Topological Quantum Field Theories

and

Some Modern Problems of Mathematics

PATHWAYS LECTURE SERIES IN MATHEMATICS

by

Samson L. Shatashvili

Trinity College Dublin

and

IHES, Bures-Sur-Yvette

Keio University

February 2007

Plan

- Formulate mathematical, enumerative, problem
- Define physical, QFT, problem which computes same thing
- Explain physics role of this QFT and relation to Math
- Formulate answers (in some cases but not all)
- Discuss the results

Examples

LECTURE I

- 1. Gromov-Witten theory Top. Sigma Model, type A
- 2. Deformation theory complex structures: Top. B model
- 3. Donaldson Theory twisted N=2 SYM on four manifold.

LECTURE II

4. Intersection theory on moduli space of flat connections over Riemann surface - Topological YM theory on Riemann surface \Rightarrow CS and G/G WZW.

5. Intersection theory on moduli space of Higgs Bundles (Hitchin system) - Topological YM-Higgs theory \Leftrightarrow Nonlinear Schrödinger theory and representation theory of Quantum Groups \Rightarrow CS and G/G WZW for complexified G.

LECTURE 1

 $2d \ Topological \ Sigma \ Models: A \ \& \ B$

Main Math application can be summarized by:

Mirror formula

- Type A sigma model on V = Type B sigma model on \tilde{V}
- Relates GW on V to (gen) deformations of cmplx str on \tilde{V}
- Manifolds V and \tilde{V} are called mirrors.
- For Kähler manifolds: $h^{p,q}(V) = h^{-p,q}(\tilde{V})$
- The concept extends to: V symplectic and \tilde{V} complex.
- \bullet Mirror exchanges kähler (A) and complex (B) deformations.

$$\sum_{n;\{k_1,\dots,k_n\}} \frac{T^{k_1}\dots T^{k_n}}{n!} \left\langle \mathcal{O}_a^{(0)} \mathcal{O}_b^{(0)} \mathcal{O}_c^{(0)} \int_{\Sigma} \mathcal{O}_{k_1}^{(2)} \dots \int_{\Sigma} \mathcal{O}_{k_n}^{(2)} \right\rangle_A$$
$$= \frac{\partial^3 \mathcal{F}_B(T)}{\partial T^a \partial T^b \partial T^c}$$

${\bf Type}\; {\bf A}\; {\bf sigma\; models}: {\bf Gromov-Witten\; theory}$

Two dimensional sigma model - maps

$$\Phi: \Sigma \to V$$

 Σ - two dimensional manifold, world-sheet

V - some Riemannian manifold.

Let V be complex manifold.

• Mathematical reformulation of what physicists call partition function in the topological type A sigma model:

Given a set of submanifolds $C_1, \ldots, C_k, C_i \subset V$, compute the number $N_{C_1,\ldots,C_k;\beta}$ of rigid genus g holomorphic curves $\Sigma \subset V, [\Sigma] = \beta \in H_2(V; \mathbb{Z})$ passing through them

The cycles in $H_*(V)$ represented by C_1, \ldots, C_k are Poincare dual to some cohomology classes $\omega_1, \ldots, \omega_k \in H^*(V)$.

Physical picture

(Supersymmetric) Sigma model - defined through action functional \Leftrightarrow functional of "fields": $\phi^I, \psi^I_+, \psi^I_-$.

 Φ - a map: (Σ - Riemann surface) \rightarrow (V - Riemannian manifold of metric g_{IJ}).

Pick local coordinates: on Σ - $z,\bar{z},$ on V - $\phi^{I}.$

• ϕ^I : Map Φ - locally described by $\phi^I(z, \overline{z})$.

 $K(\overline{K})$ - the canonical (anti-canonical) line bundles of Σ (the bundle of one forms of types (1,0) ((0,1)))

TV - complexified tangent bundle of V.

to get supersymmetry \Rightarrow add Grassmann variables:

- ψ^I_+ a section of $K^{1/2} \otimes \Phi^*(TV)$
- ψ_{-}^{I} a section of $\overline{K}^{1/2} \otimes \Phi^{*}(TV)$.

Physical Sigma Model:

$$\mathcal{S}_{0}(\phi,\psi_{-},\psi_{+}) = \frac{1}{f^{2}} \int_{\Sigma} \left(\frac{1}{2} g_{IJ}(\phi) \partial_{z} \phi^{I} \partial_{\bar{z}} \phi^{J} + \frac{i}{2} g_{IJ} \psi_{-}^{I} D_{z} \psi_{-}^{J} \right) + \left(\frac{i}{2} g_{IJ} \psi_{+}^{I} D_{\bar{z}} \psi_{+}^{J} + \frac{1}{4} R_{IJKL} \psi_{+}^{I} \psi_{+}^{J} \psi_{-}^{K} \psi_{-}^{L} \right)$$

f^2 - coupling constant

 R_{IJKL} - Riemann tensor of V.

 $D_{\bar{z}}$ - $\bar{\partial}$ operator on $K^{1/2} \otimes \Phi^*(TV)$ constructed using the pullback of the Levi-Civita connection on TV.

• Now suppose V is Kähler

Sigma model has extended SUSY: $\mathcal{N} = 2$.

Map $\Phi \rightarrow \text{local coordinates: } \phi^i, \phi^{\overline{i}} = \overline{\phi^i}.$

Decompose: $TV = T^{1,0}V \oplus T^{0,1}V$.

 ψ^i_+ $(\psi^{\overline{i}}_+)$ - the projection of ψ_+ in:

$$K^{1/2} \otimes \Phi^*(T^{1,0}V) \qquad (K^{1/2} \otimes \Phi^*(T^{0,1}V))$$

 $\psi^i_- \ (\psi^{\overline{i}}_-)$ - the projections of ψ_- in:

$$\bar{K}^{1/2} \otimes \Phi^*(T^{1,0}V) \qquad (\bar{K}^{1/2} \otimes \Phi^*(T^{0,1}V))$$

Action has more parameters:

$$\mathcal{S}_{0} = i\theta \int_{\Sigma} \frac{1}{2} g_{i\bar{j}} \left(\partial_{z} \phi^{i} \partial_{\bar{z}} \phi^{\bar{j}} - \partial_{\bar{z}} \phi^{i} \partial_{z} \phi^{\bar{j}} \right) + \frac{1}{f^{2}} \int_{\Sigma} \frac{1}{2} g_{IJ} \partial_{z} \phi^{I} \partial_{\bar{z}} \phi^{J} + i\psi^{\bar{i}}_{-} D_{z} \psi^{i}_{-} g_{\bar{i}i} + i\psi^{\bar{i}}_{+} D_{\bar{z}} \psi^{i}_{+} g_{\bar{i}i} + R_{i\,\bar{i}j\,\bar{j}} \psi^{i}_{+} \psi^{\bar{i}}_{+} \psi^{j}_{-} \psi^{\bar{j}}_{-}$$

 θ -another parameter, **theta-angle**.

Twist:

+ :
$$\psi_+{}^i$$
 and $\psi_+{}^{\overline{i}}$ - sections of $\Phi^*(T^{1,0}X)$ and $K \otimes \Phi^*(T^{0,1}X)$.

- : ψ^i_+ and $\psi^{\overline{i}}_+$ - sections of $K \otimes \Phi^*(T^{1,0}X)$ and $\Phi^*(T^{0,1}X)$.

