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The simulation of QCD on dynamical (Nf = 2) anisotropic lattices is described. A method for
nonperturbative renormalisation of the parameters in the anisotropic gauge and quark actions is
presented. The precision with which this tuning can be carried out is discussed.

I. INTRODUCTION

The advantages of simulations with anisotropic lattices
are well understood and the method has been used for
precision determinations of an extensive range of quan-
tities in the quenched approximation to QCD [1–6]. In
general a 3+1 anisotropy is employed where the lattice
spacing in the temporal direction, at, is made fine whilst
keeping the spatial lattice spacing as relatively coarse.
The advantages of this approach are two-fold. The im-
proved resolution in the temporal direction means that
states whose signal to noise ratio falls rapidly can be more
reliably determined. The high computational cost of this
improvement is offset by savings in the coarse spatial di-
rections.

The isotropic lattice (whose spacing in the four space-
time directions is ax = ay = az = at ≡ a) regulates
QCD in a way that breaks the continuous Euclidean
symmetry down to the finite group of rotations of the
hypercube. Luckily the relevant operators that trans-
form trivially under these two groups are the same and
so there is no renormalisation of the speed of light on
the isotropic lattice. Once an explicitly anisotropic lat-
tice action is introduced with ax = ay = az ≡ as and
at 6= as, the rotational symmetry of the theory is the
cubic point group. For the gluons, there are now two
distinct operators not related by rotations at dimension
four:

{

Tr E2,Tr B2
}

; while for the quarks the set of

dimension four operators
{

ψ̄ /Dψ, mψ̄ψ
}

grows to a set

with three members:
{

ψ̄γiDiψ, ψ̄γ0D0ψ, mψ̄ψ
}

. As a
result, two new parameters appear in the action, and for
the continuum limit to represent QCD these parameters
must be determined such that a physical probe of the
vacuum at scales well below the cut-off appears to have
full Euclidean symmetry. The nonperturbative determi-
nation of these extra action parameters is the subject of
the present paper.

In quenched QCD the anisotropy in the gauge sec-
tor, ξg, and the quark sector, ξq, can be tuned inde-
pendently and post hoc using two separate criteria. The
precision and mass-dependence of the determination of
ξq was investigated for the action we use in Ref. [7]. It
was found that this parameter could be determined at
the percent level from the energy-momentum dispersion
relation. The mass dependence was found to be mild for
quark masses in the range ms ≤ mq ≤ mc when the tun-

ing was carried out at the strange quark mass, ms. In
Refs. [8, 9], a determination of the gluonic parameter was
made to similar precision.

We would like to use anisotropic lattices in simulations
with Nf = 2 for realistic phenomenologically-relevant
calculations. In dynamical QCD the tuning procedure
becomes more complicated because of the interplay be-
tween the quark and gluon sectors and the parameters
must be simultaneously determined. There are several
issues to resolve. Firstly, can this simultaneous tuning
be accomplished; secondly, to what precision is the renor-
malised anisotropy determined; and thirdly, what is the
mass-dependence of the renormalised anisotropy. Here
we will focus on the first two issues, and leave the ques-
tion of the mass dependence to a later study.

The paper is organised as follows. Section II gives the
details of the gauge and quark actions used in this investi-
gation. Section III describes the tuning methodology and
is followed in Section IV by the results for the values of
the tuned bare (input) parameters ξ0g and ξ0q . Section V
contains our conclusions and future plans.

II. THE ACTION AND PARAMETERS

We begin with a brief description of the anisotropic
action used in this study. The details of the tuning pro-
cedure described in Section III do not depend on the
specific action used. Further description of the action
can be found in [7] where the tuning for the same action
in the quenched approximation was discussed.

The gauge action is a two-plaquette Symanzik-
improved action [10] previously developed for high-
precision glueball studies and given by

SG =
β

ξ0g
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where Ωs and Ωt are spatial and temporal plaquettes.
ΩR

s and ΩR
t are 2 × 1 rectangles in the (i, j) and (i, t)

planes respectively. Ω2t
s is constructed from two spatial

plaquettes separated by a single temporal link. us and
ut are the mean spatial and temporal gauge link values
respectively. The action has leading discretisation errors
of O(a3

s, at, αsas).
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For fermions an action specifically designed for large
anisotropies is used. The usual Wilson term removes
doublers in the temporal direction whereas spatial dou-
blers are removed by the addition of a Hamber–Wu term.
The action has been described in detail in Ref. [7] and
has leading classical discretisation errors of O(atmq). In
terms of continuum operators, it can be written

