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Abstract

An interesting question about planar graphs is whether they admit plane embeddings in which
every bounded face is convex. Stein [10] gave as a necessary and sufficient condition that every
face boundary be a simple cycle and every two bounded faces meet in a connected set, with an
extra condition about the number of vertices on the outer face. Tutte [12] gave a similar charac-
terisation, and later [13] showed that every nodally 3-connected planar graph admits a barycentric
embedding. Floater [4] generalised this to convex combination mappings of triangulated graphs.
White [14] showed that a chord-free triangulated graph is nodally 3-connected and showed that
Tutte’s result applies to all triangulated graphs.

We extend Tutte’s results beyond the class of triangulated graphs.
We show that a biconnected plane-embedded graph is nodally 3-connected if and only if the

intersection of any two faces, bounded or otherwise, is connected.
If a plane embedded graph admits a convex embedding, then every face boundary is a simple

cycle, the intersection of every two faces is connected, and there are no inverted subgraphs (as
defined in the paper). Such graphs we call admissible. The idea of admissible embedded graph is
more useful than Stein’s criterion [10] and simpler than Tutte’s [12].

We show that every admissible plane embedded graph admits a barycentric embedding.
It follows immediately that a plane embedded graph has a convex embedding if and only if

every barycentric map is an embedding.
Finally we show that when a plane embedded graph admits a barycentric embedding, the two

embeddings are isotopic.

1 Criterion for nodally 3-connected planar graphs
We follow the usual definitions of graphs, paths, cycles, connectivity, plane embeddings, and planar
graphs: [6] is a useful source on the subject. The accepted definition of graph does not allow self-
loops nor multiple edges nor infinite sets of vertices, so it is a finite simple graph in Tutte’s language
[13], and a graph G can be specified as a pair (V, E) giving its vertices and edges. E is a set of
unordered pairs of distinct vertices in V .
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Given G = (V, E), when u is considered to be a vertex, u ∈ G means u ∈ V , and when e is
considered to be an edge, e ∈ G means e ∈ E.

The degree of a vertex is the number of edges incident to it, or the number of neighbours it has.
The word ‘node’ is reserved in [13] to denote vertices whose degree 6= 2.

A path (graph) is either a trivial graph or one in which two vertices have degree 1 and all others
have degree 2. A simple cycle (graph) is a connected nonempty graph all of whose vertices have
degree 2.

If Gi = (Vi, Ei) are two graphs then we define

G1 ∩ G2 = (V1 ∩ V2, E1 ∩ E2) and G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2).

If G = (V, E) and S ⊆ V then G\S = (V ′, E ′) where

V ′ = V \S and E ′ = {{u, v} ∈ E : u /∈ S and v /∈ S}.

We extend this notation loosely but with little risk of confusion: if x is a vertex then G\x = G\{x},
and if H is a subgraph, or a path, or a cycle, then G\H is the same as G\S where S is the set of
vertices in H .

A graph G is connected if every two vertices are connected by a path in G; it is biconnected if it
is connected and for every u ∈ G, G\u is connected. G is triconnected if it is biconnected and for
any u, v ∈ G, G\{u, v} is connected.

This paper is concerned with nodal 3-connectivity (defined in 1.23), which requires biconnectivity
but is weaker than triconnectivity.

We assume the usual definitions of plane embeddings which map vertices to points in R
2 and

edges to curve-segments with the usual conditions about intersection. ‘G is planar’ means that a
plane embedding exists. Generally a plane embedding takes edges to curve-segments. If these are all
straight line-segments we have a straight-edge embedding.

Of course a straight-edge embedding is fully determined by the placement of the vertices. We
also note

(1.1) Proposition A graph is planar if and only if it admits a straight-edge embedding [3,8,9].

(1.2) Topology in two dimensions. See [7,11]. We assume the basic notions of open and closed
sets, connectedness, and path-connectedness. If x ∈ R

2 and ε > 0 then the ε-neighbourhood of x is

B(x, ε) = {y ∈ R
2 : |y − x| < ε}.

If S is any subset of R
2 then its closure, written S, is

S = {x ∈ R
2 : (∀ε > 0)B(x, ε) ∩ S 6= ∅},

and its boundary ∂S is
∂S = S ∩ R2\S.

If S is open then S ∩ ∂S = ∅. We are not concerned with connectedness, but with the rather stronger
notion of path-connectedness:1 a set S is path-connected if for any x, y ∈ S there exists a path from
x to y, a continuous map π : [0, 1] → S such that π(0) = x and π(1) = y.

1A topological space S is disconnected if S = A ∪ B where A and B are disjoint and nonempty and and open.
Otherwise S is connected. Usually, or at least in this paper, a set is connected if and only if it is path-connected.
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(1.3) Definition Given a plane embedding of a graph G, by abuse of notation let G also denote the
union of points and curve-segments constituting its image in the plane. This is a closed and bounded
set of points in the plane.

A face of G is a path-connected component of R
2\G.

All faces except one are bounded. The unbounded face is called the external face or outer face.
Vertices on the external face are called external; the others are internal.

Faces are open sets in R
2.

One often speaks of a planar graph G with a specific plane embedding of G in mind, so it really
means a plane embedded graph. A very significant difference is that a plane embedded graph has
a definite external face, whereas there is no notion of external face, nor perhaps even of face, in a
planar graph without a prescribed embedding. Figure 2 shows a planar graph with two quite different
embeddings.

(1.4) Proposition Let x and y be two vertices in an plane embedded graph. Then they are in the
same component of G as a graph if and only if they are in the same (path-)component of G as a
topological subspace of R

2. (Proof easy.)

(1.5) Definition Let e be an embedded edge of a plane-embedded graph, so it is a curve-segment
joining two points x and y. The relative interior of e is the point-set

interior(e) = e\{x, y}.

The following proposition applies to straight-edge embeddings for the sake of simplicity. Ref-
erence to straight-edge embeddings in this paper is generally to make proofs easier, even when the
proofs are omitted. The results generally hold without assuming the edges are straight. The assump-
tion simplifies the proof of the following

(1.6) Proposition (i) If F is a face of a straight-edge embedded graph G, then ∂F is a subgraph of
G, and (ii) G =

⋃

F ∂F . (Proof omitted.)

(1.7) Jordan curves. A Jordan curve is a subset of R
2 homeomorphic to the unit circle S1. That

is, J is a Jordan curve iff there exists a continuous injective map h : S1 → R
2 whose range is the

subset J . Part (i) of Proposition 1.8 below states the Jordan Curve Theorem, which is a difficult
result. Proofs usually involve algebraic topology [5], but less advanced methods can be used [7,11].
Actually for our purposes we need only consider polygonal Jordan curves, which makes the proofs
much easier. Parts (ii) and (iii) are elementary.

