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Plan

• Formulate mathematical, enumerative, problem

• Define physical, QFT, problem which computes same thing

• Explain physics role of this QFT and relation to Math

• Formulate answers (in some cases but not all)

• Discuss the results

Examples

LECTURE I

1. Gromov-Witten theory - Top. Sigma Model, type A

2. Deformation theory - complex structures: Top. B model

3. Donaldson Theory - twisted N=2 SYM on four manifold.

LECTURE II

4. Intersection theory on moduli space of flat connections
over Riemann surface - Topological YM theory on Riemann
surface ⇒ CS and G/G WZW.

5. Intersection theory on moduli space of Higgs Bundles
(Hitchin system) - Topological YM-Higgs theory ⇔ Nonlin-
ear Schrödinger theory and representation theory of Quan-
tum Groups ⇒ CS and G/G WZW for complexified G.



LECTURE 1

2d Topological Sigma Models : A & B

Main Math application can be summarized by:

Mirror formula

• Type A sigma model on V = Type B sigma model on Ṽ

• Relates GW on V to (gen)deformations of cmplx str on Ṽ

• Manifolds V and Ṽ are called mirrors.

• For Kähler manifolds: hp,q(V ) = h−p,q(Ṽ )

• The concept extends to: V symplectic and Ṽ complex.

• Mirror exchanges kähler (A) and complex (B) deforma-
tions.

∑

n;{k1,...,kn}

T k1 . . . T kn

n!

〈
O(0)

a O(0)
b O(0)

c

∫

Σ

O(2)
k1

. . .

∫

Σ

O(2)
kn

〉

A

=
∂3FB (T )

∂T a∂T b∂T c



Type A sigma models : Gromov −Witten theory

Two dimensional sigma model - maps

Φ : Σ → V

Σ - two dimensional manifold, world-sheet

V - some Riemannian manifold.

Let V be complex manifold.

• Mathematical reformulation of what physicists call parti-
tion function in the topological type A sigma model:

Given a set of submanifolds C1, . . . , Ck, Ci ⊂ V , compute
the number NC1,...,Ck;β of rigid genus g holomorphic curves
Σ ⊂ V , [Σ] = β ∈ H2(V ;Z) passing through them

The cycles in H∗(V ) represented by C1, . . . , Ck are Poincare
dual to some cohomology classes ω1, . . . , ωk ∈ H∗(V ).



Physical picture

(Supersymmetric) Sigma model - defined through action func-
tional ⇔ functional of “fields”: φI , ψI

+, ψI
−.

Φ - a map: (Σ - Riemann surface) → (V - Riemannian man-
ifold of metric gIJ).

Pick local coordinates: on Σ - z, z̄, on V - φI .

• φI : Map Φ - locally described by φI(z, z̄).

K (K) - the canonical (anti-canonical) line bundles of Σ (the
bundle of one forms of types (1, 0) ((0, 1)))

TV - complexified tangent bundle of V .

to get supersymmetry ⇒ add Grassmann variables:

• ψI
+ - a section of K1/2 ⊗ Φ∗(TV )

• ψI
− - a section of K

1/2 ⊗ Φ∗(TV ).



Physical Sigma Model:

S0(φ, ψ−, ψ+) =
1
f2

∫

Σ

(
1
2
gIJ(φ)∂zφ

I∂z̄φ
J +

i

2
gIJψI

−Dzψ
J
−

)
+

+
(

i

2
gIJψI

+Dz̄ψ
J
+ +

1
4
RIJKLψI

+ψJ
+ψK

−ψL
−

)

f2 - coupling constant

RIJKL - Riemann tensor of V .

Dz̄ - ∂̄ operator on K1/2 ⊗ Φ∗(TV ) constructed using the
pullback of the Levi-Civita connection on TV .

• Now suppose V is Kähler

Sigma model has extended SUSY: N = 2.

Map Φ → local coordinates: φi, φī = φi.

Decompose: TV = T 1,0V ⊕ T 0,1V .

ψi
+ (ψi

+) - the projection of ψ+ in:

K1/2 ⊗ Φ∗(T 1,0V ) (K1/2 ⊗ Φ∗(T 0,1V ))

ψi
− (ψī

−) - the projections of ψ− in:

K̄1/2 ⊗ Φ∗(T 1,0V ) (K̄1/2 ⊗ Φ∗(T 0,1V ))



Action has more parameters:

S0 = iθ

∫

Σ

1
2
gij̄

(
∂zφ

i∂z̄φ
j̄ − ∂z̄φ

i∂zφ
j̄
)
+

1
f2

∫

Σ

1
2
gIJ∂zφ

I∂z̄φ
J+

+iψī
−Dzψ

i
−gīi + iψī

+Dz̄ψ
i
+gīi + Ri īj j̄ψ

i
+ψī

+ψj
−ψj̄

−

θ-another parameter, theta-angle.

