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Quark–gluon vertex in general kinematics
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Abstract. We compute the quark-gluon vertex in quenched lattice QCD, in the Landau gauge using an
off-shell mean-field O(a)-improved fermion action. The Dirac-vector part of the vertex is computed for
arbitrary kinematics. We find a substantial infrared enhancement of the interaction strength regardless of
kinematics.

1 Introduction

In recent years, substantial progress has been made in our
understanding of the nonperturbative correlation func-
tions (propagators and vertices) of the fundamental fields
of QCD and their relation to the phenomena of colour
confinement and dynamical chiral symmetry breaking. It
has emerged that at least in Landau gauge, a detailed
knowledge of the structure of the quark–gluon vertex is
essential for an understanding of the dynamics of quark
confinement and chiral symmetry breaking as encoded in
the quark Dyson–Schwinger equation (DSE), relating the
quark propagator S(p) to the gluon propagator and the
quark–gluon vertex Γµ(p, q), where p and q are quark and
gluon momenta respectively:

S−1(p) = i 6p + m

+
4g2

3

∫

d4q

(2π)4
γµS(p−q)Dµν(q)Γν(p−q, q) . (1)

Here, Dµν(q) = Pµν(q)D(q2) is the gluon propagator, with
Pµν(q) the transverse projection operator.

The overall shape of the gluon propagator is now quite
well known, both from lattice QCD [1–3] and from studies
of the coupled ghost–gluon Dyson–Schwinger equations. It
is now clear that if this is fed into the quark DSE together
with a bare or QED-like vertex, the resulting quark propa-
gator will not exhibit a sufficient degree of chiral symmetry
breaking [4–7].

The quark–gluon vertex is related to the ghost sector
through the Slavnov–Taylor identity (STI),

qµΓµ(p, q) = G(q2)
[

(1 − B(q, p + q))S−1(p)

− S−1(p + q)(1 − B(q, p + q))
]

,
(2)

where G(q2) is the ghost renormalisation function and
Ba(q, k) is the ghost–quark scattering kernel. In partic-
ular, if the ghost propagator is infrared enhanced, as both

lattice [8,3] and DSE studies [9] indicate, the vertex will
also be so. This provides for a consistent picture of con-
finement and chiral symmetry breaking at the level of the
Green’s functions of Landau-gauge QCD, where the same
infrared enhancement that is responsible for confinement
of gluons, provides the necessary interaction strength to
give rise to dynamical chiral symmetry breaking in the
quark sector.

Confinement of quarks is still not fully understood in
this picture, however. If the effective interaction between
a quark and an antiquark by way of exchange of a nonper-
turbative gluon is to give rise to a linearly confining po-
tential, the quark–gluon vertex must contain an infrared
enhancement over and above that contained in the ghost
self-energy. A recent DSE calculation [10] indicates that
this may indeed be the case, with te running coupling αqg

defined from this vertex diverging quadratically in the in-
frared.

In two previous papers [11,12] the quark–gluon vertex
was computed on the lattice in two specific kinematics.
Those results indicate a highly nontrvial infrared tensor
structure, a result that has been qualitatively supported
by semiperturbative DSE-based calculations [7,13]. How-
ever, these kinematics may not dominate the DSE (1). It
is therefore necessary to compute the vertex in arbitrary
kinematics, as far as possible. This is the focus of the
present paper, although at this point we will be restrict-
ing ourselves to the dominant, vector part of the vertex.
Preliminary results were reported in [14].

The structure of this article is as follows: In sec. 2 we
briefly recap the formalism used in these studies. The main
results are contained in sec. 3, while in sec. 4 we discuss
the implications and possible future directions. Some tree-
level lattice formulae are contained in the Appendix.
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2 Formalism

We denote the outgoing quark momentum p and the out-
going gluon momentum q. The incoming quark momen-
tum is k = p + q. In the continuum, the quark–gluon
vertex can be decomposed into four components Li con-
tributing to the Slavnov–Taylor identity and eight purely
transverse components Ti:

Γµ(p, q) =
4

∑

i=1

λi(p
2, q2, k2)Li,µ(p, q)

+

8
∑

i=1

τi(p
2, q2, k2)Ti,µ(p, q) .