A Model: + twist of ψ_+ and a - twist of ψ_- .

B Model: – twists of both ψ_+ and ψ_-

Locally the twisting does nothing at all, since locally K and \overline{K} are trivial.

- χ section of $\Phi^*(TX)$ ($\chi^i = \psi^i_+$, and $\chi^{\overline{i}} = \psi^{\overline{i}}_-$);
- $\psi_+^{\overline{i}}$ (1,0) form on Σ with values in $\Phi^*(T^{0,1}X)$; $\psi_+^{\overline{i}} = \psi_z^{\overline{i}}$.
- ψ_{-}^{i} (0,1) form with values in $\Phi^{*}(T^{1,0}X)$; $\psi_{-}^{i} = \psi_{\overline{z}}^{i}$.

Topological transformation laws:

$$\begin{split} \delta \Phi^{I} &= i \chi^{I} \\ \delta \chi^{I} &= 0 \\ \delta \psi^{\bar{i}}_{z} &= -\partial_{z} \phi^{\bar{i}} - i \chi^{\bar{j}} \Gamma^{\bar{i}}_{\bar{j}\bar{m}} \psi^{\bar{m}}_{z} \\ \delta \psi^{i}_{\bar{z}} &= -\partial_{\bar{z}} \phi^{i} - i \chi^{j} \Gamma^{i}_{jm} \psi^{m}_{\bar{z}}. \end{split}$$

 $\delta^2=0$ - on the space of solutions of equations of motion (minimizing the action). Can be made "off-shell" by introducing auxiliary fields.

Let $t = \theta + \frac{i}{f^2}$.

Action:

on:

$$S_{0} = \frac{1}{f^{2}} \int_{\Sigma} d^{2}z \, \delta R + t \int_{\Sigma} \Phi^{*}(\omega)$$

$$R = g_{i\bar{j}} \left(\psi_{z}^{\bar{i}} \partial_{\bar{z}} \phi^{j} + \partial_{z} \phi^{\bar{i}} \psi_{\bar{z}}^{j} \right),$$

$$\int_{\Sigma} \Phi^{*}(\omega) = i \int_{\Sigma} d^{2}z \, \left(\partial_{z} \phi^{i} \partial_{\bar{z}} \phi^{\bar{j}} g_{i\bar{j}} - \partial_{\bar{z}} \phi^{i} \partial_{z} \phi^{\bar{j}} g_{i\bar{j}} \right)$$

- the integral of the pullback of the Kähler form $\omega = -ig_{i\bar{j}}dz^i dz^{\bar{j}}$.

 $\int \Phi^*(\omega)$ - depends only on the cohomology class of ω and the homology class $\beta \in H_2(V)$ of the image of the map Φ .

In physics one computes correlation functions of some operators (observables) in given theory.

Definition. Observable $\{\mathcal{O}_i\}$ – a functional of the fields, s.t. $\delta \mathcal{O}_i = 0$.

Definition. Physical observable = a δ - cohomology class, $\mathcal{O}_i \sim \mathcal{O}_i + \delta \Psi_i$.

Definition. Correlator - path integral:

$$\langle \prod_{a} \mathcal{O}_{a} \rangle_{\beta} = e^{-2\pi t \int_{\beta} \omega} \int_{\mathcal{B}_{\beta}} D\phi \ D\chi \ D\psi \ e^{-\frac{1}{f^{2}}\delta \int R} \cdot \prod_{a} \mathcal{O}_{a}.$$

 \mathcal{B}_{β} - the component of the field space for maps of degree $\beta = [\Phi(\Sigma)] \in \mathrm{H}_2(V, \mathbb{Z})$, and $\langle \rangle_{\beta}$ - degree β contribution to the expectation value.

Correlators of the observables depend only on their δ -cohomology class, in particular — independent of the complex structure of Σ and V, and depend only on the cohomology class of the Kähler form ω .

Standard argument: $\delta \sim \text{exterior derivative on the field}$ space $\mathcal{B} \to \langle \delta \Psi \rangle_{\beta} = 0$ for any reasonable Ψ . Thus, the \mathcal{O}_i should be considered as representatives of the δ -cohomology classes.

Thus, correlator is independent of $f^2.$ If $f^2 \to 0$ - Gaussian model.

Bosonic part of the Action

$$it\int \Phi^*(\omega) + \frac{1}{f^2}\int_{\Sigma} g_{i\bar{j}}(\phi)\partial_z \phi^{\bar{j}}\partial_{\bar{z}}\phi^i$$

for given β is minimized by holomorphic map:

$$\partial_{\bar{z}}\phi^i = \partial_z \phi^{\bar{i}} = 0.$$

The entire path integral, for maps of degree β , reduces to an integral over the space of degree β holomorphic maps \mathcal{M}_{β} .

• Descend procedure

Pick an *n*-form $W = W_{I_1I_2...I_n}(\phi)d\phi^{I_1} \wedge d\phi^{I_2} \wedge \ldots \wedge d\phi^{I_n}$ on $V \Rightarrow$ a local functional

$$\mathcal{O}_W(P) = W_{I_1 I_2 \dots I_n}(\Phi(P))\chi^{I_1} \dots \chi^{I_n}(P).$$

$$\delta \mathcal{O}_W = -\mathcal{O}_{dW},$$

d the exterior derivative on V.

 $\Rightarrow W \mapsto \mathcal{O}_W$ - natural map from the **de Rham cohomol**ogy of V to the space of physical observables, δ -cohomology, of quantum field theory A(V). For local operators - isomorphism.

Let d - be the DeRham differential on Σ . We have **descend** equations:

 $d\mathcal{O}_W = \delta \mathcal{O}_W^{(1)}, \quad \oint_C \mathcal{O}_W^{(1)}$ - 1-observable. The physical observable depends on the homology class of C in $\mathrm{H}_1(\Sigma)$.

 $\mathrm{d}\mathcal{O}_W^{(1)} = \delta\mathcal{O}_W^{(2)}, \quad \int_{\Sigma} \mathcal{O}_W^{(2)}$ - 2-observable.

Deformations of the theory: change the action as follows:

$$\mathcal{S}_A(T) = \mathcal{S}_0 + T^a \int_{\Sigma} \mathcal{O}_{W_a}$$

 T^a are the formal parameters (nilpotent). The path integral with the action S_T computes the generating function $\mathcal{F}_A(T)$ of the correlation functions of the two-observables:

$$\mathcal{F}_A(T) = \langle e^{-\int_{\Sigma} \mathcal{S}(T)} \rangle$$
$$\mathcal{S}(0) = \mathcal{S}_0, \qquad \frac{\partial \mathcal{S}}{\partial T^a} |_{T=0} = \int_{\Sigma} \mathcal{O}_{W_a}$$

Reduction to the enumerative problem

C - submanifold of V (only its homology class matters).

The "Poincaré dual" to C - cohomology class that counts intersections with C. Represent by a differential form W(C)that has delta function support on C:

$$W(C) = \delta_C$$

<u>Conclude</u>:

Correlators of topological observables $\mathcal{O}_{W(C_1)} \dots \mathcal{O}_{W(C_k)}$ are integrals over \mathcal{M}_β of the products of delta functions which pick out the holomorphic maps whose image intersects the submanifolds C_1, \dots, C_n :

Let $C_1, \ldots, C_k \subset V$ - complex submanifolds, dim $C_l = d_l$.

$$\omega_m = W(C_m) \in H^*(V)$$
 - their Poincare duals.