Twist:

+ : ψ+
i and ψ+

ī - sections of Φ∗(T 1,0X) and K⊗Φ∗(T 0,1X).

− : ψi
+ and ψī

+ - sections of K⊗Φ∗(T 1,0X) and Φ∗(T 0,1X).

A Model: + twist of ψ+ and a − twist of ψ−.

B Model: − twists of both ψ+ and ψ−

Locally the twisting does nothing at all, since locally K and
K are trivial.



• χ - section of Φ∗(TX) ( χi = ψi
+, and χi = ψī

−);

• ψī
+ - (1, 0) form on Σ with values in Φ∗(T 0,1X); ψī

+ = ψī
z.

• ψi
− - (0, 1) form with values in Φ∗(T 1,0X); ψi

− = ψi
z̄.

Topological transformation laws:

δΦI = iχI

δχI = 0

δψī
z = −∂zφ

ī − iχj̄Γī
j̄m̄ψm̄

z

δψi
z̄ = −∂z̄φ

i − iχjΓi
jmψm

z̄ .

δ2 = 0 - on the space of solutions of equations of motion
(minimizing the action). Can be made ”off-shell” by intro-
ducing auxiliary fields.

Let t = θ + i
f2 .

Action:

S0 =
1
f2

∫

Σ

d2z δR + t

∫

Σ

Φ∗(ω)

R = gij̄

(
ψī

z∂z̄φ
j + ∂zφ

īψj
z̄

)
,

∫

Σ

Φ∗(ω) = i

∫

Σ

d2z
(
∂zφ

i∂z̄φ
j̄gij̄ − ∂z̄φ

i∂zφ
j̄gij̄

)

– the integral of the pullback of the Kähler form ω = −igij̄dzidzj̄ .
∫

Φ∗(ω) - depends only on the cohomology class of ω and
the homology class β ∈ H2(V ) of the image of the map Φ.



In physics one computes correlation functions of some oper-
ators (observables) in given theory.

Definition. Observable {Oi} – a functional of the fields,
s.t. δOi = 0.

Definition. Physical observable = a δ - cohomology class,
Oi ∼ Oi + δΨi.

Definition. Correlator - path integral:

〈
∏
a

Oa〉β = e
−2πt

∫
β

ω
∫

Bβ

Dφ Dχ Dψ e
− 1

f2 δ
∫

R ·
∏
a

Oa.

Bβ - the component of the field space for maps of degree
β = [Φ(Σ)] ∈ H2(V,Z), and 〈 〉β - degree β contribution to
the expectation value.

Correlators of the observables depend only on their
δ-cohomology class, in particular — independent of
the complex structure of Σ and V , and depend only
on the cohomology class of the Kähler form ω.



Standard argument: δ ∼ exterior derivative on the field
space B → 〈δΨ〉β = 0 for any reasonable Ψ. Thus, the Oi

should be considered as representatives of the δ-cohomology
classes.

Thus, correlator is independent of f2. If f2 → 0 - Gaussian
model.

Bosonic part of the Action

it

∫
Φ∗(ω) +

1
f2

∫

Σ

gij̄(φ)∂zφ
j̄∂z̄φ

i

for given β is minimized by holomorphic map:

∂z̄φ
i = ∂zφ

ī = 0.

The entire path integral, for maps of degree β, reduces to an
integral over the space of degree β holomorphic maps Mβ .



• Descend procedure

Pick an n-form W = WI1I2...In
(φ)dφI1 ∧ dφI2 ∧ . . .∧ dφIn on

V ⇒ a local functional

OW (P ) = WI1I2...In
(Φ(P ))χI1 . . . χIn(P ).

δOW = −OdW ,

d the exterior derivative on V .

⇒ W 7→ OW - natural map from the de Rham cohomol-
ogy of V to the space of physical observables, δ-cohomology,
of quantum field theory A(V ). For local operators - isomor-
phism.

Let d - be the DeRham differential on Σ. We have descend
equations:

dOW = δO(1)
W ,

∮
C
O(1)

W - 1-observable. The physical ob-
servable depends on the homology class of C in H1(Σ).

dO(1)
W = δO(2)

W ,
∫
Σ
O(2)

W - 2-observable.

Deformations of the theory: change the action as follows:

SA(T ) = S0 + T a

∫

Σ

OWa

T a are the formal parameters (nilpotent). The path integral
with the action ST computes the generating function FA(T )
of the correlation functions of the two-observables:

FA(T ) = 〈e−
∫
Σ
S(T )〉

S(0) = S0,
∂S
∂T a

|T=0 =
∫

Σ

OWa



Reduction to the enumerative problem

C - submanifold of V (only its homology class matters).