S = ψ̄(/D +m0)ψ −
rat

2
ψ̄
(

D2
0

)

ψ + sa3
sψ̄
∑

i

D4
iψ, (2)

which highlights the different treatment of temporal and
spatial directions. r is the usual Wilson coefficient which
is applied in the temporal direction only in this action
and is set to unity. The analagous parameter in the spa-
tial directions is s, which parameterises a term that is
irrelevant in the continuum limit. A precise tuning of
this parameter is not necessary: in practice we choose
s = 1/8, so that the energy of a propagating quark at tree
level increases monotonically across the Brillouin zone.
Stout-link smearing [11] was used for the gauge fields
in the fermion matrix. Two stoutening iterations were
used, with a parameter ρ = 0.22. This was fixed for all
simulations, and chosen to approximately maximise the
expectation value of the spatial plaquette on the stout
links.

This study was carried out on 83 × 48 and 83 × 80
anisotropic lattices with a spatial lattice spacing as ≈
0.2fm and a target anisotropy ξ = 6. The bare sea quark
mass was set to atmq = −0.057 in all runs. A set of
gauge configurations, distributed across ten independent
Markov chains, was generated for each set of input pa-
rameters (ξ0g ,ξ0q ). Valence quark propagators were gener-
ated with the same mass as the sea quarks.

To determine the statistical uncertainties, 1000 boot-
strapped sets of configurations were taken and analysis
was done on these bootstrapped sets. Both point and all-
to-all propagators were used. Some preliminary results
using point propagators on 83×48 lattices were presented
in Ref. [12].

III. METHODOLOGY

The bare parameters, ξ0g and ξ0q , are renormalised by
demanding that physical probes exhibit euclidean sym-
metry. In principle, any physical quantity can be used;
however, it should be easily determined to high precision.
In this study we have used the sideways potential and the
pion energy-momentum dispersion relation for the gauge
and fermion sectors respectively.

The gauge anisotropy ξg is determined from the in-
terquark potential [8, 9]. The static source propagation is
chosen to be along a coarse direction allowing the sources
to be separated along both course and fine axes. The po-
tential is determined at the same physical distance for
these two cases. The input anisotropy is constrained so
that the two calculations yield the same value of the po-
tential, Vs(x) = Vt(t/ξ) for a target anisotropy ξ. For a

given input anisotropy ξ0g and target anisotropy ξ we can
determine the mismatch parameter cg = Vs(x)/Vt(t/ξ).
If x is in the régime where the potential is nearly linear,
the mismatch parameter is approximately related to the
actual gauge anisotropy, cg ≈ ξg/ξ.

The quark anisotropy can be determined from the
pseudoscalar dispersion relation. The anisotropy is in-
versely proportional to the square root of the slope
of the dispersion relation and demanding a relativis-
tic energy-momentum relation imposes a renormalisa-
tion condition on the bare parameter ξ0q . The ground
state energy E0 was determined for a range of momenta,
n2 ∈ {0, 1, 2, 3, 4, 5, 6}, where pn = 2πn

Las

and we aver-
age over equivalent momentum values. The two-point
correlator data were modelled with single exponentials
and a χ2-minimisation was used to determine the best-
fit ground state. These values were used to generate an
energy-momentum dispersion relation.

In the quenched approximation this procedure is rela-
tively easy since ξ0g and ξ0q can be determined indepen-
dently. For dynamical simulations it is no longer possible
to simply fix ξ0g and then tune ξ0q to a consistent value,

since changing ξ0q will affect the measurement of ξg. Ex-

plicitly, changing the value of ξ0q necessitates a regener-

ation of the background fields with the new value of ξ0
q

which in turn will change the measured anisotropy ξg of
the background fields. The solution to this problem is a
simultaneous two-dimensional tuning procedure [13].

A linear dependence on the parameters ξ0
g and ξ0g was

assumed for a small region. Three initial sets of configu-
rations were generated and the renormalised anisotropy
was determined. Planes were defined for both output val-
ues of ξg and ξq i.e. values α, β, γ were found to satisfy
ξa = αaξ

0
g + βaξ

0
q + γa for the renormalised anisotropy

ξa, a = g, q measured for each input (ξ0q , ξ
0
g). The inter-

section of these planes with the required (target) output
value yields the tuned point. The statistical uncertain-
ties were determined using bootstrap resampling, with a
common bootstrap ensemble used for all measurements.
When more than three simulation points were available
a plane was defined using a constrained-χ2 fit.