Let $z_1, \ldots, z_m \in \Sigma$, $m \leq k$ be the marked points.

For a complex submanifold $C \subset V$ and for $1 \leq l \leq m$ define the following submanifolds $\mathcal{M}_{C,l}^0 \subset \mathcal{M}, \ \mathcal{M}_C^2 \subset \mathcal{M}$:

Definition. $\mathcal{M}_{C,l}^0 = \{ \Phi : \Sigma \to V | \Phi \in \mathcal{M}, \ \Phi(z_l) \in C \}$

Definition. $\mathcal{M}_{C}^{2} = \{\Phi: \Sigma \to V | \Phi(\Sigma) \cap C \neq \emptyset\}$

The correlation functions in the type A sigma model are simply the intersection numbers:

$$\langle \mathcal{O}_{C_1}^{(0)}(z_1) \dots \mathcal{O}_{C_m}^{(0)}(z_m) \int_{\Sigma} \mathcal{O}_{C_{m+1}}^{(2)} \dots \int_{\Sigma} \mathcal{O}_{C_k}^{(2)} \rangle =$$
$$\# \mathcal{M}_{C_1,1}^0 \cap \dots \mathcal{M}_{C_m,m}^0 \cap \mathcal{M}_{C_{m+1}}^2 \cap \dots \cap \mathcal{M}_{C_k}^2$$
$$\sum \dim \mathcal{M}_{C_i,i}^0 + \sum \dim \mathcal{M}_{C_i}^2 = \dim \mathcal{M}_{\beta}$$

otherwise $\langle \ldots \rangle$ vanishes,

$$\dim \mathcal{M}_{\beta} = \int_{\beta} c_1(V) + (1-g)dimV$$

Problem: \mathcal{M}_{β} is non-compact. Need to compactify it in order to get a nice intersection theory.

Compactification is not unique.

Option I. Kontsevich stable maps.

Option II. Freckleds – in case where V is a symplectic quotient of a G-equivariant submanifold of a vector (affine) symplectic space A: $V \subset A//G$.

Compactification of ${\mathcal M}$ - Regularization

Non-compactness of \mathcal{M} comes from ultraviolet non-compactness of the fields space \mathcal{B} . (UV = $||d\Phi||^2 \to \infty$)

Physical picture

Option I = coupling to topological gravity \approx averaging over conformal structures on Σ .

Option II = gauged linear sigma model with target A and gauge group G (and perhaps superpotential).

Type B sigma models: Kodaira-Spencer theory.

Consider the space S of generalized (in the sense of Kontsevich-Witten) deformations of complex structures of variety \tilde{V} (\tilde{V} - mirror to V).

The tangent space to S at some point s represented by a variety V'_s is given by:

$$T_s S = \bigoplus_{p,q} \mathrm{H}^p\left(\tilde{V}_s, \Lambda^q \mathcal{T}_{V_s}\right) \equiv \bigoplus_{p,q} \mathrm{H}^{-q,p}(\tilde{V}_s)$$

Let T denote special coordinates on this space.

The right-hand side of the mirror formula - essentially a partition function in type B sigma model expressed in terms of special coordinates, whose choice is *absolutely necessary* for the formulation of mirror symmetry.

Note: genus dependence doesn't enter in this definition. Precise mathematical definition of $\mathcal{F}_{g}^{B}(T)$ is not known.

Physical Picture

$$\begin{split} &\psi_{\pm}^{\overline{i}} \text{ - sections of } \Phi^*(T^{0,1}\tilde{V}) \\ &\psi_{\pm}^i \text{ - section of } K \otimes \Phi^*(T^{1,0}\tilde{V}) \\ &\psi_{-}^i \text{ - section of } \overline{K} \otimes \Phi^*(T^{1,0}\tilde{V}). \\ &\rho \text{ - one form with values in } \Phi^*(T^{1,0}\tilde{V}); \ \rho_z^i = \psi_{\pm}^i, \ \rho_{\overline{z}}^i = \psi_{-}^i. \end{split}$$

all fields above are valued in Grassmann algebra

Denote:

$$\eta^{\overline{i}} = \psi^{\overline{i}}_{+} + \psi^{\overline{i}}_{-}$$
$$\theta_{i} = g_{i\overline{i}} \left(\psi^{\overline{i}}_{+} - \psi^{\overline{i}}_{-} \right).$$

Transformations:

$$egin{aligned} &\delta\phi^i = 0 \ &\delta\phi^{\overline{i}} = i\eta^{\overline{i}} \ &\delta\eta^{\overline{i}} = \delta heta_i = 0 \ &\delta
ho^i = - d\phi^i. \end{aligned}$$

nilpotent symmetry: $\delta^2 = 0$ on-shell, on the solutions of the equations of motion (minimizing the action functional). Can be made off-shell by introducing extra fields.

Action:

$$\begin{split} \mathcal{S} = & \frac{1}{f^2} \int_{\Sigma} d^2 z \left(g_{IJ} \partial_z \phi^I \partial_{\bar{z}} \phi^J + i \eta^{\bar{i}} (D_z \rho^i_{\bar{z}} + D_{\bar{z}} \rho^i_z) g_{i\bar{i}} \right. \\ & \left. + i \theta_i (D_{\bar{z}} \rho_z{}^i - D_z \rho_{\bar{z}}{}^i) + R_{i\bar{i}j\bar{j}} \rho^i_z \rho^j_{\bar{z}} \eta^{\bar{i}} \theta_k g^{k\bar{j}} \right). \end{split}$$

Again one can rewrite the action using δ :

$$S = \frac{1}{f^2} \int \delta U + S_0$$
$$U = g_{i\bar{j}} \left(\rho_z^i \partial_{\bar{z}} \phi^{\bar{j}} + \rho_{\bar{z}}^i \partial_z \phi^{\bar{j}} \right)$$
$$S_0 = \int_{\Sigma} \left(-\theta_i D \rho^i - \frac{i}{2} R_{i\bar{i}j\bar{j}} \rho^i \wedge \rho^j \eta^{\bar{i}} \theta_k g^{k\bar{j}} \right).$$

As in A model - define the observables as:

Definition. Observable $\{\mathcal{O}_i\}$ – a functional of the fields, s.t. $\delta \mathcal{O}_i = 0$.

Definition. Physical observable = a δ - cohomology class, $\mathcal{O}_i \sim \mathcal{O}_i + \delta \Psi_i$. Correlators

$$\langle \prod_{a} \mathcal{O}_{a} \rangle = \int_{\mathcal{B}_{\beta}} D\phi \ D\rho \ D\eta \ e^{-\frac{1}{f^{2}}\delta \int U - \mathcal{S}_{0}} \cdot \prod_{a} \mathcal{O}_{a}.$$

B theory is independent of the complex structure of Σ and the Kähler metric of \tilde{V} . Change of complex structure of Σ or Kähler metric of \tilde{V} - Action changes by irrelevant terms of the form $\delta(\ldots)$.