(1.8) Proposition (i) (Jordan Curve Theorem [5,7,11]) If J is a Jordan curve then R
2\J is the

union of two open, path-connected components, interior(J) and exterior(J), interior(J), the in-
side, is bounded, and exterior(J), the outside or exterior, is unbounded, and ∂(interior(J)) =
∂(exterior(J)) = J.

(ii) If S is any path-connected open set such that ∂S = J , then S = interior(J) or S =
exterior(J).

(iii) If G is a plane embedded graph and C is a nontrivial simple cycle in G, then C is a Jordan
curve in R

2.
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Figure 1: Delaunay triangulation of 20 points and barycentric embedding of the same graph with the
same bounding polygon.

(1.9) Edges inside and outside Jordan curves. If J is a Jordan curve and e = {u, v} an edge of
an embedded graph, where e doesn’t meet J except perhaps at u or v, then the relative interior of e
(Definition 1.5) satisfies

interior(e) ⊆ interior(C) or interior(e) ⊆ exterior(C).

In this case we say e is inside or outside J as appropriate. We need a certain refinement of the
Jordan curve theorem:

(1.10) Proposition (Jordan-Schönflies Theorem). Let D1 be the unit disc in R
2 and S1 = ∂D1,

the unit circle. Then if J is a Jordan curve (a homeomorphic image of ∂D1), the homeomorphism of
∂D1 extends to a homeomorphism between D1 and interior(J).

More generally, if J and J ′ are two Jordan curves then the homeomorphism between J and J ′

extends to a homeomorphism between R
2 and itself taking interior(J) to interior(J ′) and exterior(J)

to exterior(J ′). (See [7].)

(1.11) Convex sets in the plane. We note the basic definitions and results (see [1]). A set A is
convex if for any two points a, b ∈ A, the line-segment ab is entirely contained in A. Suppose S is a
finite set of points in the plane. The convex hull H(S) is the smallest convex set containing S, that
is, the intersection of all convex sets containing S. It is also the intersection of all closed half-planes
containing S. Either H(S) is empty, or a point, or a line-segment, or it is bounded by a convex
polygon whose corners are in S. In the latter case H(S) is the intersection of those closed half-planes
containing S whose boundaries contain sides of S.

(1.12) Proposition If A is convex then its closure A is convex.

(1.13) Definition A convex embedding of a planar graph G is a straight-edge embedding in which
all bounded faces are convex, and the outer boundary is a simple polygon.

Let G be a plane embedded graph whose external boundary is a simple cycle C. Another map
f from its vertices to points in the plane is barycentric if the external vertices are mapped (in cyclic
order) to the corners of a convex polygon, and for every internal vertex u, that is, for every vertex
u /∈ C,

f(u) =
1

k

k
∑

i=1

f(vi), (1.14)
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where vi, 1 ≤ i ≤ k, are the vertices adjacent to u.
If a barycentric map determines a straight-edge embedding of G then it is called a barycentric

embedding.

For example, Figure 1 shows a Delaunay triangulation with 20 vertices, and a barycentric embed-
ding of the same graph.

The definition of convex embedding does not exclude the possibility that several edges on a
face boundary be collinear. Tutte’s definition of convex embedding [12] requires that the external
boundary be a convex polygon, which would rule out most triangulated graphs. Hence we require
that it be a simple polygon, though not necessarily convex.

In a barycentric map, every internal vertex is the average, centroid, or barycentre, of its neigh-
bours. Floater [4] generalises this to a convex combination map where each vertex is a weighted
average of its neighbours, and shows that Tutte’s results generalise to convex combination maps of
triangulated graphs.

(1.15) Identifying x with f(x). It is natural to identify a plane embedding of a graph with the graph
itself. Strictly speaking, there is a graph G and a map of its vertices and edge to points and curves in
the plane, but it is generally natural to identify a vertex x with the point f(x) and an edge e = {x, y}
with the curve f(e) joining f(x) to f(y). Generally we do not distinguish the two. In Lemmas 1.16
and 1.19 the distinction is made because the maps are not necessarily injective.

(1.16) Lemma If f is a barycentric map taking the external boundary of a connected plane embed-
ded graph G to a convex polygon P , then all vertices and edges are mapped by f onto or inside
P .

Proof. More explicitly, let D be the closed convex set

D = interior(P ).

We need to show that the image of every edge and vertex is in D.
Since D is convex, it is enough to show that for every vertex u, f(u) ∈ D. External vertices are

mapped to corners of P, hence into D.
Suppose there is an internal vertex u such that f(u) /∈ D. One of the half-planes defining D does

not contain f(u). W.l.o.g. the half-plane and D are bounded above by the x-axis. Again w.l.o.g. f(u)
has y-coordinate h, where h is maximal.

Since G is connected, there is a path in G from u to an external vertex w. For at least one of
the vertices in this path, w.l.o.g. u itself, f(u) has y-coordinate h but f(v) has y-coordinate < h,
where v is the node following u in the path. Then f(u) has y-coordinate h > 0, so u is an internal
vertex; for all its neighbours z, f(z) has y-coordinate ≤ h; and for at least one neighbour v, f(v) has
y-coordinate < h. This violates Equation 1.14, and f is not barycentric, a contradiction. Q.E.D.

(1.17) Lemma If a barycentric map f is an embedding, then it is convex.

Sketch proof. (Here we identify vertices x with points f(x), etcetera, as in Paragraph 1.15.)
Otherwise there exists a bounded face F with a concave corner x, meaning that there is an open

nonempty line-segment I with I\{x} ⊆ F and the endpoints y, z of I in ∂F .
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If x is an external vertex then it is a corner of the polygon P : let D = interior(P ). Since x is
a corner of D, y and z cannot both belong to D, which contradicts Lemma 1.16, since they are on
edges of G.

If x is an internal vertex, let L be the line containing I . Since I\{x} ⊆ F , all neighbours vj of
x are on the same side of L, since a small open strip incident to I near x is interior to F and meets
no edge incident to x. Their barycentre is also on that side of L; since x ∈ L, their barycentre differs
from x, a contradiction. Q.E.D.

