found prepotential F for all groups
and all generalizations of 4d N = 2 SYM with matter.

3. & 4. Solution to these was found by Moore & Wltten and
by Losev, Nekrasov & S. Sh. in 1997 (“universal formula for
contact terms” etc.).

Integral over abelian fields in theory B is reduced to finite-
dimensional integral via localization technique and is related
to nice and simple symplectic geometry problem.

Few words on prepotential F:

In abelianized theory ¢ = diag(as, .., a,). Let (a;,a’y) coor-
dinates in C*" with complex symplectic worm w = da; Ada’,.

F - generating function of Lagrangian submanifold © =
apda; = dF invariant under certain discrete subgroup I

of SP(2r,7Z).

Turning on couplings 1" corresponds to deformations of this
Lagrangian submanifold - flows described explicitly in LNS.