The theory depends on the complex structure of \tilde{V} , which enters δ

B model is independent of f^2 ; take limit $f^2 \to 0$; In this limit, one expands around minima of the bosonic part of the Action = constant maps $\Phi : \Sigma \to \tilde{V}$:

$$\partial_z \phi^i = \partial_{\bar{z}} \phi^i = 0$$

The space of such constant maps is a copy of \tilde{V} ; the path integral reduces to an integral over \tilde{V} .

All above can be demonstrated by considerations similar to those in A-model.

Observables:

Consider (0, p) forms on \tilde{V} with values in $\wedge^q T^{1,0} \tilde{V}$, the q^{th} exterior power of the holomorphic tangent bundle of \tilde{V} .

$$W = d\bar{z}^{i_1} d\bar{z}^{i_2} \dots d\bar{z}^{i_p} W_{\bar{i}_1 \bar{i}_2 \dots \bar{i}_p}{}^{j_1 j_2 \dots j_q} \frac{\partial}{\partial z_{j_1}} \dots \frac{\partial}{\partial z_{j_q}}$$

W is antisymmetric in the j's as well as in the \overline{i} 's.

Form local operator:

$$\mathcal{O}_W = \eta^{\bar{i}_1} \dots \eta^{\bar{i}_p} W_{\bar{i}_1 \dots \bar{i}_p}{}^{j_1 \dots j_q} \psi_{j_1} \dots \psi_{j_q}.$$
$$\delta \mathcal{O}_W = -\mathcal{O}_{\bar{\partial}W},$$

 \mathcal{O}_W is δ -invariant if $\bar{\partial}W = 0$ and δ -exact if $W = \bar{\partial}S$ for some S.

 $W \mapsto \mathcal{O}_W$ - natural map from $\bigoplus_{p,q} H^p(V, \wedge^q T^{1,0}V)$ to the δ -cohomology of the B model. It is isomorphism for local operators.

The story of Correlators in B model, Descend Equations, Deformation of the action by 2-observables, Generating function $\mathcal{F}_B(T)$ is completely parallel to that in A-model:

$$S_B(T) = S + T^a \int \mathcal{O}_{W_a}$$
$$\mathcal{F}_B(T) = \langle e^{-S_B(T)} \rangle$$

• Interesting examples of the deformations:

 $W = \bar{A}_{\bar{i}}^{j} \frac{\partial}{\partial z^{j}} d\bar{z}^{\bar{j}}$ - deformation of the complex structure of \tilde{V} W = W(z) - holomorphic function (for non-compact \tilde{V})- singularity (Landau-Ginzburg in physical terminology) theory $W = \frac{1}{2}\pi^{ij} \frac{\partial}{\partial z^{i}} \wedge \frac{\partial}{\partial z^{j}}$ - non-commutative deformation

• Complex structure deformations:

 \tilde{V}_s – family of *d* complex dimensional projective varieties with $c_1(\tilde{V}_s) = 0$ - CY.

Calibrated CY manifold - (\tilde{V}, Ω) ; \tilde{V} - CY supplied with the holomorphic (d, 0) form Ω . Holomorphic (d, 0) form - unique up to the multiplication by a non-zero complex number.

 \mathcal{M} - moduli of cmplx structures \tilde{V}_{s_0} :

$$\mathcal{T}_{s_0}\mathcal{M} \approx \mathrm{H}^{d-1,1}(\tilde{V}_{s_0})$$

The moduli space $\widehat{\mathcal{M}}_{\widetilde{V}_{s_0}}$ of the calibrated CY manifolds is a C^* -bundle over $\mathcal{M}_{\widetilde{V}_{s_0}}$. The normalized holomorphic (d, 0)from Ω_0 defines locally a section of the bundle.

The choice of the complex structure provides the decomposition of the external derivative $D = D^{1,0} + D^{0,1} = \partial + \bar{\partial}$.

Let (z^i, \bar{z}) be local coordinates on \tilde{V} and let $\bar{A} \in \Omega^{-1,1}(\tilde{V})$ be a (-1, 1) differential, locally: $\bar{A} = \sum \bar{A}_i^j d\bar{z}^i \frac{\partial}{\partial z^j}$. The deformation of the complex structure may be described in terms of the deformation of the operator $D^{0,1} = \bar{\partial}$

$$\bar{\partial} \to \bar{\partial}_{\bar{A}} = \bar{\partial} + \bar{A} = \sum d\bar{z}^i (\frac{\partial}{\partial \bar{z}^i} + \bar{A}^j_{\bar{i}} \frac{\partial}{\partial z^j})$$

subjected to the integrability condition $\bar{\partial}_{\bar{A}}^2 = 0$ (Kodaira-Spencer equation).

 $I_{KS}(\bar{A})$ - functional with critical points KS-equation. For 3-complex dimensions can be written as function of $\Omega^{(3)}$ via identification $\Omega^{(2,1)} = A \vdash \Omega$.

Special coordinates on $\widehat{\mathcal{M}}$: $T^i, i = 0, \dots, h^{d-1,1}(\widetilde{V}_s)$:

Let $\alpha_I(s), \beta^I(s), I = 0, \dots, h^{d-1,1}(Y)$ be a symplectic basis in $\mathrm{H}^d(\tilde{V}_s, \mathbf{Z})$:

$$\alpha_I \cap \alpha_J = \beta^I \cap \beta^J = 0, \quad \alpha_I \cap \beta^J = \delta^J_I$$

On the $\widehat{\mathcal{M}}$ this basis is defined uniquely once it is chosen at some marked point $p_0 \in \widehat{\mathcal{M}}$.

$$A^{I}(s) = \int_{\alpha_{I}(s)} \Omega, \quad A_{D,I}(s) = \int_{\beta^{I}(s)} \Omega$$

 Ω - defined uniquely up to a constant. Let us fix this freedom by choosing a distinguished cycle α_0 and demanding $A^0 = 1$. Then

 $T^i = A^i, \quad i = 1, \dots, \dim \mathcal{M}$

There exists a function $\mathcal{F}_{(0)_B}$ on $\widehat{\mathcal{M}}$ such that

$$d\mathcal{F}_{(0)} = \sum_{i} A_{D,i} dA^{i}$$

Locally \mathcal{F}_0 can be viewed as a function of T^i - generating function of Lagrangian sub-manifold in $H^d(\tilde{V}, \mathbb{C})$ which coincides with $\widehat{\mathcal{M}}$.

Form a function of one extra variable $\lambda \in H^{(d,0)}$ (normalization of (d,0) - form - coordinate in fibre):

$$Z(\lambda,T) = e^{-\sum_{g} \lambda^{2g-2} \mathcal{F}_g(T)} = e^{-\mathcal{F}(\lambda,T)}$$

If we denote base complex structure as (t, t^*) , one can show that $Z_{(t,t^*)}(\lambda, T)$ depends on base complex structure t^* which is captured by differential equation is of heat-kernel type, Holomorphic Anomaly equation.

A. Gerasimov & S.Sh. 2004: value of Kodaira-Spencer action $I(\bar{A})$ at critical points coincides with $\mathcal{F}_{(0)}$ - generating function of Lagrangian sub-manifold introduced above.

Higher genus corrections to $Z(\lambda, T)$ - quantization of symplectomorphizm relating polarization defined by Lagrangian submanifold $\widehat{\mathcal{M}}$ to linear polarization at given base point $(t, t^*) \rightarrow \text{corrections in coupling constant } \lambda$ (volume \Leftrightarrow holomorphic three form).