(1.18) Matrix defining a barycentric map. Given a plane embedded graph G whose external
boundary is a simple cycle C, barycentric maps are easily specified using a matrix A. Suppose that G
has m vertices v1, . . . , vm, the first n of them belonging to C, the last m − n being internal vertices,
and the coordinates of their images are xi, yi, 1 ≤ i ≤ m. Any straight-edge embedding is then
equivalent to a column vector of height 2m.

Let A be the m × m matrix whose first n rows are identical with those of the identity matrix,
and whose last m − n rows express the barycentric mapping equations (1.14). Equivalently, for
n < i ≤ m, let

aij =











deg(vi) if i = j,

−1 if vj is a neighbour of vi,

0 otherwise.

Equation 1.14 can be written in the form
∑

aijxj = 0 and
∑

aijyj = 0.

For any barycentric map f , let Bx be the column vector of height m whose first n entries give the
x-coordinates of the corners of P and whose other entries are zero; similarly let By specify the y-
coordinates. Then f is equivalent to column vectors X and Y satisfying

AX = Bx; AY = By.

(1.19) Lemma If G is connected then the above matrix A is invertible.
If G is a connected plane embedded graph whose external boundary is a simple cycle, and whose

external vertices are mapped in cyclic order to the corners of a convex polygon, then this map extends
to a unique barycentric map of G.

Proof. According to Tutte [13], the determinant of the matrix A is the number of spanning trees
of a connected graph related to G [2], hence A is invertible. White [14] gives an elementary, and
very elegant, argument that A is invertible. His argument may be paraphrased as follows. Suppose
X = [xi](1 ≤ i ≤ m) and AX = O. We can interpret X as a map taking vertices to points on the
real line R, not of course an embedding. All external vertices map to 0. If not all xi are zero, we can
follow a path from an external vertex vk to an internal vertex vi where |xi| is maximal. Note xk = 0.
Among all the paths from vk to vi, choose one with as few vertices as possible.

For all neighbours vj of vi, |xj| ≤ |xi|, and for at least one neighbour vj — the second-last vertex
on the path — |xj| < |xi|. Then

|xi| >
1

deg(vi)

∑

|xj|
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where the sum is over all neighbours vj of vi, so

deg(vi)xi −
∑

xj 6= 0,

contradicting one of the equations
∑

aijxj = 0.
Hence X = O, the nullspace of A is trivial, and A is invertible.
Since A is invertible, existence and uniqueness of the barycentric map is immediate. Q.E.D.

(1.20) Lemma If G is a connected plane embedded graph bounded by a simple cycle C and f is
a barycentric map taking C onto a convex polygon P , then (i) every internal vertex is a convex
combination of corners of P .

Moreover, (ii) the internal vertices are all in the convex hull of those corners of P which corre-
spond to nodes (vertices of degree 6= 2) belonging to C.

Proof. (i) Since the bottom m − n entries of Bx and By are zero, A−1Bx and A−1By are linear
combinations of the x- and y- coordinates of corners of P .

The coefficients are the same in the x- and y-coordinates, so if one of these linear combinations
is not convex then there exists an internal vertex x such that f(x) is not on or inside the polygon P ,
contradicting Lemma 1.16.

(ii) Suppose z is a vertex on C which is not a node, so it is adjacent to no internal vertex in G.
Consequently the equations 1.14 never mention z and in the matrix A the column corresponding to
z, the j-th column, say, has 1 in the j-th position and 0 everywhere else. That is, the j-th column of
A equals the j-th column, call it Ij , of the m × m identity matrix. Therefore AIj = Ij. Therefore
A−1Ij = Ij . That is, the j-th column of A−1 has zeroes in the bottom m − n rows, so the bottom
m−n entries of A−1Bx and A−1By do not involve the j-th elements of Bx and By, that is, all internal
vertices are convex combinations of polygon corners not including f(z). Q.E.D.

(1.21) Corollary Let G be a connected plane embedded graph whose external boundary is a simple
cycle C, and let f be a barycentric map mapping C onto the boundary of a convex polygon P .

For any internal vertex x, let E be the set of paths in G beginning at x whose last vertices may
belong to C but whose other vertices are internal.

Let R be the set of vertices in C which are endpoints of paths in E. Then f(x) is a convex
combination of the corners

{f(y) : y ∈ R}.

Proof. Let H be the subgraph of G containing all vertices and edges in all paths in E.
If y ∈ H then y is the endpoint of a path in E, and by definition of H every vertex and edge on

this path is in H. Therefore H is connected.
Clearly R = H∩C. Since G is connected, there is a path from x to some vertex in C. The shortest

initial segment reaching C is a path in E which ends in R = H ∩ C, so H ∩ C is nonempty. Also C
is connected. Therefore H ∪ C is connected. Call this graph G′. It is a connected plane embedded
subgraph of G whose external boundary is C. Thus its internal vertices are those in H\C.

Let f ′ be the restriction of the map f to the vertices in G′.
If y is an internal vertex in G′ then it is an internal vertex in H and there is a path from x to y in

E, and it does not meet C. If z is a neighbour of y in G, then this path can be extended to a path from
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Figure 2: a graph with different plane embeddings. Also, the barycentric map is not an embedding.

x to z in E, so z ∈ G′. Therefore every neighbour of y in G is a neighbour in G′. The converse holds
since G′ is a subgraph, and for every internal vertex y in G′,

f ′(y) =
1

`

∑

f ′(yj) (1.22)

where yj are the ` neighbours of y in G′. That is, f ′ is a (the unique) barycentric map of G′ taking C
onto P .

The nodes in C ∩ G′ are precisely the vertices in R. Therefore for every internal node y of G′,
f ′(y) is a convex combination of {f ′(z) : z ∈ R} (Lemma 1.20). Since f ′ is the restriction of f to
G′, f(y) is a convex combination of {f(z) : z ∈ R}. Q.E.D.

(1.23) Definition A graph G is nodally 3-connected if it is biconnected and for every two subgraphs
H and K of G, if G = H ∪ K and H ∩ K consists of just two vertices (and no edges), then H or K
is a simple path.

(1.24) Proposition Every triconnected graph is nodally 3-connected, and every nodally 3-connected
graph with no vertices of degree 2 is triconnected. (Proof omitted.)

We depend heavily on Tutte’s 1963 paper [13]. His paper is concerned directly with the graph
rather than a particular embedding of the graph. Hence the notion of a peripheral polygon, which is
any cycle of the graph which can occur as the boundary of a face in some plane embedding.

(1.25) Definition A periperhal polygon in a connected graph G is a simple cycle C such that G\C
is connected.