The “Poincaré dual” to C - cohomology class that counts
intersections with C. Represent by a differential form W (C)
that has delta function support on C:

W (C) = δC

Conclude:

Correlators of topological observables OW (C1) . . .OW (Ck)

are integrals over Mβ of the products of delta func-
tions which pick out the holomorphic maps whose
image intersects the submanifolds C1, . . . , Cn:

Let C1, . . . , Ck ⊂ V - complex submanifolds, dimCl = dl.

ωm = W (Cm) ∈ H∗(V ) - their Poincare duals.

Let z1, . . . , zm ∈ Σ, m ≤ k be the marked points.

For a complex submanifold C ⊂ V and for 1 ≤ l ≤ m define
the following submanifolds M0

C,l ⊂M, M2
C ⊂M:

Definition. M0
C,l = {Φ : Σ → V |Φ ∈M, Φ(zl) ∈ C}

Definition. M2
C = {Φ : Σ → V |Φ (Σ) ∩ C 6= ∅}



The correlation functions in the type A sigma model are
simply the intersection numbers:

〈O(0)
C1

(z1) . . .O(0)
Cm

(zm)
∫

Σ

O(2)
Cm+1

. . .

∫

Σ

O(2)
Ck
〉 =

#M0
C1,1 ∩ . . .M0

Cm,m ∩M2
Cm+1

∩ . . . ∩M2
Ck

∑
dimM0

Ci,i +
∑

dimM2
Ci

= dimMβ

otherwise 〈. . .〉 vanishes,

dimMβ =
∫

β

c1(V ) + (1− g)dimV



Problem: Mβ is non-compact. Need to compactify it in
order to get a nice intersection theory.

Compactification is not unique.

Option I. Kontsevich stable maps.

Option II. Freckleds – in case where V is a symplectic quo-
tient of a G-equivariant submanifold of a vector (affine) sym-
plectic space A: V ⊂ A//G.

Compactification of M - Regularization

Non-compactness ofM comes from ultraviolet non-compactness
of the fields space B. (UV = ‖dΦ‖2 →∞)

Physical picture

Option I = coupling to topological gravity ≈ averaging over
conformal structures on Σ.

Option II = gauged linear sigma model with target A and
gauge group G (and perhaps superpotential).



Type B sigma models: Kodaira-Spencer theory.

Consider the space S of generalized (in the sense of Kontsevich-
Witten) deformations of complex structures of variety Ṽ (Ṽ
- mirror to V ).

The tangent space to S at some point s represented by a
variety V ′

s is given by:

TsS =
⊕
p,q

Hp
(
Ṽs, ΛqTVs

)
≡

⊕
p,q

H−q,p(Ṽs)

Let T denote special coordinates on this space.

The right-hand side of the mirror formula - essentially a par-
tition function in type B sigma model expressed in terms of
special coordinates, whose choice is absolutely necessary for
the formulation of mirror symmetry.

Note: genus dependence doesn’t enter in this definition.
Precise mathematical definition of FB

g (T ) is not known.



Physical Picture

ψī
± - sections of Φ∗(T 0,1Ṽ )

ψi
+ - section of K ⊗ Φ∗(T 1,0Ṽ )

ψi
− - section of K ⊗ Φ∗(T 1,0Ṽ ).

ρ - one form with values in Φ∗(T 1,0Ṽ ); ρi
z = ψi

+, ρi
z̄ = ψi

−.

all fields above are valued in Grassmann algebra

Denote:
ηī = ψī

+ + ψī
−

θi = gīi

(
ψī

+ − ψī
−

)
.

Transformations:
δφi = 0

δφi = iηī

δηī = δθi = 0

δρi = − dφi.

nilpotent symmetry: δ2 = 0 on-shell, on the solutions of the
equations of motion (minimizing the action functional). Can
be made off-shell by introducing extra fields.



Action:

S =
1
f2

∫

Σ

d2z
(
gIJ∂zφ

I∂z̄φ
J + iηī(Dzρ

i
z̄ + Dz̄ρ

i
z)gīi

+iθi(Dz̄ρz
i −Dzρz̄

i) + Rīijj̄ρ
i
zρ

j
z̄η

īθkgkj̄
)

.

Again one can rewrite the action using δ:

S =
1
f2

∫
δU + S0

U = gij̄

(
ρi

z∂z̄φ
j̄ + ρi

z̄∂zφ
j̄
)

S0 =
∫

Σ

(
−θiDρi − i

2
Rīijj̄ρ

i ∧ ρjηīθkgkj̄

)
.

As in A model - define the observables as:

Definition. Observable {Oi} – a functional of the fields,
s.t. δOi = 0.

Definition. Physical observable = a δ - cohomology class,
Oi ∼ Oi + δΨi.



Correlators

〈
∏
a

Oa〉 =
∫

Bβ

Dφ Dρ Dη e
− 1

f2 δ
∫

U−S0 ·
∏
a

Oa.

B theory is independent of the complex structure of Σ and
the Kähler metric of Ṽ . Change of complex structure of Σ
or Kähler metric of Ṽ - Action changes by irrelevant terms
of the form δ(. . .).