All observables were estimated using the Monte Carlo
method. An ensemble of 250 gauge field configurations
divided across 10 Markov chains was generated using the
Hybrid Monte Carlo (HMC) algorithm [14]. Approxi-
mately 5000 CPU hours were needed in order to generate
each set of configurations. The HMC algorithm can be
used for these simulations without modification. One ob-
servation serves to improve performance, however. HMC
adds a set of momentum variables conjugate to the gauge
fields, but each conjugate momentum can be added with
a different gaussian variance without changing the valid-
ity of the method. In isotropic simulations this is not a
useful property, and all momentum co-ordinates are cho-
sen to have unit variance. For the anisotropic lattice, the
temporal and spatial gauge fields have different interac-
tions, and different momenta become useful. If the HMC
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Run 1 2 3 4 5

β 1.51 1.528 1.514 1.544 1.522

ξ0

q 6.0 7.5 7.5 8.72 8.83

ξ0

g 8.0 7.0 8.0 6.65 7.44

TABLE I: Input parameters for the five dynamical simulations
performed in this tuning procedure. The bare quark mass is
atmq = −0.057 for all runs.

hamiltonian is

H =
∑

x

(

1

2µ2
t

Tr P 2
0 (x) +

3
∑

i=1

1

2
Tr P 2

i (x)

)

+ S[U ], (3)

an extra tunable parameter, µt (the variance of the
temporal link momenta), has been added to the algo-
rithm which can be used to optimise acceptance by the
Metropolis test. This is equivalent to using two distinct
integration step-sizes for the spatial and temporal degrees
of freedom. Some brief numerical experiments suggest
that a temporal leap-frog step-size smaller by a factor ξ
is close to optimal, and this is borne out by considera-
tions of free field theory.

IV. RESULTS

The input anisotropy parameters used are given in Ta-
ble I. We started by choosing three points (Runs 1–3)
in the (ξ0g , ξ

0
q ) plane, and generated configurations at two

further points as a result of the tuning procedure. The
final tuning was performed on 83×80 lattices, using data
from runs 1, 4 and 5 as these spanned the largest area of
the plane.

A. Interquark Potential

The gluon anisotropy is determined from the static
quark potential at a selected distance R. In practice this
is done by determining the effective energy for the static
quark–antiquark configuration at separation R at some
time T . It is then important to choose values for R and
T where the potential is well determined and the value
obtained for cg is stable with respect to small variations
in R and T . The same values for R and T must then be
used for all runs in order to have a consistent procedure.

Table II shows cg for different R and T , on the 83 × 80
lattices. We see that the values are generally quite con-
sistent for each run. Looking more closely at the effective
potential for each R as a function of T , we find that it has
not yet reached a plateau at T = 1, while the value for
T = 3 is consistent within errors with that for T = 2. We
choose (T,R) = (2, 3) as our optimal parameters, since
this yields reasonably small statistical errors, while R is
large enough to be in the linear régime.

cg = Vs(x)/Vt(t/ξ) at different (T,R)

Run (1,3) (1,4) (2,3) (2,4) (3,3) (3,4)

1 0.972(2) 0.959(3) 0.972(7) 0.965(13) 0.991(25) 1.13(8)

4 0.951(2) 0.941(4) 0.945(8) 0.926(18) 0.942(34) 0.89(9)

5 0.994(2) 0.990(3) 0.991(7) 0.998(13) 0.965(25) 1.01(7)

TABLE II: The gluon anisotropy parameter cg for different
separations, R and times, T . The final results were deter-
mined from data at T = 2 and R = 3.

B. Dispersion relations

Pseudoscalar meson correlators were computed using
traditional point propagators as well as all-to-all propa-
gators [15] with time and colour dilution and no eigen-
vectors.