(1.26) Proposition (Tutte [13] (1963)). If G is a nodally 3-connected planar graph and C is a
peripheral polygon, and the vertices of C are mapped (in cyclic order) onto the corners of a convex
polygon P , then that map extends to a unique barycentric map which is a convex, straight-edge
embedding of G.

It is easy to give a counterexample when G is not nodally 3-connected. For example, in Figure 2,
any barycentric map must map the inner square face to a line-segment. The figure illustrates different
plane embeddings of the same graph, which is not nodally 3-connected.

Theorem 1.33 below shows that, except regarding the external face, a planar graph is nodally
3-connected if and only if barycentric maps are plane embeddings.

Lemmas 1.27 and 1.29 below are fairly obvious and well-known, but still worth mentioning.
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(1.27) Lemma A plane (straight-line) embedded graph G is connected if and only if for every face
F , ∂F is (path-)connected.

Sketch proof. If G is disconnected, then there exists a Jordan curve J intersecting no edge of
G and separating two subgraphs H and H ′. Suppose H is inside J and H ′ outside. The curve J is
entirely contained in a face F of G. Take any path in the plane from H to H ′. It begins at a point
x ∈ H , say, meets J first at a point y0, say, leaves J for the last time at a point y1, say (probably
y0 = y1), and ends at a point z ∈ H ′. Note x /∈ F, J ⊆ F , and y /∈ F . Between x and y0 it must
cross ∂F inside J , and between y1 and z it must cross ∂F outside J . Therefore ∂F intersects the
inside and outside of J but not J itself, and is not path-connected.

Conversely, if ∂F is disconnected then there is a Jordan curve separating parts of it, and this curve
separates subgraphs of G. Q.E.D.

(1.28) Lemma Let G be a straight-edge embedded plane graph in which all face boundaries are
simple cycles, and u any vertex of G.

Let x0, . . . , xk be a list of neighbours of u consecutive in anticlockwise order; possibly x0 = xk

but otherwise they are distinct. For 1 ≤ j ≤ k let Fj be the face occurring between the edges
(line-segments) uxj−1 and uxj in the anticlockwise sense. (The faces Fj are not necessarily distinct.)

Let B be the subgraph formed by the edges and vertices in
⋃

j ∂Fj .
Then any two vertices in the list xj are joined by a path in B\u. See Figure 3.

Proof. B\u is also the subgraph consisting of all vertices and edges in
⋃

j(∂Fj\u). Since each
face is a simple cycle, ∂Fj\u is a path joining xj−1 to xj . Thus B\u contains paths joining all these
vertices xj . Q.E.D.

(1.29) Lemma A plane straight-edge embedded graph G is biconnected if and only if the graph
consists of a single vertex or a single edge or the boundary of every face is a simple cycle.

Sketch proof. (i): If. A single vertex or edge is biconnected, so we assume that the boundary of
every face is a simple cycle. G is connected (Lemma 1.27).

For any vertex x and all neighbours xj of x there exist paths connecting these neighbours which
avoid x (Lemma 1.28). Therefore all these neighbours are in the same component of G\x, and it
follows that G\x is connected. Hence G is biconnected.

9



(ii): Only if. Suppose that G is connected, not a single vertex or edge, and there exists a face F
whose boundary is not a simple cycle (graph): ∂F is connected but contains a node x whose degree
(in ∂F , not in G) differs from 2.

If the degree of x in F is zero, x is an isolated vertex and G is disconnected. If the degree 1
then x would have only one incident edge xy in G, and since G is not a single edge, G\y would be
disconnected and G not biconnected. We may assume that the degree of x in F is at least 3.

Letting x1, . . . , xk be the neighbours of x in anticlockwise order around x, at least three of these
are in ∂F , hence there exist 1 ≤ i < j ≤ k such that xi−1, xi, xj−1, and xj all belong to F (interpret
x0 as xk and xk+1 as x1). Take a point u close to x in the triangle xi−1xxi and a point v close to x in the
triangle xjxxj+1. Both of these triangles are part of F so there is a polygonal path connecting them
inside F . This path can be made disjoint from the line-segments ux and vx, so we get a polygonal
Jordan curve J meeting G at x alone and otherwise contained in F .

In a sufficiently small neighbourhood of x, the inside and outside of J are on opposite sides of
the polygonal path uxv, and the line-segments xi−1x and xix meet x, and J , from opposite sides.
Since J meets G only at x, it follows that xi−1 is inside J and xi outside, or vice-versa. Any path in
G joining these two vertices must intersect the Jordan curve J , hence must pass through x; G\x is
disconnected and G is not biconnected. Q.E.D.

(1.30) Witnesses for a non-nodally 3-connected graph. Suppose G is not nodally 3-connected.
We say that H, K, u, v are witnesses if H ∩ K contains just two vertices u, v and no edge, neither H
nor K are path graphs, and neither H nor K equals G.

(1.31) Lemma (i) Given witnesses H, K, u, v, if L is a path in G connecting H\K to K\H , then L
contains three consecutive vertices r, s, t where {r, s} ∈ H , and {s, t} ∈ K, r ∈ H\K, t ∈ K\H ,
and s ∈ H ∩ K, so s = u or s = v.

(ii) Any path (respectively, cycle) which avoids u and v except perhaps at its endpoints (respec-
tively, perhaps once), is entirely in H or in K.

Proof. (i) The first vertex in L is in H\K, so the first edge is in H . Similarly the last edge is in K.
Therefore there exist three consecutive vertices r, s, t on the path where {r, s} ∈ H and {s, t} ∈ K.
Then s ∈ H ∩ K, so s = u or s = v and s is incident to edges from H and from K.

(ii) Now let P be a path which avoids u and v except perhaps at its endpoints. This includes the
possibility of a cycle, viewed as a path which begins and ends at the same vertex w: we allow w, but
no other vertex on the cycle, to equal u or v.

If the path is not entirely in H or in K, then it contains a triple r, s, t where s = u or s = v, a
contradiction. Q.E.D.