The theory depends on the complex structure of Ṽ ,
which enters δ

B model is independent of f2; take limit f2 → 0; In this
limit, one expands around minima of the bosonic part of the
Action = constant maps Φ : Σ → Ṽ :

∂zφ
i = ∂z̄φ

i = 0

The space of such constant maps is a copy of Ṽ ; the path
integral reduces to an integral over Ṽ .

All above can be demonstrated by considerations similar to
those in A-model.



Observables:

Consider (0, p) forms on Ṽ with values in ∧qT 1,0Ṽ , the qth

exterior power of the holomorphic tangent bundle of Ṽ .

W = dz̄i1dz̄i2 . . . dz̄ipWī1 ī2...̄ip

j1j2...jq
∂

∂zj1

. . .
∂

∂zjq

W is antisymmetric in the j’s as well as in the ī’s.

Form local operator:

OW = ηī1 . . . ηīpWī1...̄ip

j1...jqψj1 . . . ψjq .

δOW = −O∂̄W ,

OW is δ-invariant if ∂̄W = 0 and δ-exact if W = ∂̄S for some
S.

W 7→ OW - natural map from ⊕p,qH
p(V,∧qT 1,0V ) to the

δ-cohomology of the B model. It is isomorphism for local
operators.

The story of Correlators in B model, Descend Equations, De-
formation of the action by 2-observables, Generating func-
tion FB(T ) is completely parallel to that in A-model:

SB(T ) = S + T a

∫
OWa

FB(T ) =< e−SB(T ) >



• Interesting examples of the deformations:

W = Āj
ī

∂
∂zj dz̄j̄ - deformation of the complex structure of Ṽ

W = W (z) - holomorphic function (for non-compact Ṽ )- sin-
gularity (Landau-Ginzburg in physical terminology) theory

W = 1
2πij ∂

∂zi ∧ ∂
∂zj - non-commutative deformation

• Complex structure deformations:

Ṽs – family of d complex dimensional projective varieties
with c1(Ṽs) = 0 - CY.

Calibrated CY manifold - (Ṽ , Ω); Ṽ - CY supplied with the
holomorphic (d, 0) form Ω. Holomorphic (d, 0) form - unique
up to the multiplication by a non-zero complex number.

M - moduli of cmplx structures Ṽs0 :

Ts0M≈ Hd−1,1(Ṽs0)

The moduli space M̂Ṽs0
of the calibrated CY manifolds is

a C∗-bundle over MṼs0
. The normalized holomorphic (d, 0)

from Ω0 defines locally a section of the bundle.

The choice of the complex structure provides the decompo-
sition of the external derivative D = D1,0 + D0,1 = ∂ + ∂̄.

Let (zi, z̄) be local coordinates on Ṽ and let Ā ∈ Ω−1,1(Ṽ )
be a (−1, 1) differential, locally: Ā =

∑
Āj

idz̄i ∂
∂zj .



The deformation of the complex structure may be described
in terms of the deformation of the operator D0,1 = ∂̄

∂̄ → ∂̄Ā = ∂̄ + Ā =
∑

dz̄i(
∂

∂z̄i
+ Āj

ī

∂

∂zj
)

subjected to the integrability condition ∂̄2
Ā

= 0 ( Kodaira-
Spencer equation).

IKS(Ā) - functional with critical points KS-equation. For
3-complex dimensions can be written as function of Ω(3) via
identification Ω(2,1) = A ` Ω.

Special coordinates on M̂: T i, i = 0, . . . , hd−1,1(Ṽs):

Let αI(s), βI(s), I = 0, . . . , hd−1,1(Y ) be a symplectic basis
in Hd(Ṽs,Z):

αI ∩ αJ = βI ∩ βJ = 0, αI ∩ βJ = δJ
I

On the M̂ this basis is defined uniquely once it is chosen at
some marked point p0 ∈ M̂.

AI(s) =
∫

αI(s)

Ω, AD,I(s) =
∫

βI(s)

Ω

Ω - defined uniquely up to a constant. Let us fix this freedom
by choosing a distinguished cycle α0 and demanding A0 = 1.
Then

T i = Ai, i = 1, . . . , dimM



There exists a function F(0)B
on M̂ such that

dF(0) =
∑

i

AD,idAi

Locally F0 can be viewed as a function of T i - generating
function of Lagrangian sub-manifold in Hd(Ṽ ,C) which co-
incides with M̂.

Form a function of one extra variable λ ∈ H(d,0) (normaliza-
tion of (d, 0) - form - coordinate in fibre):

Z(λ, T ) = e
−

∑
g

λ2g−2Fg(T ) = e−F(λ,T )

If we denote base complex structure as (t, t∗), one can show
that Z(t,t∗)(λ, T ) depends on base complex structure t∗ which
is captured by differential equation is of heat-kernel type,
Holomorphic Anomaly equation.