To determine optimal fit ranges for exponential fits
to the correlator data, sliding window (tmin) plots were
used: the correlation function was fitted in a range from
tmin to tmax where tmax was fixed to the largest value
compatible with a good fit, and tmin was varied. An ex-
ample of such a plot is given in Fig. 1. The fit range was
chosen so the fit would be stable with respect to small
variations in tmin. The same fit ranges and smearing pa-
rameters were chosen for all simulation points in order
to obtain a consistent determination of the dispersion re-
lation. The final fit ranges are given in Table III. In
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FIG. 1: A typical tmin plot, showing the energy for momentum
n2 = 1 on run 1, 83

× 80 lattices from fits to time ranges
tmax = 40 for various tmin. A stable ground state energy
determination, with a good χ2, is achieved for 22 ≤ tmin ≤ 30.

our initial analysis data from a 83 × 48 lattice were used.
However, a reliable extraction of the ground state energy
proved difficult. In particular, it was observed that the
energy either did not reach a plateau until near the end
of the lattice or did not plateau at all. To resolve this
problem the simulation was repeated on a longer, 83×80
lattice. An immediate improvement in the quality of the
fits was observed. The ground state energy was deter-
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n2 tmin tmax

0 25 40

1 24 40

2 21 40

3 19 40

TABLE III: Fit ranges.

mined from fits over at least 15 timeslices and was stable
with respect to changes in tmin. The effect of the longer
lattice is illustrated in Figure 2. This plot also com-
pares simulations using point and all-to-all propagators.
The all-to-all propagators lead to improved precision in
the fitted energies. The central values are in agreement
with the energies determined using point propagators but
the statistical error is smaller. The final tuned parame-
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FIG. 2: A comparison of the dispersion relations determined
from an 83

× 48 lattice and an 83
× 80 lattice. The solid

lines are the best fits and the dotted lines are the 68% confi-
dence levels. The figure also shows a comparison of all-to-all
propagators and point propagators on the same (longer) lat-
tice. The plot shows that the ground state energies have not
reached a plateau on the shorter lattice. On the longer lattice
the all-to-all and point data agree, while higher precision is
achieved with all-to-all propagators.

ters were determined using all-to-all propagators on the
83 × 80 lattices. We find consistently good fits for all
runs for the first four momenta considered (n2 = 0, 1, 2
and 3). The renormalised quark anisotropy is therefore
determined from fits to these momenta. Figure 3 shows
the pseudoscalar dispersion relations for Runs 1, 4 and 5
which are used to determine the tuned point.

C. Plane fits

Table IV shows the output anisotropies determined on
the 83 × 48 and 83 × 80 lattices for the five simulation
points. As a check on the stability of our tuning proce-
dure, we have repeated the calculation using different
values of R and T in the determination of the gluon
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Run 4
Run 5

FIG. 3: Dispersion relations from runs 1, 4 and 5 on 83
× 80

lattices using all-to-all propagators. The solid line is a fit
to the four points and the dotted lines are the 68% confi-
dence levels. The quality of all three fits is very good with
χ2/Nd.f. = 2.0/2, 1.9/2, 2.0/2 for runs 1,4 and 5 respectively.

83
× 48 83

× 80

Run cg ξq cg ξq

1 0.991(3) 4.98(6) 0.972(7) 5.54(6)

2 0.986(3) 6.27(4)

3 1.001(3) 5.18(6)

4 0.985(5) 6.47(5) 0.945(8) 7.08(5)

5 0.995(3) 5.80(5) 0.991(7) 6.95(8)

TABLE IV: Table of measured output anisotropies at each of
the run points. The errors are statistical only.

anisotropy. The results are shown in Fig. 4. The plot
shows that the anisotropies are insensitive to a change in
R but that increasing the value of T from two to three
leads to large statistical uncertainty, particularly in the
gluon anistropy. For these reasons we choose R = 3 and
T = 2 for our analysis.

D. Simulation with tuned parameters

Applying the plane fit procedure of Sec. IVC to a sub-
set of configurations of Runs 1, 4 and 5 we obtained pre-

liminary, tuned parameters ξ0g = 8.06+7
−7, ξ

0
q = 7.52+21

−15.
250 configurations were generated with these parameters,
and cg and ξq determined using the same values for R,
T and fit ranges as in Sections IVA and IVB. We find
cg = 0.983(6), ξq = 6.21(9). We see that both quark and
gluon anisotropies are within 3% of the target value of 6.
Although the anisotropies are not equal within statistical
errors, we note that there are still systematic uncertain-
ties at the percent level, in particular for ξg, as shown in
Table II. For example, if we choose R = 3, T = 3 we find
cg = 1.01(2).