The proof of Theorem 1.33 is long. To lighten it somewhat, we prove

(1.32) Lemma Let G be a plane embedded graph in which all face boundaries are simple cycles.
Then

(i) either G is a simple cycle with two faces, or
(ii) for no two faces F, F ′ is ∂F ∩ ∂F ′ a simple cycle, and if there are 3 faces F1, F2, F3 such that

Q1 = ∂F1 ∩ ∂F2, Q2 = ∂F2 ∩ ∂F3, and Q3 = ∂F3 ∩ ∂F1

are all nonempty and connected, therefore simple paths, and they all join the same two vertices u and
v, then there are exactly three faces, and G consists of two nodes connected by three paths.
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Proof. Since all face boundaries are simple cycles, G is biconnected, hence connected.
(i) Suppose ∂F ∩ ∂F ′ = ∂F, that is ∂F ∩ ∂F ′ is a Jordan curve J . By Theorem 1.8 (ii), F is the

inside of J and F ′ the outside or vice-versa, so G is a simple cycle with two faces.
(ii) W.l.o.g. F1 and F2 are bounded. Their intersection Q1 is a simple path, which means that the

union of their closures is simply-connected. Its boundary is Q2 ∪ Q3 = ∂F3. F3 is either the inside
or outside of ∂F3 (Theorem 1.8), but F1 ∪ F2 are inside, so it is the outside, and F3 is the unbounded
face. Thus there are three faces and G is the union of three paths Q1 ∪ Q2 ∪ Q3 with two nodes in
common. Q.E.D.

(1.33) Theorem A plane (straight-edge) embedded graph is nodally 3-connected iff it is biconnected
and the intersection of any two face boundaries is connected.

Proof. We can assume G is biconnected, since that is required for nodal 3-connectivity. Since
G is biconnected either it is empty or trivial, or a single edge, or every face is bounded by a simple
cycle. In the first three cases the graph is obviously nodally 3-connected and biconnected with one
face, so we need only consider the fourth case and can assume that every face is bounded by a simple
cycle.

We can assume that G is straight-edge embedded. Therefore the boundary of every face is a
simple polygon.

Only if: Suppose F1 and F2 are different faces and ∂F1 ∩ ∂F2 is disconnected. R.T.P. G is not
nodally 3-connected.

Let u and v be vertices in different components of ∂F1 ∩ ∂F2. For i = 1, 2 there are two paths Pi

and Qi joining u to v in ∂Fi. These paths are polygonal.
One can also construct a path P ′

1 within F1, loosely speaking by displacing P1 slightly into F1,
and connecting its endpoints to u and v. The resulting path is in F1 except at its endpoints. Similarly
one can construct a path P ′

2 in F2 except at its endpoints. These paths together form a (polygonal)
Jordan curve J which meets G only at u and v. By construction, P1 ∪ P2 is inside J and Q1 ∪ Q2 is
outside J .

Let H (respectively, K) be the subgraph consisting of all vertices and edges of G which lie inside
or on J (respectively, outside or on J). The only vertices in H ∩ K are u and v, and H ∩ K contains
no edge. H contains P1 ∪ P2 and therefore is not a path graph, since otherwise P1 = P2 and u and v
would be in the same component of ∂F1 ∩ ∂F2. Similarly K is not a path graph. Therefore G is not
nodally 3-connected.

If: Suppose G is biconnected but not nodally 3-connected, and H, K, u, v are witnesses. G has
more than one face, so all face boundaries are simple cycles.

Claim 1. The subgraphs H\K and K\H are nonempty. If every vertex in K were also in H , then
the vertices in K are in H ∩ K, that is, u and v. Either K has no edges, in which case H = G, or it
has the edge {u, v} and is a path graph. Neither is possible. Therefore H\K and similarly K\H are
nonempty.

Claim 2. Neither u nor v are isolated vertices in H or in K.
Otherwise suppose u is isolated in K. Let L be any path joining H\K to K\H . By Lemma 1.31,

every path connecting H\K to K\H contains a vertex, u or v, incident to edges from H and from
K. By hypothesis, u is not; so every such path contains v. By Claim 1, at least one such path exists,
so G\v is not connected, and G is not biconnected.
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Claim 3. Both u and v have neighbours both in H\K and in K\H . Suppose all neighbours of u
are in H . Since u is not isolated in K, there is an edge {u, t} in K incident to u. But t is a neighbour
of u, therefore t ∈ H ∩ K, so t = v. The only edge in K incident to u is {u, v}.

Consider a path in G joining H\K to K\H . Let t be the first vertex where the path meets K\H ,
and let s be the vertex before t on the path. Since {s, t} ∈ K and s /∈ K\H , s ∈ H ∩ K: s = u or
s = v. However, if s = u, then, since t ∈ K, t = v and t /∈ K\H . Therefore s = v. This implies
that every path from H\K to K\H contains v. Again by Claim 1, G is not biconnected.

This contradiction shows that not all neighbours of u are in H; neither are they in K, and the
same goes for v.

Claim 4. The vertices u and v share a face in common. Otherwise let x1, . . . , xk be the neighbours
of u. We know (Lemma 1.28) that they are all connected by paths in B\u, where B is the union of
boundaries of bounded faces incident to u. Assuming v is incident to none of these faces, these paths
would also avoid v. This implies that all neighbours of u are in H or in K, contradicting Claim 3.

Claim 5. The vertices u and v have at least two faces in common. Let Fj be the faces incident to
u in anticlockwise order around u. At least one of these faces is incident to u and to v. Suppose Fj

is, and no other face is.
There are two cases. If u or v, w.l.o.g. u, is an internal vertex, then all faces incident to u are

bounded, and by Lemma 1.28, the subgraph
⋃

i6=j(∂Fi\u) would be connected and contain neither u
nor v. Then all vertices in this subgraph would belong to H or to K. Since it includes all neighbours
of u in G, it would contradict Claim 3.

If both u and v are external vertices, then the face common to both of them is the external face,
and all bounded faces incident to u avoid v. This time we consider the subgraph

⋃

j(∂Fj\u) where
Fj are the bounded faces incident to u. Again this is a connected subgraph containing all neighbours
of u in G, and again it omits both u and v, so again all vertices in it are in H or in K, and again Claim
3 is contradicted.

Therefore u and v have at least two faces F and F ′ in common.
Claim 6. If u and v are incident to three faces F1, F2, and F3, then the boundaries of at least two

of these faces have disconnected intersection.
First note in general that if two faces of any plane graph have connected nonempty intersection,

then the intersection is either a simple path or a cycle. The latter is possible only when the graph G
is a simple cycle with just two faces.

Let
Q1 = ∂F1 ∩ ∂F2, Q2 = ∂F2 ∩ ∂F3, Q3 = ∂F3 ∩ ∂F1.

Suppose all three intersections are connected, so they are all simple paths. Any edge on Q1 is
incident to F1 and F2 alone; this goes also for internal vertices on Q1. Similarly for Q2 and Q3.
Hence the only vertices common to more than one path are u and v.

So the union of any two is a Jordan curve meeting the third only at u and v. W.l.o.g. Q1 is inside
Q2 ∪ Q3.