A. Gerasimov & S.Sh. 2004: value of Kodaira-Spencer
action I(Ā) at critical points coincides with F(0) - generating
function of Lagrangian sub-manifold introduced above.

Higher genus corrections to Z(λ, T ) - quantization of sym-
plectomorphizm relating polarization defined by Lagrangian
submanifold M̂ to linear polarization at given base point
(t, t∗) → corrections in coupling constant λ (volume ⇔ holo-
morphic three form).

Mirror symmetry: A=B

not only for CY, but more general



Special case of CY threefolds: physical intuition

As N = 2 SCFT’s the theories A and B don’t differ (internal
authomorphism of the N = 2 algebra maps A to B and vice
versa)

SCFT has different large volume limits - the same theory
looks as different sigma models with different target spaces
V and Ṽ in different limits.

T-duality - the simplest example.



FOUR DIMENSIONAL THEORY A

DONALDSON-WITTEN THEORY

• X – 4 dimensional compact smooth Riemannian manifold

• bi = bi(X) – Betti numbers.

• On H∗(X): intersection form (, ); metric 〈, 〉:

(ω1, ω2) =
∫

X

ω1 ∧ ω2, 〈ω1, ω2〉 =
∫

X

ω1 ∧ ?ω2

? - the Hodge star operation.

b±2 – dim’s of the positive and negative subspaces of H2(X).

ω ∈ H2(X): ω± – orthogonal projections to the spaces of
self- and antiselfdual classes: H2,±(X) – (ω±, ·) = ±〈ω±, ·〉,
ω = ω+ + ω−.

χ =
∑4

i=0(−1)ibi, – the Euler characteristics of X

σ = b+
2 − b−2 the signature of X



• eα is a basis in H∗(X,C),

• eα the dual basis in H∗(X,C):

(eα, ω) =
∫

eα

ω

for any ω ∈ H∗(X).

G′ = SU(r + 1), G = G′/Z, Z ≈ Zr+1, g = LieG.

T = U(1)r – maximal torus of G, W = Sr+1 the Weyl group,

g = Lie(G), t = Lie(T).

h = r + 1 – dual Coxeter number.

` = (w2; k), k ∈ Z, w2 ∈ H2(X, Z) – generalized Stiefel-
Whitney class.

P` - a principal G bundle over X and E` the associated
vector bundle with w2(E`) = w2,

c2(E`) + 1
2w2 · w2 = k.



A` - the space of connections in P`.

G` - the group of gauge transformations of P`.

The Lie algebra of G` - the algebra of sections of the asso-
ciated adjoint bundle g` = P` ×Ad g. φ - an element of
LieG`.

For the connection A (= the gauge field) let FA denote its
curvature (it is a section of Λ2T ∗X ⊗ g`).

Definition. G-instanton is the solution to the equation

F+
A = F + ?F = 0

where + acts on the Λ2T ∗X part of FA.

Definition. a G-instanton A is called irreducible if there are
no infinitesimal gauge transformations, preserving A. This
condition is equivalent to the absence of the solutions to the
equation

dAφ = 0, 0 6= φ ∈ Γ(g`)

where dA is the connection on g` associated with A.

Definition. a G-instanton is called unobstructed if there
are no solutions to the equation (d+

A)∗χ = 0, 0 6= χ ∈
Γ

(
Λ2,+T ∗X ⊗ g`

)
.

Definition. The moduli space M` of G-instantons is the
space of all irreducible unobstructed G-instantons modulo
action of G`. For the instanton A let [A] denote its gauge
equivalence class - a point in M`.



The tangent space to M` at A is the middle cohomology
group of the Atiyah-Hitchin-Singer (AHS) complex of bun-
dles over X:

0 → Λ0T ∗X ⊗ g` → Λ1T ∗X ⊗ g` → Λ2,+T ∗X ⊗ g` → 0

the first arrow is dA, the second is d+
A = P+dA.

P+ - the projection Λ2T ∗X ⊗ g` → Λ2,+T ∗X ⊗ g`.
d+

A ◦ dA = F+
A = 0 → the sequence is the complex.

H0(AHS) = 0 for irred. instantons. H2(AHS) = 0 - ob-
struction space; absent for unobstructed instantons.

Lemma. The dimension of the moduli space M`:

dimM` = 4hk − dimG
χ + σ

2

Proof: index theorem applied to the AHS complex.



Remark. M` is non-compact. Sometimes it can be com-
pactified (Donaldson-Uhlenbeck) by adding the point-like in-
stantons:

M` = M` ∪M`−(0;1) ×X ∪ . . . ∪M`−(0;k) × SkX

For A from class [A] ∈ M` the space T[A]M` can be identi-
fied with the space of solutions α:

d+
Aα = 0, d∗Aα = 0

α ∈ Γ
(
Λ1T ∗X ⊗ g`

)
.