Mirror symmetry: A=B

not only for CY, but more general

Special case of CY threefolds: physical intuition

As $\mathcal{N} = 2$ SCFT's the theories A and B don't differ (internal authomorphism of the $\mathcal{N} = 2$ algebra maps A to B and vice versa)

SCFT has different large volume limits - the same theory looks as different sigma models with different target spaces V and \tilde{V} in different limits.

T-duality - the simplest example.

FOUR DIMENSIONAL THEORY A

DONALDSON-WITTEN THEORY

- X 4 dimensional compact smooth Riemannian manifold
- $b_i = b_i(X)$ Betti numbers.
- On $H^*(X)$: intersection form (,); metric \langle,\rangle :

$$(\omega_1, \omega_2) = \int_X \omega_1 \wedge \omega_2, \quad \langle \omega_1, \omega_2 \rangle = \int_X \omega_1 \wedge \star \omega_2$$

 \star - the Hodge star operation.

 b_2^{\pm} – dim's of the positive and negative subspaces of $\mathrm{H}^2(X)$. $\omega \in \mathrm{H}^2(X)$: ω^{\pm} – orthogonal projections to the spaces of self- and antiselfdual classes: $\mathrm{H}^{2,\pm}(X) - (\omega^{\pm}, \cdot) = \pm \langle \omega^{\pm}, \cdot \rangle$, $\omega = \omega^+ + \omega^-$.

 $\chi = \sum_{i=0}^{4} (-1)^i b_i$, – the Euler characteristics of X

 $\sigma = b_2^+ - b_2^-$ the signature of X

- e_{α} is a basis in $H_*(X, \mathbb{C})$,
- e^{α} the dual basis in $\mathrm{H}^*(X, \mathbf{C})$:

$$(e^{\alpha},\omega)=\int_{e_{\alpha}}\omega$$

for any $\omega \in \mathrm{H}^*(X)$.

 $\mathbf{G}' = SU(r+1), \ \mathbf{G} = \mathbf{G}'/Z, \ Z \approx \mathbf{Z}_{r+1}, \ \mathbf{g} = \text{Lie}\mathbf{G}.$

 $\mathbf{T} = U(1)^r$ – maximal torus of $\mathbf{G}, W = \mathcal{S}_{r+1}$ the Weyl group,

$$\mathbf{g} = \operatorname{Lie}(\mathbf{G}), \mathbf{t} = \operatorname{Lie}(\mathbf{T}).$$

h = r + 1 – dual Coxeter number.

 $\ell = (w_2; k), \ k \in \mathbf{Z}, \ w_2 \in \mathrm{H}^2(X, Z)$ – generalized Stiefel-Whitney class.

 \mathcal{P}_{ℓ} - a principal **G** bundle over X and E_{ℓ} the associated vector bundle with $w_2(E_{\ell}) = w_2$,

 $c_2(E_\ell) + \frac{1}{2}w_2 \cdot w_2 = k.$

 \mathcal{A}_{ℓ} - the space of connections in \mathcal{P}_{ℓ} .

 \mathcal{G}_{ℓ} - the group of gauge transformations of \mathcal{P}_{ℓ} .

The Lie algebra of \mathcal{G}_{ℓ} - the algebra of sections of the associated adjoint bundle $\mathbf{g}_{\ell} = \mathcal{P}_{\ell} \times_{\mathbf{Ad}} \mathbf{g}$. ϕ - an element of $\operatorname{Lie}\mathcal{G}_{\ell}$.

For the connection A (= the gauge field) let F_A denote its curvature (it is a section of $\Lambda^2 T_X^* \otimes \mathbf{g}_\ell$).

Definition. G-instanton is the solution to the equation

$$F_A^+ = F + \star F = 0$$

where + acts on the $\Lambda^2 T_X^*$ part of F_A .

Definition. a **G**-instanton A is called irreducible if there are no infinitesimal gauge transformations, preserving A. This condition is equivalent to the absence of the solutions to the equation

$$d_A \phi = 0, \quad 0 \neq \phi \in \Gamma(\mathbf{g}_\ell)$$

where d_A is the connection on \mathbf{g}_{ℓ} associated with A.

Definition. a **G**-instanton is called unobstructed if there are no solutions to the equation $(d_A^+)^*\chi = 0, \ 0 \neq \chi \in \Gamma(\Lambda^{2,+}T_X^* \otimes \mathbf{g}_\ell).$

Definition. The moduli space \mathcal{M}_{ℓ} of **G**-instantons is the space of all irreducible unobstructed **G**-instantons modulo action of \mathcal{G}_{ℓ} . For the instanton A let [A] denote its gauge equivalence class - a point in \mathcal{M}_{ℓ} .

The tangent space to \mathcal{M}_{ℓ} at A is the middle cohomology group of the Atiyah-Hitchin-Singer (AHS) complex of bundles over X:

$$0 \to \Lambda^0 T^*_X \otimes \mathbf{g}_\ell \to \Lambda^1 T^*_X \otimes \mathbf{g}_\ell \to \Lambda^{2,+} T^*_X \otimes \mathbf{g}_\ell \to 0$$

the first arrow is d_A , the second is $d_A^+ = P_+ d_A$.

P₊ - the projection $\Lambda^2 T_X^* \otimes \mathbf{g}_\ell \to \Lambda^{2,+} T_X^* \otimes \mathbf{g}_\ell$. $d_A^+ \circ d_A = F_A^+ = 0 \to \text{the sequence is the complex.}$

 $H^0(AHS) = 0$ for irred. instantons. $H^2(AHS) = 0$ - obstruction space; absent for unobstructed instantons.

Lemma. The dimension of the moduli space \mathcal{M}_{ℓ} :

$$\dim \mathcal{M}_{\ell} = 4hk - \dim \mathbf{G}\frac{\chi + \sigma}{2}$$

Proof: index theorem applied to the AHS complex.

Remark. \mathcal{M}_{ℓ} is non-compact. Sometimes it can be compactified (Donaldson-Uhlenbeck) by adding the point-like instantons:

$$\overline{\mathcal{M}}_{\ell} = \mathcal{M}_{\ell} \cup \mathcal{M}_{\ell-(0;1)} \times X \cup \ldots \cup \mathcal{M}_{\ell-(0;k)} \times S^k X$$

For A from class $[A] \in \mathcal{M}_{\ell}$ the space $T_{[A]}\mathcal{M}_{\ell}$ can be identified with the space of solutions α :

$$d_A^+ \alpha = 0, \quad d_A^* \alpha = 0$$

 $\alpha \in \Gamma\left(\Lambda^1 T^* X \otimes \mathbf{g}_\ell\right).$

Consider the product $\mathcal{M}_{\ell} \times X$ and form the *universal bundle* \mathcal{E}_{ℓ} - the bundle whose restriction onto $[A] \times X \subset \mathcal{M}_{\ell} \times X$ coincides with E_{ℓ} .

d be the differential in the DeRham complex on $\mathcal{M}_{\ell} \times X$ and d_m, d be its components along \mathcal{M}_{ℓ}, X respectively.