Q2 and Q3 are paths joining u to v in ∂F3. All edges on these paths are incident to F3. Together
they form a polygon contained in the polygon ∂F3, hence Q2 ∪ Q3 = ∂F3. This implies that F3

surrounds the other faces, so F3 is the external face.
Put another way, ∂F3 ⊆ ∂F1 ∪ ∂F2. F1 and F2 are the only faces incident to F3. Similarly for the

other two faces, and we conclude that there are only three faces and G = Q1 ∪ Q2 ∪ Q3. Either each
Qj is contained in the same subgraph, w.l.o.g. H , and H = G, or one subgraph is the union of two
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of the paths and the other, w.l.o.g. H , is the third path, and H is a path graph. These contradictions
show that the one of the pairs ∂Fi ∩ ∂Fj is disconnected, as required for Claim 6.

Claim 7. If there are exactly two faces F and F ′ incident to u and to v, then F∩F ′ is disconnected.
Otherwise F ∩ F ′ is a path Q′ joining a vertex u′ to another vertex v′ and containing a subpath Q

joining u to v. Not all of u′, u, v, v′ need be distinct, but it is assumed that they occur in that order in
Q′.

By Lemma 1.31, all vertices in Q belong to H or to K: w.l.o.g. to H . The boundary cycles ∂F
and ∂F ′ include two other paths joining u′ to v′ and forming a Jordan curve J .

If u′ 6= u then J meets H ∩ K at v alone, or not at all, and by Lemma 1.31, all vertices in J , plus
those in Q′\Q, belong to H or to K.

If all vertices in J belong to H , then all vertices outside J also belong to H , because for any
vertex y outside J , one can choose a shortest path joining y to a vertex in J . Neither u nor v occur
as internal vertices on this path, so all vertices on the path are in H or K (Lemma 1.31), H since the
last vertex is in H .

We have counted all vertices in G: those outside J , those on J , and those on Q′, and all are in H ,
so H = G, which is false.

On the other hand, if all vertices in J , and in Q′\Q, belong to K, then all vertices outside J
belong to K, and H = Q is a path graph, which is false. This proves Claim 7 in the case u 6= u′, and
by symmetry where v 6= v′.

If u = u′ and v = v′ then Q = Q′: let Q1 and Q2 be the other subpaths joining u to v in ∂F
and ∂F ′ respectively. By Lemma 1.31, each subpath Qi is contained in H or in K. Again we have a
Jordan curve J ; now J = Q1 ∪ Q2.

If u is an internal vertex, then F and F ′ are bounded faces incident to u, and since ∂F ∩∂F ′ = Q,
they are consecutive in cyclic order. By Lemma 1.28 the neighbour of u in Q1 connected to the
neighbour of u in Q2 by a path which avoids u and v. By Lemma 1.31, both neighbours are from H
or from K. Therefore all vertices in J are contained in H or all are contained in K, and, as previously,
the same goes for all vertices outside J , so either H = G or H = Q is a path graph.

Similarly if v is an internal vertex.
This leaves the case where u and v are external vertices with exactly two faces in common, F and

F ′, whose boundaries have connected intersection Q, a path joining u to v. In this case F or F ′, F ′,
say, is the external face.

If no faces other than F and F ′ are incident to u, then u has degree 2 in G and also ∂F ∩ ∂F ′

contains both neighbours of u. This is inconsistent with ∂F ∩ ∂F ′ being a path joining u to v.
Therefore u is incident to another bounded face; likewise v.

The definitions of Q, Q1, Q2 are still in force. If Q1 (respectively, Q2) is a single edge then all
vertices in J are in Q2 (respectively, Q1). Otherwise u has a neighbour v1 in Q1 different from v and
a neighbour v2 in Q2 different from v. The set of faces incident to u and excluding F and F ′ forms a
connected subgraph B, and B\u contains a path from v1 to v2 which avoids u and v (Lemma 1.28).
In any case, all vertices on J belong to H or to K. All vertices in Q belong to H . Notice that all
vertices of G are on or inside J except for Q, which is part of the external cycle.

Suppose that all vertices on J belong to H . Again we can argue that there all vertices inside J
belong to H and H = G, a contradiction. Otherwise they all belong to K and the only vertices in H
are in Q: H = Q is a path graph, another contradiction.

This finishes the proof of Claim 7. Claims 6 and 7 taken together amount to the desired result.
Q.E.D.
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Figure 4: a nodally 3-connected but not triconnected triangulated planar graph

(1.34) Chord-free triangulated graphs. A triangulated plane embedded graph is one in which
every bounded face is bounded by three edges. In a triangulated biconnected graph the external
boundary is also a simple cycle. It can only fail to be nodally 3-connected if a bounded face meets
the external boundary in a disconnected set. This implies that one of its edges is a chord joining two
non-consecutive vertices on the external boundary, and the converse holds unless the chord joins the
endpoints of two consecutive boundary edges [14].

The graph in Figure 4 is nodally 3-connected but not triconnected.
A fully triangulated planar graph is a triangulated planar graph in which there are three external

edges. In other words, the external face also is bounded by a 3-cycle. Therefore the external cycle
has no chords, so every fully triangulated planar graph is nodally 3-connected.

Also let G be a fully triangulated planar graph containing a vertex v of degree 2. Let u and w be
the neighbours of v. There are only two faces incident to v and they are both incident to u, v, and w.
One of them must be the external face. Thus u, v, and w are the three external vertices. They also
bound the only bounded face. G is a 3-cycle, and therefore triconnected.

On the other hand, if G is fully triangulated then it is nodally 3-connected, so if it contains no
vertex of degree 2 then it is triconnected (Proposition 1.24). Therefore

(1.35) Corollary Every fully triangulated planar graph is triconnected.

2 Conditions for a barycentric embedding
This section investigates the general conditions for a barycentric embedding to exist. The notion of
inverted subgraph given below is not discussed by Stein [10] but it does figure, in a different form, in
Tutte’s paper on convex embeddings [12, Theorem I].

(2.1) Definition Let G be a connected plane (straight-edge) embedded graph whose external bound-
ary C is a simple cycle. Suppose there is an edge {x, y} on C and a bounded face F such that x
and y are incident to F but the edge (line-segment) xy is not. There is a Jordan curve J containing
the line-segment xy such that the other path joining x to y in J is in the face F except at x and y.
Then the subgraph consisting of x and y and all edges and vertices of G inside J is called an inverted
subgraph of G. See Figure 5.