(3)

The components Li and Ti are given in Ref.[11]:

L1,µ =γµ L2,µ =− 6PPµ (4)

L3,µ = − iPµ L4,µ = − iσµνPν

T1,µ = − i`µ T2,µ =− 6P`µ

T3,µ = 6qqµ − q
2
γµ

T4,µ = − i
[

q
2
σµνPν +2qµσνλpνkλ

]

T5,µ = − iσµνqν T6,µ =(qP )γµ− 6qPµ (5)

T7,µ = −
i

2
(qP )σµν Pν − iPµσνλpνkλ

T8,µ = − γµσνλpνkλ− 6pkµ+ 6kpµ

where Pµ ≡ pµ + kµ, `µ ≡ (pq)kµ − (kq)pµ. In Landau
gauge, for q 6= 0, we are only able to compute the trans-
verse projection of the vertex, Γ P

µ (p, q) ≡ Pµν(q)Γν(p, q),

where Pµν(q) ≡ δµν − qµqν/q2 is the transverse projector.
Since the vertex will always be coupled to a gluon prop-
agator which contains the same projector, this is also the
only combination that appears in any applications. The
four functions Li,µ are projected onto the transverse Ti,µ,
giving rise to modified form factors

λ′

1 = λ1 − q2τ3 ; λ′

2 = λ2 −
q2

2
τ2 ; (6)

λ′

3 = λ3 −
q2

2
τ1 ; λ′

4 = λ4 + q2τ4 .

The lattice tensor structure is more complex, and (3) is
only recovered in the continuum. The form factors also
receive large contributions from lattice artefacts at tree
level, so tree-level correction is required, as described in
the Appendix.

3 Results

We have analysed 495 configurations on a 163 × 48 lattice
at β = 6.0, using a mean-field improved SW action with
a quark mass m ≈ 115 MeV. This is part of the UKQCD
data set described in [15]; further details can also be found
in [11].

The general lattice tensor structure, even for the Dirac-
vector part of the vertex alone, is quite complicated, as

Fig. 1. The unrenormalised form factor λ′

1 in the quark-
symmetric kinematics p2 = k2, as a function of quark momen-
tum p (long axis) and gluon momentum q (short axis). The
opaque surfaces denotes the statistical uncertainties.

the tree-level expression in eq. (14) of the Appendix gives
an indication of. This makes a determination of the full
tensor structure of the vertex intractable with this lat-
tice action. However, in the special case where both the
quark and gluon momentum vectors are chosen to be ‘per-
pendicular’ to the vertex, i.e. if we compute Γµ(p, q) with
pµ = qµ = 0, this structure simplifies considerably. There
is no loss of generality provided rotational symmetry is
restored in the continuum. We will here only study the
leading, vector part of the vertex, as this is expected to
have the cleanest signal, and tree-level lattice artefacts can
be corrected multiplicatively. In continuum notation, we
compute

1

4
tr γµΓP

µ (p, q) =
(

1 −
q2
µ

q2

)

λ′

1

+
2

q2

[

(pq)kµ − (kq)pµ

]

(pµ + kµ)λ′

2

− [k2 − p2 − (k2
µ − p2

µ)]τ6

(7)

= λ′

1 − (k2 − p2)τ6 ≡ λ′′ . (8)

Of particular interest is the quark-symmetric limit, where
the two quark momenta are equal in magnitude, p2 = k2.
In this case, τ6 is also eliminated, i.e. λ′′

1(p2, q2, p2) =
λ′

1(p
2, q2, p2). Note that both the soft gluon (“asymmet-

ric”) and the quark reflection (“symmetric”) kinematics
discussed previously in [11,12] are specific instances of
this more general case. In fig. 1 we show λ′

1 as a func-
tion of the two remaining independent momentum invari-
ants. The data become quite noisy as q in particular is
increased, and also exhibit some ‘spikes’ and ‘troughs’
which at present we assume to be numerical noise and
lattice artefacts. There appears to be some difference in
the behaviour as a function of gluon momentum q and
quark momentum p, but in view of the noise this cannot
be further quantified.

By interpolating the points in fig. 1, we may reach the
totally symmetric point where p2 = k2 = q2. This kine-
matics has a history of being used to define a momentum
subtraction (MOM) scheme [16]. We show our results in
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Fig. 2. The unrenormalised form factor λ′

1 at the totally sym-
metric kinematics p2 = k2 = q2, as a function of the momen-
tum p. Also shown is the same form factor in the soft gluon
kinematics q2 = 0.

fig. 2, together with the data from the soft gluon point pre-
sented in [11,12]. Again we find a strong infrared enhance-
ment, comparable to that of the two other kinematics. The
qualitative behaviour of λ′

1 as a function of p2 is similar
in all three cases, with a tendency to drop more rapidly as
q2 increases, as one would expect if the vertex is infrared
enhanced in all momentum variables. It does not appear
possible to describe the three momentum directions with a
single common variable, i.e. λ′

1(p
2, q2, p2) = λ̄1(t

2(p2, q2)).
Note that all three data sets should approach the same
limit as p2 → 0.

Finally, figs. 3 and 4 show λ′′

1 in general kinematics,
for four different fixed values of q, as a function of the two
quark momenta p and k. We expect all form factors to be
symmetric in p2 and k2 (τ6 on its own is antisymmetric,
but is multiplied by p2 − k2), and this is also what the
figures show, within errors. The broadening of the data
surface as q grows is simply a reflection of the increase in
available phase space.