Definition. The *universal* connection is the **G**-connection **a** in \mathcal{E}_{ℓ} with the following properties:

1. $\mathbf{a}|_{[A] \times X} \in [A]$ 2. $\mathbf{a}|_{\mathcal{M}_{\ell} \times \{x\}} = \frac{1}{\Delta_A} d_A^* d_m A$ with $\Delta_A = d_A^* d_A$

Lemma. The curvature of the universal connection can be expanded as:

$$\mathcal{F}_{\mathbf{a}} = F_A + \psi + \phi$$

 ψ is the fundamental solution to the equations:

$$d_A^+\psi = 0, \quad d_A^*\psi = 0$$

 ϕ is given by:

$$\phi = \frac{1}{\Delta_A} [\psi, \star \psi]$$

Comments. We view ψ as the mixed (\mathcal{M}_{ℓ}, X) component of the curvature of **a**. It means that locally we view ψ as one-form on \mathcal{M}_{ℓ} with values in **g**. Using metric on X and the induced metric on \mathcal{M}_{ℓ} we identify $T_{[A]}\mathcal{M}_{\ell}$ with $T^*_{[A]}\mathcal{M}_{\ell}$. Similarly ϕ is the $(\mathcal{M}_{\ell}, \mathcal{M}_{\ell})$ component of the curvature of **a**.

 $\{I_k\}$ - additive basis in the space of invariants: Fun(**g**)^{**G**} \approx Fun(**t**)^{*W*}.

 d_k - the degree of I_k .

$$\mathcal{O}_n^{\alpha} = \int_{e_{\alpha}} I_n\left(\frac{\phi + \psi + F_A}{2\pi i}\right).$$

Examples. $I_1(\phi) = \text{Tr}\phi^2, \ d_1 = 2, \ I_2(\phi) = \text{Tr}\phi^3, I_3 = \text{Tr}\phi^4, I_4 = (\text{Tr}\phi^2)^2, \ d_2 = 3, d_3 = d_4 = 4.$

Denote $\mathcal{M} = \amalg_{\ell} \mathcal{M}_{\ell}, \ \mathcal{E} = \amalg \mathcal{E}_{\ell}$. There is a a characteristic class $c_I(\mathcal{E})$ associated to each invariant $I \in \operatorname{Fun}(\mathbf{g})^{\mathbf{G}}$.

Let Ω_n^{α} be the slant product $\int_{e_{\alpha}} c_{I_n}(\mathcal{E}) \in \mathrm{H}^{2d_n - \dim e_{\alpha}}(\mathcal{M}).$

Definition. The following integral over \mathcal{M} is the attempt to define the intersection theory of Ω_n^{α}

$$\left\langle \Omega_{n_1}^{\alpha_1} \dots \Omega_{n_k}^{\alpha_k} \right\rangle = \sum_{\ell} \int_{\mathcal{M}_{\ell}} \mathcal{O}_{n_1}^{\alpha_1} \wedge \dots \wedge \mathcal{O}_{n_k}^{\alpha_k}$$

Definition. The prepotential of the refined Donaldson-Witten theory is the generating function:

$$\mathcal{Z}_A(T) = \left\langle \exp\left(T^k_{\alpha}\Omega^{\alpha}_k\right)\right\rangle \equiv$$
$$\sum \frac{1}{k!} T^{n_1}_{\alpha_1} \dots T^{n_k}_{\alpha_k} \left\langle \Omega^{\alpha_1}_{n_1} \dots \Omega^{\alpha_k}_{n_k} \right\rangle$$

Physical Picture

<u>The fields</u>: twisted $\mathcal{N} = 2$ vector multiplet

Bosons: gauge field $A = A_{\mu}dx^{\mu}$, the complex scalar ϕ and its conjugate $\bar{\phi}$, self-dual two form H

Fermions: the one-form ψ , the scalar η and the self-dual two-form χ .

All fields take values in the adjoint representation.

Nilpotent Symmetry:

$$\delta \phi = 0, \quad \delta \bar{\phi} = \eta, \quad \delta \eta = [\phi, \bar{\phi}]$$

 $\delta \chi = H, \quad \delta H = [\phi, \chi]$
 $\delta A = \psi, \quad \delta \psi = D_A \phi$

 $\delta^2 = \mathcal{L}_{\phi}$ = infinitesimal gauge transformation generated by $\phi \Rightarrow$ nilpotent on the gauge invariant functionals of the fields (equivariant cohomology).

Definition. Observables - gauge invariant functionals of the fields, annihilated by δ .

The correlation functions of observables do not change under a small variation of metric on the four-manifold X. <u>Observables</u>: Invariant polynomial $\mathcal{P} = \sum_k t^k I_k$ on the algebra $\mathbf{g}, C^k, k = 0, \ldots 4$ – closed k-cycles on X. Their homology cycles are denoted as $[C^k] \in \mathrm{H}_k(X; \mathbf{C})$. The observables form the descend sequence:

$$\mathcal{O}^{(0)} = \mathcal{P}(\phi), \quad \delta \mathcal{O}^{(0)} = 0$$

$$d\mathcal{O}^{(0)} = -\delta \mathcal{O}^{(1)} \quad (\mathcal{O}^{(1)}, [C^1]) \equiv \int_{C^{(1)}} \mathcal{O}^{(1)} \equiv \int_{C^1} \frac{\partial \mathcal{P}}{\partial \phi^a} \psi^a$$

$$d\mathcal{O}^{(1)} = -\delta \mathcal{O}^{(2)} \quad (\mathcal{O}^{(2)}, [C^2]) = \int_{C^2} \mathcal{O}^{(2)} =$$

$$\int_{C^2} \frac{\partial \mathcal{P}}{\partial \phi^a} F^a + \frac{1}{2} \frac{\partial^2 \mathcal{P}}{\partial \phi^a \partial \phi^b} \psi^a \wedge \psi^b$$

....

top degree observable: $\mathcal{O}_{\mathcal{P}}^{(4)} = \frac{1}{2} \frac{\partial^2 \mathcal{P}}{\partial \phi^a \partial \phi^b} F^a F^b +$

$$+\frac{1}{3!}\frac{\partial^{3}\mathcal{P}}{\partial\phi^{a}\partial\phi^{b}\partial\phi^{c}}F^{a}\psi^{b}\psi^{c}+\frac{1}{4!}\frac{\partial^{4}\mathcal{P}}{\partial\phi^{a}\partial\phi^{b}\partial\phi^{c}\partial\phi^{d}}\psi^{a}\psi^{b}\psi^{c}\psi^{d}$$

Action S equals the sum of the 4-observable, constructed out of the prepotential \mathcal{F} and the δ -exact term:

$$S = \mathcal{O}_{\mathcal{F}}^{(4)} + \delta R$$

The standard choice: $\mathcal{F} = \left(\frac{i\theta}{8\pi^2} + \frac{1}{e^2}\right) \text{Tr}\phi^2$,

$$R = \frac{1}{e^2} \operatorname{Tr} \left(\chi F^+ - \chi H + D_A \bar{\phi} \star \psi + \eta \star [\phi, \bar{\phi}] \right),$$

Tr denotes the Killing form.