(2.2) Definition A plane-embedded graph G is semi-admissible if (i) it has at least 3 vertices, (ii)
every face boundary is a simple cycle, and (iii) every two face boundaries have connected intersec-
tion.2

It is admissible if it is semi-admissible and (iv) there are no inverted subgraphs.
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Figure 5: inverted subgraph I .

Figure 6: the topologically unique nodally 3-connected plane embedded graph without a barycentric
embedding.

(2.3) Lemma Let G be a convex plane-embedded graph. Then G is admissible.

Proof. (i) The external boundary is a simple polygon with at least three vertices.
(ii) The boundary of every bounded face is a convex polygon, hence a simple polygon and a

simple cycle. The external boundary is a simple polygon and a simple cycle.
(iii) Let F1 6= F2 be bounded faces. Then ∂F1 ∩ ∂F2 = F1 ∩ F2 is convex, hence connected.
(iv) For an inverted subgraph to exist, there would have to be a bounded face F meeting the

external face in two vertices x and y, where xy is an edge of the bounding polygon, but is not
incident to F. The closure F is closed and convex, and x and y are in F , so xy ⊆ F , a contradiction.
Q.E.D.

The barycentric embedding result in [13] is derived in the following way. It is proved directly
for any plane embedding (choice of peripheral polygon, Definition 1.25) of G, if G has at least three
nodes (vertices of degree 6= 2).

(2.4) Other nodally 3-connected planar graphs. Nodally 3-connected graphs with fewer than 3
nodes can be considered separately. A θ-graph is a graph with two nodes connected by three paths
(it resembles the letter θ). The only nodally 3-connected planar graphs with fewer than 3 nodes are
single vertices, single edges, simple cycles, and θ-graphs. They all admit barycentric embeddings.
However, if one of the paths joining the nodes in a θ-graph is a single edge, then that edge cannot be
on the outer boundary since otherwise there would be an inverted subgraph. This is the only example
of a nodally 3-connected graph for which a barycentric map is not an embedding (Figure 6).

(2.5) Lemma If G is a semi-admissible straight-edge embedded plane graph (2.2), then there is
another straight-edge embedding which is admissible.

2Equivalently, if F and F ′ are bounded faces and F ∩ F ′ 6= ∅, then F ∪ F ′ is a closed disc.
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Sketch proof. Suppose that a bounded face F meets two ends of an external edge e without being
incident to the edge. Take the subgraph enclosed between e and F and move it to the other side of e.
This alters the external boundary and removes the inverted subgraph due to F . Nor can it introduce
a new external edge e′ forming an inverted subgraph with a bounded face F ′, for otherwise before
the alteration the boundary of the face corresponding to F ′ would have met ∂F in a disconnected set,
violating condition (iii). The procedure can be repeated to remove all inverted subgraphs. Q.E.D.

(2.6) Lemma Let G′ be an admissible plane embedded graph (Definition 2.2). Let C be its outer
cycle, and e = {a, b} be a chord, that is, an edge not on C where a and b are external vertices. The
embedded graph C ∪ {e} is a kind of θ-graph. The vertices a and b are connected by two subpaths
P1, P2, of C. Let Ci = Pi ∪{e}, i = 1, 2. Then C1 and C2 are simple cycles, C1 ∪C2 = C ∪{e}, and
C1 ∩ C2 consists of the single edge e.

For i = 1, 2, let Gi be the subgraph consisting of

• All vertices of G′ on and inside Ci

• All edges of G′ on and inside Ci (see Paragraph 1.9)

Then G′ = G1 ∪ G2, G1 ∩ G2 = {{a, b}, {e}}, Gi are connected with external boundary Ci, the
internal vertices of G′ are those of G1 and of G2, and the bounded faces of G′ are those of G1 (inside
C1) and G2 (inside C2).

Finally, G1 and G2 are admissible.

Sketch Proof. Most of what has been said is obvious but tricky to prove, so we shall discuss
properties 2.2 (i–iv) for G1. The same observations apply to G2.

(i) C1 has at least 3 vertices: so has G1.
(ii) The bounded faces of G1 are those of G′ inside C1, so their boundaries are simple cycles. The

boundary of the unbounded face of G1 is C1, also a simple cycle.
(iii) If F ′ and F ′′ are two bounded faces of G1, then they are bounded faces of G′, so ∂F ′ ∩ ∂F ′′

is connected.
(iv) Suppose G1 has an inverted subgraph: G1 has a bounded face F ′, and an edge e′ on C1, so

∂F ′ ∩ C1 contains both ends of e′ but not e′ itself.
If e′ 6= e then e′ ∈ C and ∂F ′ ∩ C contains both ends of e′ but not e′ itself — so G′ would have

an inverted subgraph, a contradiction.
Hence e′ = e. The edge e is incident to two bounded faces F1, F2 of G′, where F2 is inside C2.

Since
F ′ ⊆ interior(C1) and F2 ⊆ interior(C2),

∂F ′ ∩ ∂F2 ⊆ C1 ∩ C2 = e.

But ∂F ′ intersects e only at a and b, so ∂F ′ ∩ ∂F2 is disconnected, contradicting condition (iii).
Q.E.D.

(2.7) Preview of Theorem 2.9. The theorem below, which gives the most general form possible of
Tutte’s barycentric embedding theorem, proceeds by induction where the base case is Tutte’s theorem
[13]. Inductively, given a plane embedded graph G with external boundary C, a face F is chosen such
that ∂F ∩ C is disconnected, with vertices a and b in different components, and dividing G into two
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graphs separated by the edge {a, b}. There are complications if {a, b} is not already an edge of G.
The first is that it must be represented by a plane curve. This is easily done on the assumption that the
embedding of G is piecewise linear; then it is possible to join a to b by a polygonal path within F. We
can no longer assume that G is embedded with straight edges, but we can assume that the embedding
is piecewise linear (i.e., the edges are embedded as polygonal paths), and this is just as convenient.

Another complication is that the divided graphs can violate condition (iii). The facts can be stated
in a lemma.

(2.8) Lemma Let G be an admissible (Definition 2.2) piecewise-linear plane embedded graph. Let
C be the external boundary of G, and suppose a and b are vertices in ∂F ∩ C where F is a bounded
face and {a, b} is not an edge on C. If e = {a, b} is not already an edge of G then add it, and embed
it as a polygonal path within F (thereby dividing F into two faces, F1 and F2.) This results in a new
graph G′′.