Consider the product M`×X and form the universal bundle
E` - the bundle whose restriction onto [A] × X ⊂ M` × X
coincides with E`.

d be the differential in the DeRham complex on M` × X
and dm, d be its components along M`, X respectively.

Definition. The universal connection is the G-connection
a in E` with the following properties:

1. a|[A]×X ∈ [A]
2. a|M`×{x} = 1

∆A
d∗AdmA with ∆A = d∗AdA

Lemma. The curvature of the universal connection can be
expanded as:

Fa = FA + ψ + φ

ψ is the fundamental solution to the equations:

d+
Aψ = 0, d∗Aψ = 0

φ is given by:

φ =
1

∆A
[ψ, ?ψ]

Comments. We view ψ as the mixed (M`, X) component
of the curvature of a. It means that locally we view ψ as
one-form on M` with values in g. Using metric on X and
the induced metric on M` we identify T[A]M` with T ∗[A]M`.



Similarly φ is the (M`,M`) component of the curvature of
a.

{Ik} - additive basis in the space of invariants: Fun(g)G ≈
Fun(t)W .

dk - the degree of Ik.

Oα
n =

∫
eα

In

(
φ+ψ+FA

2πi

)
.

Examples. I1(φ) = Trφ2, d1 = 2, I2(φ) = Trφ3, I3 =
Trφ4, I4 =

(
Trφ2

)2, d2 = 3, d3 = d4 = 4.

Denote M = q`M`, E = qE`. There is a a characteristic
class cI(E) associated to each invariant I ∈ Fun(g)G.

Let Ωα
n be the slant product

∫
eα

cIn(E) ∈ H2dn−dimeα(M).



Definition. The following integral over M is the attempt
to define the intersection theory of Ωα

n

〈
Ωα1

n1
. . . Ωαk

nk

〉
=

∑

`

∫

M`

Oα1
n1
∧ . . . ∧ Oαk

nk

Definition. The prepotential of the refined Donaldson-
Witten theory is the generating function:

ZA(T ) =
〈
exp

(
T k

αΩα
k

)〉 ≡
∑ 1

k!
Tn1

α1
. . . Tnk

αk

〈
Ωα1

n1
. . . Ωαk

nk

〉



Physical Picture

The fields: twisted N = 2 vector multiplet

Bosons: gauge field A = Aµdxµ, the complex scalar φ and
its conjugate φ̄, self-dual two form H

Fermions: the one-form ψ, the scalar η and the self-dual
two-form χ.

All fields take values in the adjoint representation.

Nilpotent Symmetry:

δφ = 0, δφ̄ = η, δη = [φ, φ̄]

δχ = H, δH = [φ, χ]

δA = ψ, δψ = DAφ

δ2 = Lφ = infinitesimal gauge transformation generated by
φ⇒ nilpotent on the gauge invariant functionals of the fields
(equivariant cohomology).

Definition. Observables - gauge invariant functionals of the
fields, annihilated by δ.

The correlation functions of observables do not change under
a small variation of metric on the four-manifold X.



Observables: Invariant polynomial P =
∑

k tkIk on the alge-
bra g, Ck, k = 0, . . . 4 – closed k-cycles on X. Their homol-
ogy cycles are denoted as [Ck] ∈ Hk(X;C). The observables
form the descend sequence:

O(0) = P(φ), δO(0) = 0

dO(0) = −δO(1) (O(1), [C1]) ≡
∫

C(1)
O(1) ≡

∫

C1

∂P
∂φa

ψa

dO(1) = −δO(2) (O(2), [C2]) =
∫

C2
O(2) =

∫

C2

∂P
∂φa

F a +
1
2

∂2P
∂φa∂φb

ψa ∧ ψb

. . .

top degree observable: O(4)
P = 1

2
∂2P

∂φa∂φb F aF b+

+
1
3!

∂3P
∂φa∂φb∂φc

F aψbψc +
1
4!

∂4P
∂φa∂φb∂φc∂φd

ψaψbψcψd



Action S equals the sum of the 4-observable, constructed out
of the prepotential F and the δ-exact term:

S = O(4)
F + δR

The standard choice: F =
(

iθ
8π2 + 1

e2

)
Trφ2,

R =
1
e2

Tr
(
χF+ − χH + DAφ̄ ? ψ + η ? [φ, φ̄]

)
,

Tr denotes the Killing form.

The bosonic part of the action S is then:

S =
∫

X

τTrF ∧ F+

+
1
e2

(
TrF ∧ ?F + TrDAφ ∧ ?DAφ̄ + Tr[φ, φ̄]2

)

τ =
θ

2π
+

4πi

e2

The e2-dependence – only via δ (. . .) terms:

S =
θ

2π

∫

X

F ∧ F +
1
e2

δ(...)

⇒ can take e2 → 0 limit for correlators of observables: the
path integral measure gets localized near solutions to F+ =
0, DAφ = 0

Moral. The correlation functions of observables re-
duce to the integrals over M`.