The same qualitiative features as were found in the
more specific kinematics, are reproduced here. At low q,
we see a clear infrared enhancement, which disappears as
q grows, reflecting the fact that at high momentum scales,
only the logarithmic behaviour (which is too weak to be
seen in these data) remains. At the same time, the level of
the surface sinks, which reflects the infrared enhancement
of λ′′

1 also as a function of gluon momentum.

4 Discussion and outlook

We have determined the leading component of the quark–
gluon vertex as a function of all three momentum invari-
ants p2, k2, q2. We find an infrared enhancement in all
momentum directions, although the quality of the cur-
rent data does not make a further quantification of this
feasible.

These results have been obtained on a rather small lat-
tice, and with a discretisation that gives rise to quite large

Fig. 3. The unrenormalised form factor λ′′

1 for gluon momen-
tum q = 0.555 GeV (top) and q = 0.873 GeV (bottom), as a
function of quark momenta p and k. The lower surfaces denote
the statistical uncertainties.

tree-level lattice artefacts which must be corrected for. We
therefore expect systematic errors to be quite large. To ob-
tain more reliable results, and to extend this study to the
full vertex structure at all kinematics, it would be desir-
able to employ an action which is known to have smaller
and more tractable tree-level artefacts. The Asqtad action
has been employed successfully in computing the quark
propagator [17], and unlike the SW action, only λ1 and
possibly λ2 are non-zero at tree level, so no tree-level cor-
rection will be needed for the remaining form factors. This
action is also computationally relatively cheap, making
large lattice volumes feasible. Another possibility is using
overlap fermions, which have the advantage of retaining
an exact chiral symmetry, which also protects all the odd
Dirac components of the vertex at tree level.

This work has been supported by the Australian Research
Council and the Irish Research Council for Science, Engineer-
ing and Technology. JIS is grateful for the hospitality of the
Centre for the Subatomic Structure of Matter, where part of
this work was carried out. We thank Patrick Bowman, Rein-
hard Alkofer, Christian Fischer and Craig Roberts for stimu-
lating discussions.
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Fig. 4. As fig. 3, but for gluon momentum q = 1.193 GeV and
2.321 GeV.

Appendix

We use the same notation as in [12], defining the lattice
momentum variables

Kµ(p) ≡
1

a
sin(pµa) ; (9)

Qµ(p) ≡
2

a
sin(pµa/2) ; (10)

Cµ(p) ≡ cos(pµa) . (11)

The tree-level vertex can be written

Γ
(0)
I,µ(p, q) = cm

[

i 6K(p)AV (p) + BV (p)
]

×

×
{

γµCµ(s) − iKµ(s) − i
csw

2
Cµ(q/2)

∑

ν

σµνKν(q)
}

×

×
[

i 6K(k)AV (k) + BV (k)
]

/DI(p)DI(k) , (12)

where k = p + q; s = P/2 = (p + k)/2; cm = 1 + bqma;
and AV , BV and DI are defined in [12]. The transverse
projection is given by

Γ
P (0)
I,µ (p, q) =

∑

ν

(

δµν −
Qµ(q)Qν(q)

Q2(q)

)

Γ
(0)
I,ν (p, q) (13)

Concentrating on the vector part of the vertex, we find
that

DI(p)DI(k)

4cm

tr
(

γµΓ
P (0)
I,µ (p, q)

)

= Cµ(s)

(

1 −
Q2

µ(q)

Q2(q)

)

×

×
[

AV (p)AV (k)K(p)·K(k) + BV (p)BV (k)
]

− 2AV (p)AV (k)Cµ(s)Kµ(p)Kµ(k)

+ AV (p)AV (k)
Qµ(q)

Q2(q)
×

×
∑

ν

Cν(s)Qν(q)
[

Kµ(p)Kν(k) + Kµ(k)Kν(p)
]

+ AV (p)BV (k)Kµ(s)Kµ(p) + AV (k)BV (p)Kµ(s)Kµ(k)

−
K(s) · Q(q)

Q2(q)

[

AV (p)BV (k)Kµ(p)

+ AV (k)BV (p)Kµ(k)
]

Qµ(q)

−
csw

2
Cµ(

q

2
)

{

AV (p)BV (k)
[

K(p)·K(q)−Kµ(p)Kµ(q)
]

− AV (k)BV (p)
[

K(k)·K(q)−Kµ(k)Kµ(q)
]

}

.

(14)

If we now choose to impose the condition pµ = qµ = 0,
(14) simplifies to

1

4
tr

(

γµΓ
P (0)
I,µ (p, q)

)

=
cm

DI(p)DI(k)
×

×

{

AV (p)AV (k)K(p)·K(k) + BV (p)BV (k)

−
csw

2

[

AV (p)BV (k)K(p)·K(q)

− AV (k)BV (p)K(k)·K(q)
]

}

.

(15)

The tree-level correction is carried out by dividing the
quantity obtained nonperturbatively from the lattice, cor-
responding to the lhs of (15), by the expression on the rhs
of (15).
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