We repeated the plane fit procedure including the new
information from Run 6. Figure 5 shows the resulting
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FIG. 4: Tuned values of input parameters (ξ0

g , ξ0

q ) determined
from the plane fit procedure on the 83

× 80 lattice. The plots
show the results for different values of R and T used to de-
termine the gluon anisotropy. Each point corresponds to one
bootstrap sample.
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FIG. 5: As in Fig 4. The figure shows the results from a
plane fit using parameters from runs 1, 4, 5 and 6 (marked
with an ×). The big red (gray) cross at (ξ0

g , ξ0

q ) = (8.42, 7.43)
indicates the result of the best fit.

scatterplot determined on the 83 × 80 lattice from runs
1, 4, 5 and 6. The intersection points shift in a direction
to move cg and ξq even closer to the target anisotropy. In
order to get a rough idea of the physical scales of these
lattices, we compute the pion mass, the rho mass and
the string tension. We find atmπ = 0.066(1) and atmρ =
0.120(5), which gives mπ/mρ = 0.54, while a crude mea-
surement of the string tension gives as = 0.2fm. A more
precise determination of the lattice spacing will be ob-
tained from the 1S–1P splitting in charmonium [16].

V. CONCLUSIONS

We have performed a first simulation of 2-flavour QCD
with improved Wilson fermions on anisotropic lattices,
with both quark and gluon anisotropies tuned to ξ = 6
[20]. The tuning was based on a linear Ansatz for the de-
pendence of renormalised anisotropies on bare anisotropy
parameters in a region of parameter space. The results
from the final run demonstrate that the tuning proce-
dure, described in Sec. III, works satisfactorily.

The final, tuned point was found to lie marginally out-
side the triangle used for the plane fit procedure, so the
end result was based on an extrapolation rather than
an interpolation. This increases both the statistical and
systematic uncertainties of the determination. To avoid
this problem, it is important to choose a large enough
triangle to start with, so that successive parameter de-
terminations are always based on interpolations.

We also found that the original (83 × 48) lattices used
were too short in the time direction to allow a reliable de-
termination of ground state energies, which were found
to be systematically high, in particular for higher mo-
menta. This led in turn to systematically high values for
ξq. The adoption of lattices with longer time extent was
a crucial step in the procedure. As Table III shows, the
optimal fit ranges were generally found to be beyond the
range of the shorter lattice.

We were able to determine the tuned parameters
(ξ0g , ξ

0
g) with a statistical uncertainty of 1% and 3% re-

spectively from our ensembles of 250 configurations. In
addition, there are three main sources of systematic un-
certainties:

1. The R and T values used in the determination of
the sideways potential, and the fit ranges used in
the determination of the pseudoscalar dispersion re-
lation. Since the fit ranges are chosen to give stable
ground state energies, we can safely assume that
the latter is a small effect. The effect of varying
R is also small, as shown in Fig. 4. There may
be a systematic error arising from the choice of T ,
but this is obscured by the larger statistical uncer-
tainties in the T = 3 data, particularly in the ξ0

g

direction.

2. Lattice sizes. The pion dispersion relation is un-
likely to be strongly affected by the finite lattice
volume, but the static quark potential may contain
finite volume errors which affect our results. We
will be performing simulations at the tuned point
on larger volumes, which will show whether this is
a significant issue.

3. Nonlinearities in the dependence of (ξg, ξq) on
(ξ0g , ξ

0
q ). Our final fit to four points shows no ev-

idence of any significant nonlinearity. If this were
found to be a serious issue in any future simula-
tion, a two-step procedure may be adopted where



6

a smaller triangle centred on the preliminary tuned
point is used in the second step.

We have yet to verify that we get the same quark
anisotropy from other hadronic probes, for example the
vector meson. Differences in the anisotropies can arise
from lattice artefacts and can thus be considered part of
the finite lattice spacing errors.

These lattices will in the future be employed for a wide
range of physics investigations, including charm physics
and heavy exotics [16], spectral functions at high temper-
ature [17], static–light mesons and baryons [18], strong
decays and flavour singlets including glueballs. These
studies will be carried out on larger lattice volumes. Sim-
ulations on finer lattices will necessitate a new nonper-
turbative tuning process like the one performed here; this

will be desirable in the longer term.
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