• Donaldson theory (G = SU(2) or G = SO(3)): aim is to
compute:

〈exp((O(2)
u , w) + λO(0)

u )〉,
for w ∈ H2(X,R), O(0)

u = u ≡ Trφ2,

(O(2)
u , w) = − 1

4π2

∫

X

Tr(φF +
1
2
ψψ) ∧ w

• Refinement: generating function of all correlators of all
observables:

ZA(T k) = 〈eT k,α(O(4−dα)
Ik

,eα)〉

T k = T k,αeα ∈ V = ⊕4
p=0H

p(X,C)

This is a physical definition of the four dimensional
type A theory

Very important tool of computing infinite-dimensional path
integral over all fields entering in the definition of correlators
⇒ Abelianization.



Problem. M` is non-compact. Need to compactify it in
order to have a nice intersection theory.

• Donaldson compactification: add point-like instantons as
above (for high enough instanton charges get a manifold,
perhaps with orbifold singularities)

• For Kähler X a refinement of the compactification above:
Gieseker compactification:

Idea: On Kähler X with Kähler form ω :

F+ = 0 ⇔ ∂̄2
A = 0, F ∧ ω = 0

∂̄A defines a holomorphic bundle E over X: its local sec-
tions are annihilated by ∂̄A. Then F ∧ ω = 0 is a stability
condition.

Replace E by its (holomorphic) sheaf of sections. Consider
the moduli space MG

` of sheaves which are torsion free as
OX -modules. The latter has sheaves which are not locally
free, i.e. which are not holomorphic bundles. However, for
each such sheaf E ′ there is a zero-dimensional subscheme
Z ⊂ X, such that on X\Z E ′ is a holomorphic bundle and
has a connection.



Problem. Find an analogue of Kontsevich compactifica-
tion.

Problem. Find a physical realization of all these compact-
ifications.

Partial answer to the last problem: On X = CP2 the
compactification by sheaves corresponds to the gauge theory
on a non-commutative space.



Intersection theory in four dimensions

Take X = CP2, G = U(r), w - Kähler form.

p ∈ H2(X,Z), k ∈ H4(X,Z).

• Monad construction of the torsion free sheaves on X: Let
V0, V1, V2 be the complex vector spaces of dimensions v0,1,2

respectively. Consider the complex of bundles over X:

0 → V0 ⊗O(−1) −→a V1 ⊗O −→b V2 ⊗O(1) → 0

In down-to-earth terms this sequence has the following mean-
ing. The maps a, b in the homogeneous coordinates (z0 :
z1 : z2) are the matrix-valued linear functions: a(z) =
zαaα, b(z) = zαbα. The words “complex” mean that

b(z) · a(z) = zαzβbαaβ = 0 ⇔
bαaα = 0, α = 0, 1, 2, bαaβ + bβaα = 0, α 6= β

For the pair (b, a) of the maps between the sheaves obeying
this condition we can define a sheaf F over X, whose space
of sections over an open set U is

Γ (F|U ) = Kerb(z)/Ima(z), for (z0 : z1 : z2) ∈ U

βij(z)Ψj(z) = 0, modulo Ψj(z) = ajk(z)Ψ̃k(z)

Definition: The space of monads is the space Mmon of
triples of matrices aβ ∈ Hom(V0, V1), bα ∈ Hom(V1, V2)
obeying b(z)a(z) = 0. This space is acted on by the group

Gc
mon = (GL(V0)×GL(V1)×GL(V2)) /C?



(b, a) 7→ g · (b, a) = (g2bg
−1
1 , g1ag−1

0 ), for (g0, g1, g2) ∈ Gc
mon

The sheaves defined by the pairs (b, a) and g · (b, a) are iso-
morphic. The maximal compact subgroup of Gc

mon

Gmon ≈ (U(V0)× U(V1)× U(V2)) /U(1)

acts in Mmon preserving its natural symplectic structure

Ω =
1
2i

∑

β

Trδaβ ∧ δa†β +
1
2i

∑
α

Trδb†α ∧ δbα

Fix the real numbers r0, r1, r2, such that
∑

α vαrα = 0,
r0, r2 > 0. Write the moment maps:

µ1 = −r01v0 +
∑

β

a†βaβ

µ2 = −r11v1 +
∑
α

b†αbα −
∑

β

aβa†β

µ3 = −r21v2 +
∑
α

bαb†α

Then the moduli space of the semistable sheaves is

Mc∗ =
(
µ−1

1 (0) ∩ µ−1
2 (0) ∩ µ−1

3 (0)
)
/Gmon

This is typical example of hyperkähler quotient (Integration
over Higgs Branches - MNS’97). The compactness of the
space is obvious: if we first perform a reduction with re-
spect to the groups U(V0)×U(V2) then the resulting space is
the product of two Grassmanians: Gr(v0, 3v1)×Gr(v2, 3v1)
which is already compact. The subsequent reduction does
not spoil this.