The bosonic part of the action S is then:

$$S = \int_{X} \tau \operatorname{Tr} F \wedge F +$$
$$+ \frac{1}{e^{2}} \left(\operatorname{Tr} F \wedge \star F + \operatorname{Tr} D_{A} \phi \wedge \star D_{A} \bar{\phi} + \operatorname{Tr} [\phi, \bar{\phi}]^{2} \right)$$
$$\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{e^{2}}$$

The e^2 -dependence – only via $\delta(\ldots)$ terms:

$$S = \frac{\theta}{2\pi} \int_X F \wedge F + \frac{1}{e^2} \delta(\dots)$$

 \Rightarrow can take $e^2 \rightarrow 0$ limit for correlators of observables: the path integral measure gets localized near solutions to $F^+ = 0$, $D_A \phi = 0$

Moral. The correlation functions of observables reduce to the integrals over \mathcal{M}_{ℓ} .

• Donaldson theory (G = SU(2) or G = SO(3)): aim is to compute:

$$\langle \exp((\mathcal{O}_u^{(2)}, w) + \lambda \mathcal{O}_u^{(0)}) \rangle,$$

for $w \in H^2(X, \mathbf{R}), \ \mathcal{O}_u^{(0)} = u \equiv \mathrm{Tr}\phi^2,$

$$(\mathcal{O}_u^{(2)}, w) = -\frac{1}{4\pi^2} \int_X \operatorname{Tr}(\phi F + \frac{1}{2}\psi\psi) \wedge w$$

• Refinement: generating function of all correlators of all observables:

$$\mathcal{Z}_A(T^k) = \langle e^{T^{k,\alpha}(\mathcal{O}_{I_k}^{(4-d_\alpha)}, e_\alpha)} \rangle$$
$$T^k = T^{k,\alpha} e_\alpha \in \mathcal{V} = \bigoplus_{p=0}^4 \mathrm{H}^p(X, \mathbf{C})$$

This is a physical definition of the four dimensional type A theory

Very important tool of computing infinite-dimensional path integral over all fields entering in the definition of correlators \Rightarrow **Abelianization.**

Problem. \mathcal{M}_{ℓ} is non-compact. Need to compactify it in order to have a nice intersection theory.

• Donaldson compactification: add point-like instantons as above (for high enough instanton charges get a manifold, perhaps with orbifold singularities)

 \bullet For Kähler X a refinement of the compactification above: Gieseker compactification:

Idea: On Kähler X with Kähler form ω :

$$F^+ = 0 \Leftrightarrow \bar{\partial}_A^2 = 0, \quad F \wedge \omega = 0$$

 $\bar{\partial}_A$ defines a holomorphic bundle \mathcal{E} over X: its local sections are annihilated by $\bar{\partial}_A$. Then $F \wedge \omega = 0$ is a stability condition.

Replace \mathcal{E} by its (holomorphic) sheaf of sections. Consider the moduli space $\overline{\mathcal{M}}_{\ell}^{G}$ of sheaves which are *torsion free* as \mathcal{O}_X -modules. The latter has sheaves which are not *locally* free, i.e. which are not holomorphic bundles. However, for each such sheaf \mathcal{E}' there is a zero-dimensional subscheme $Z \subset X$, such that on $X \setminus Z \mathcal{E}'$ is a holomorphic bundle and has a connection. **Problem.** Find an analogue of Kontsevich compactification.

Problem. Find a physical realization of all these compactifications.

Partial answer to the last problem: On $X = \mathbf{CP}^2$ the compactification by sheaves corresponds to the gauge theory on a non-commutative space.

Intersection theory in four dimensions

Take $X = \mathbb{CP}^2$, G = U(r), w - Kähler form. $p \in \mathrm{H}^2(X, \mathbb{Z}), k \in \mathrm{H}^4(X, \mathbb{Z}).$

• Monad construction of the torsion free sheaves on X: Let V_0, V_1, V_2 be the complex vector spaces of dimensions $v_{0,1,2}$ respectively. Consider the complex of bundles over X:

$$0 \to V_0 \otimes \mathcal{O}(-1) \xrightarrow{a} V_1 \otimes \mathcal{O} \xrightarrow{b} V_2 \otimes \mathcal{O}(1) \to 0$$

In down-to-earth terms this sequence has the following meaning. The maps a, b in the homogeneous coordinates $(z^0 : z^1 : z^2)$ are the matrix-valued linear functions: $a(z) = z^{\alpha}a_{\alpha}, b(z) = z^{\alpha}b_{\alpha}$. The words "complex" mean that

$$b(z) \cdot a(z) = z^{\alpha} z^{\beta} b_{\alpha} a_{\beta} = 0 \Leftrightarrow$$
$$b_{\alpha} a_{\alpha} = 0, \ \alpha = 0, 1, 2, \quad b_{\alpha} a_{\beta} + b_{\beta} a_{\alpha} = 0, \ \alpha \neq \beta$$

For the pair (b, a) of the maps between the sheaves obeying this condition we can define a sheaf \mathcal{F} over X, whose space of sections over an open set U is

$$\Gamma\left(\mathcal{F}|_{U}\right) = \operatorname{Ker} b(z) / \operatorname{Im} a(z), \quad \text{for} \quad (z^{0} : z^{1} : z^{2}) \in U$$
$$\beta^{ij}(z) \Psi^{j}(z) = 0, \quad \text{modulo} \quad \Psi^{j}(z) = a^{jk}(z) \tilde{\Psi}^{k}(z)$$

Definition: The space of monads is the space M_{mon} of triples of matrices $a_{\beta} \in \text{Hom}(V_0, V_1), b_{\alpha} \in \text{Hom}(V_1, V_2)$ obeying b(z)a(z) = 0. This space is acted on by the group

$$G_{\mathrm{mon}}^c = \left(\mathrm{GL}(V_0) \times \mathrm{GL}(V_1) \times \mathrm{GL}(V_2)\right) / \mathbf{C}^{\star}$$

$$(b,a) \mapsto g \cdot (b,a) = (g_2 b g_1^{-1}, g_1 a g_0^{-1}), \text{ for } (g_0, g_1, g_2) \in G_{\text{mon}}^c$$

The sheaves defined by the pairs (b, a) and $g \cdot (b, a)$ are isomorphic. The maximal compact subgroup of G_{mon}^c

$$G_{\text{mon}} \approx \left(U(V_0) \times U(V_1) \times U(V_2) \right) / U(1)$$

acts in $M_{\rm mon}$ preserving its natural symplectic structure

$$\Omega = \frac{1}{2i} \sum_{\beta} \operatorname{Tr} \delta a_{\beta} \wedge \delta a_{\beta}^{\dagger} + \frac{1}{2i} \sum_{\alpha} \operatorname{Tr} \delta b_{\alpha}^{\dagger} \wedge \delta b_{\alpha}$$

Fix the real numbers r_0, r_1, r_2 , such that $\sum_{\alpha} v_{\alpha} r_{\alpha} = 0$, $r_0, r_2 > 0$. Write the moment maps:

$$\mu_1 = -r_0 \mathbf{1}_{v_0} + \sum_{\beta} a_{\beta}^{\dagger} a_{\beta}$$
$$\mu_2 = -r_1 \mathbf{1}_{v_1} + \sum_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} - \sum_{\beta} a_{\beta} a_{\beta}^{\dagger}$$
$$\mu_3 = -r_2 \mathbf{1}_{v_2} + \sum_{\alpha} b_{\alpha} b_{\alpha}^{\dagger}$$

Then the moduli space of the semistable sheaves is

$$\overline{\mathcal{M}}_{c_*} = \left(\mu_1^{-1}(0) \cap \mu_2^{-1}(0) \cap \mu_3^{-1}(0)\right) / G_{\text{mon}}$$

This is typical example of hyperkähler quotient (Integration over Higgs Branches - MNS'97). The compactness of the space is obvious: if we first perform a reduction with respect to the groups $U(V_0) \times U(V_2)$ then the resulting space is the product of two Grassmanians: $Gr(v_0, 3v_1) \times Gr(v_2, 3v_1)$ which is already compact. The subsequent reduction does not spoil this. The Chern classes, $c_* = \{r, c_1, c_2\}$, of the sheaf \mathcal{F} determined by the pair (b, a) are:

$$r = v_1 - v_0 - v_2, c_1 = (v_0 - v_2), c_2 = \frac{1}{2} \left((v_2 - v_0)^2 + v_0 + v_2 \right)$$

Let $(i\psi, i\phi, i\chi)$ denote the elements of the Lie algebra of G_{mon} , i.e. $i\psi \in u(V_0), i\phi \in u(V_1), i\chi \in u(V_2)$ and $(\psi, \phi, \chi) \sim (\psi + \mathbf{1}_{v_0}, \phi + \mathbf{1}_{v_1}, \chi + \mathbf{1}_{v_2})$. We are interested in computing certain integrals over $\overline{\mathcal{M}}_{c_*}$. This can be accomplished by computing an integral over M_{mon} with the insertion of the delta function in μ_i and dividing by the volume of G_{mon} provided that the expression we integrate is G_{mon} -invariant:

$$\int_{\overline{\mathcal{M}}_{c_*}} (\ldots) =$$

$$\frac{1}{\operatorname{Vol}(G_{\mathrm{mon}})} \int_{\operatorname{Lie}G_{\mathrm{mon}}} d\psi d\phi d\chi e^{i\operatorname{Tr}\psi\mu_1 + i\operatorname{Tr}\phi\mu_2 + i\operatorname{Tr}\chi\mu_3} (\ldots)$$

The useful fact is that the observables of the gauge theory we are interested in are the gauge-invariant functions on (ψ, ϕ, χ) only. More specifically, there is a *universal sheaf* \mathcal{U} over $\overline{\mathcal{M}}_{c_*} \times X$, defined again as $\operatorname{Ker} b(z)/\operatorname{Im} a(z)$ but now the space of parameters contains (b, a) in addition to z. Its Chern character is given by:

$$Ch(\mathcal{U}) = \mathrm{Tr}e^{\phi} - \mathrm{Tr}e^{\psi-\omega} - \mathrm{Tr}e^{\chi+\omega}$$

In particular:

$$\mathcal{O}_{u_1}^{(0)} = \frac{1}{2} \left(\mathrm{Tr}\chi^2 + \mathrm{Tr}\psi^2 - \mathrm{Tr}\phi^2 \right); \int_X \omega \wedge \mathcal{O}_{u_1}^{(2)} = \mathrm{Tr}\chi - \mathrm{Tr}\psi$$

Since the observables are expressed through ψ, ϕ, χ only we can integrate out a_{β}, b_{α} to obtain:

$$\langle \exp t_1 \mathcal{O}_{u_1}^{(0)} + T_1 \int_S \omega \wedge \mathcal{O}_{u_1}^{(2)} \rangle^{\text{torsion free}} = \oint \prod_{i,j,k} d\psi_i d\chi_j d\psi_k$$

$$\frac{\prod_{i' < i''} (\psi_{i'} - \psi_{i''})^2 \prod_{j' < j''} (\phi_{j'} - \phi_{j''})^2}{\prod_{i,j} (\phi_j - \psi_i + i0)^3}$$

$$\frac{\prod_{k' < k''} (\chi_{k'} - \chi_{k''})^2 \prod_{i,k} (\chi_k - \psi_i)^6}{\prod_{j,k} (\chi_k - \phi_j + i0)^3}$$

$$\times e^{t_1 \frac{1}{2} \left(\sum_k \chi_k^2 + \sum_i \psi_i^2 - \sum_j \phi_j^2 \right) + T_1 \left(\sum_k \chi_k - \sum_i \psi_i \right)_X }$$

$$e^{ir_1 \sum_i \psi_i + ir_2 \sum_j \phi_j + ir_3 \sum_k \chi_k}$$

Abelianization - Theory B, Physical Picture

• Integrate out non-abelian components of all fields (quadratic, Gaussian, integral). Result - some abelelain theory, defined on Cartan subgroup of Gauge group with abelian fields: $\phi^i, \bar{\phi}^i, \eta^i, A^i, \psi^i, \chi^i$

• Again, on the space of fields δ -operators acts (original topological, δ , symmetry is preserved - not broken): $\delta^2 = 0$. Define observables for abelian theory as in original, non-abelian theory: \mathcal{O}^i .

• Find for every observable in non-abelian theory corresponding observable after abelianization.

• Write the action in abelian theory as 4-observable descedning from some function $\mathcal{F}(u)$, where $u_1, ..., u_N$ are invariant polynimials of ϕ , functions of ϕ^i .

•From general principles the abelian action must have the form:

$$S_0 = \mathcal{O}_{\mathcal{F}}^{(4)} + \delta R$$

and deformed action is:

$$S = S_0 + t_i \mathcal{O}^i$$

The generating function for correlators is given by partition function on ${f B}$ side by:

$$Z_B(t) = \langle e^{-S(t)} \rangle = \int D\phi^i D\bar{\phi}^i D\eta^i DA^i D\psi^i DH^i e^{-S_0 - t^i \mathcal{O}^i}$$

and finally:

$$Z_A(T) = Z_B(t(T))$$

This shows that one needs:

1. Explicit expression for δ in terms of abelian fields,

2. Explicit form of $\mathcal{F}(u)(u = Tr\phi^2 \text{ for } SU(2))$

3. Explicit relation between observables \mathcal{O}^i between nonabelian and abelian theories

4. Explicit relation between parameters T^i in non-abelian theory and t^i in abelian theory - $t^i(T)$.

1. & 2. δ and formula for prepotential \mathcal{F} was found by Seiberg & Witten in 1994 (for SU(2)). Other groups - various authors after SW found prepotential \mathcal{F} for all groups and all generalizations of 4d N = 2 SYM with matter.

3. & 4. Solution to these was found by Moore & WItten and by Losev, Nekrasov & S. Sh. in 1997 ("universal formula for contact terms" etc.).

Integral over abelian fields in theory \mathbf{B} is reduced to finitedimensional integral via localization technique and is related to nice and simple symplectic geometry problem.

Few words on prepotential \mathcal{F} :

In abelianized theory $\phi = diag(a_1, ..., a_r)$. Let (a_i, a_D^i) coordinates in C^{2r} with complex symplectic worm $\omega = da_i \wedge da_D^i$.

 \mathcal{F} - generating function of Lagrangian submanifold $\Theta = a_D^i da_i = d\mathcal{F}$ invariant under certain discrete subgroup Γ of $SP(2r, \mathbf{Z})$.

Turning on couplings T corresponds to deformations of this Lagrangian submanifold - flows described explicitly in LNS.