The Chern classes, c∗ = {r, c1, c2}, of the sheaf F determined
by the pair (b, a) are:

r = v1−v0−v2, c1 = (v0 − v2) , c2 =
1
2

(
(v2 − v0)

2 + v0 + v2

)

Let (iψ, iφ, iχ) denote the elements of the Lie algebra of
Gmon, i.e. iψ ∈ u(V0), iφ ∈ u(V1), iχ ∈ u(V2) and (ψ, φ, χ) ∼
(ψ + 1v0 , φ + 1v1 , χ + 1v2). We are interested in computing
certain integrals over Mc∗ . This can be accomplished by
computing an integral over Mmon with the insertion of the
delta function in µi and dividing by the volume of Gmon

provided that the expression we integrate is Gmon-invariant:
∫

Mc∗

(. . .) =

1
Vol(Gmon)

∫

LieGmon

dψdφdχeiTrψµ1+iTrφµ2+iTrχµ3 (. . .)

The useful fact is that the observables of the gauge the-
ory we are interested in are the gauge-invariant functions on
(ψ, φ, χ) only. More specifically, there is a universal sheaf
U over Mc∗ ×X, defined again as Kerb(z)/Ima(z) but now
the space of parameters contains (b, a) in addition to z. Its
Chern character is given by:

Ch(U) = Treφ − Treψ−ω − Treχ+ω

In particular:

O(0)
u1

=
1
2

(
Trχ2 + Trψ2 − Trφ2

)
;
∫

X

ω ∧ O(2)
u1

= Trχ− Trψ



Since the observables are expressed through ψ, φ, χ only we
can integrate out aβ , bα to obtain:

〈exp t1O(0)
u1

+ T1

∫

S

ω ∧ O(2)
u1
〉torsion free =

∮ ∏

i,j,k

dψidχjdψk

∏
i′<i′′ (ψi′ − ψi′′)

2 ∏
j′<j′′ (φj′ − φj′′)

2

∏
i,j (φj − ψi + i0)3

∏
k′<k′′ (χk′ − χk′′)

2 ∏
i,k (χk − ψi)

6

∏
j,k (χk − φj + i0)3

×e
t1

1
2

(∑
k

χk
2+

∑
i
ψ2

i−
∑

j
φ2

j

)
+T1(

∑
k

χk−
∑

i
ψi)×

e
ir1

∑
i
ψi+ir2

∑
j

φj+ir3

∑
k

χk



Abelianization - Theory B, Physical Picture

• Integrate out non-abelian components of all fields (quadratic,
Gaussian, integral). Result - some abelelain theory, defined
on Cartan subgroup of Gauge group with abelian fields:
φi, φ̄i, ηi, Ai, ψi, χi

• Again, on the space of fields δ-operators acts (original topo-
logical, δ, symmetry is preserved - not broken): δ2 = 0. De-
fine observables for abelian theory as in original, non-abelian
theory: Oi.

• Find for every observable in non-abelian theory corre-
sponding observable after abelianization.

• Write the action in abelian theory as 4-observable desced-
ning from some function F(u), where u1, ..., uN are invariant
polynimials of φ, functions of φi.

•From general principles the abelian action must have the
form:

S0 = O(4)
F + δR

and deformed action is:

S = S0 + tiOi

The generating function for correlators is given by partition
function on B side by:

ZB(t) =< e−S(t) >=
∫

DφiDφ̄iDηiDAiDψiDHie−S0−tiOi

and finally:
ZA(T ) = ZB(t(T ))



This shows that one needs:

1. Explicit expression for δ in terms of abelian fields,

2. Explicit form of F(u)(u = Trφ2 for SU(2))

3. Explicit relation between observables Oi between non-
abelian and abelian theories

4. Explicit relation between parameters T i in non-abelian
theory and ti in abelian theory - ti(T ).

1. & 2. δ and formula for prepotential F was found by
Seiberg & Witten in 1994 (for SU(2)). Other groups - var-
ious authors after SW found prepotential F for all groups
and all generalizations of 4d N = 2 SYM with matter.

3. & 4. Solution to these was found by Moore & WItten and
by Losev, Nekrasov & S. Sh. in 1997 (“universal formula for
contact terms” etc.).

Integral over abelian fields in theory B is reduced to finite-
dimensional integral via localization technique and is related
to nice and simple symplectic geometry problem.

Few words on prepotential F :

In abelianized theory φ = diag(a1, .., ar). Let (ai, a
i
D) coor-

dinates in C2r with complex symplectic worm ω = dai∧dai
D.

F - generating function of Lagrangian submanifold Θ =
ai

Ddai = dF invariant under certain discrete subgroup Γ
of SP (2r,Z).

Turning on couplings T corresponds to deformations of this
Lagrangian submanifold - flows described explicitly in LNS.