It is then possible that G′′ have two bounded faces whose intersection is disconnected, but the
only way this can happen is that one of the two subpaths of ∂F joining a to b has inner vertices of
degree 2 only. If Q is this path then G′′ can be modified by removing the edges and inner vertices of
Q. Let G′ be the new graph in this case; if Q does not exist, let G′ = G′′, and if {a, b} was an edge
of G let G′ = G. Then if G′ 6= G it differs from G in that it has a new edge, or the path Q is replaced
by the single edge e.

Then G′ is admissible.

Proof. If G′ = G there is nothing to prove.
Otherwise G′′ 6= G. In this case, consider how G′′ can violate any of conditions (i–iv) of Definition

2.2.
(i) G′′ has at least 3 vertices. (ii) Its new bounded faces are F1 and F2 whose boundaries are

simple cycles, and its external boundary is C, a simple cycle.
(iv) If G′′ has inverted subgraphs then a bounded face F ′ meets both ends of an edge e′ on C, (so

e′ 6= e). Suppose e′ is not incident to F ′. In this case F ′ cannot be a face of G. W.l.o.g. F ′ = F1.
The edge e separates interior(C) into two open simply-connected sets whose closures may be

denoted D1 and D2, where w.l.o.g. D1 is the region containing F1. Let Qi = ∂F ∩Di, i = 1, 2. Then

∂F = Q1 ∪ Q2,

the union of two paths disjoint except at a and b.

∂F1 = Q1 ∪ e,

so all vertices on ∂F1 are on Q1 and both ends of e′ are incident to Q1, therefore to ∂F, and e′ is
incident to F. Since e′ is not on Q1, it must be on Q2, and Q2 = ab = e′ = e, a contradiction.
Therefore G′′ has no inverted subgraphs.

(iii) There may exist bounded faces F ′ and F ′′ of G′′ such that ∂F ′ ∩ ∂F ′′ is disconnected. They
cannot both be faces of G, and ∂F1 ∩ ∂F2 = e, so w.l.o.g. F ′ is a face of G and F ′′ = F2.

∂F1 ∪ ∂F2 = Q1 ∪ e ∪ Q2 = ∂F ∪ e.

Also, since e is not incident to F ′,

∂F ′ ∩ ∂Fi = ∂F ′ ∩ Qi, (i = 1, 2),
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and
∂F ′ ∩ ∂F = (∂F ′ ∩ Q1) ∪ (∂F ′ ∩ Q2).

Since the left-hand side is connected and ∂F ′ ∩ Q2 is disconnected, ∂F ′ ∩ Q1 must be connected.
But {a, b} ⊆ ∂F ′ ∩Q1, so ∂F ′ ∩Q1 = Q1. Since Q1 meets the interior of D1, so does F ′: F ′ ⊆ D1.
Since the relative interior of Q2 is disjoint from D1, it is disjoint from ∂F ′, and ∂F ′ ∩ ∂F = Q1.
There can be at most one such face F ′.

Alternatively, if we had assumed that F ′ = F1 and F ′′ is a face of G, we should have concluded
that F ′′ is the unique face such that ∂F ′′ ∩ F = Q2. These two alternatives are incompatible: there
cannot be faces F ′ and F ′′ of G which are incident to F along Q1 and Q2, since then ∂F ′ ∩ ∂F ′′ =
{a, b} would be disconnected.

Thus either G′′ satisfies conditions (i–iv), or there exists a path Q as predicted (Q = Q1 or
Q = Q2.)

In the latter case, G′ is obtained from G′′ by removing the path, w.l.o.g. Q1. This merges F ′ and
F1 into a single face. Note that G was admissible, so the edge e cannot have been an edge of G.

It remains to show that G′ is admissible. First consider condition (iv): whether G′ has an inverted
subgraph.

Write ∂F ′ = Q3 ∪ Q1, and let F3 = F ′ ∪ interior(Q1) ∪ F1, the merged face.

∂F3 = Q3 ∪ e, so C ∩ ∂F3 = C ∩ ∂F ′.

The face F3 cannot give rise to an inverted subgraph in G′, since if both ends of an edge e′ ∈ C are
incident to ∂F3, then they are incident to ∂F ′, so e′ is incident to F ′ and to F3. All other faces of G′

are faces of G′′, so G′ has no inverted subgraphs.
G and G′ have the same vertices, so admissibility condition (i) is obvious. Admissibility condi-

tions (ii,iii) are topologically invariant, so it is enough to show that the embeddings of G and G′ are
topologically equivalent. Let

D = F ′ ∪ Q ∪ F ⊇ F ′ ∪ Q ∪ F1 ∪ e ∪ F2.

Since G is admissible, D is a closed disc (conditions ii,iii).
It follows from the Schönflies theorem (1.10) that there is a homeomorphism of R

2 to itself which
fixes ∂D ∪ exterior(∂D) and carries F ′ onto F3, F onto F2, and Q onto e. This homeomorphism
carries all vertices, edges, and faces of G onto corresponding vertices, edges, and faces of G′, so G′

satisfies admissibility conditions (i–iv). Q.E.D.

(2.9) Theorem Let G be an admissible piecewise-linear plane embedded graph. Let f be any map-
ping of its external cycle C to the corners of a convex polygon (in cyclic order), and let g be the
unique barycentric map extending f to G.

Then g is an embedding.

Proof. The condition on face boundaries implies that G is biconnected. Define the excess of G to
be the quantity

∑

F

(|components of F ∩ C| − 1),

where the sum is over all bounded faces F meeting C.
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If the excess is 0 then G is nodally 3-connected. By Paragraph 2.4, since G has no inverted
subgraphs, the barycentric extension of f is an embedding.

For the inductive step, suppose the result is true for graphs of excess < s and G has excess
s ≥ 1. Choose a bounded face F which meets the bounding cycle C in two or more components, one
containing a vertex a and the other containing a vertex b. Construct the graph G′ as in Lemma 2.8.
The edge e = ab divides C into cycles C1, C2 and Lemma 2.6 holds. Let

D = interior(C) and Di = interior(Ci), i = 1, 2.

The graphs G′ and G may be different, so let us write g ′ for the unique barycentric extension of f
to G′.

Consider the subgraphs G1, G2, of G′, as in Lemma 2.6.
Claim: the excess of G1 (and of G2) is less than that of G.
Bounded faces of G1 are either bounded faces of G (possibly including the face F ), or a sub-face

F1 of F bounded by e, or a face F3 = F ∪ interior(Q) ∪ F1.
If F ′ ⊆ D1 is a bounded face of G different from F, then C ∩ ∂F ′ ⊆ C ∩ C1, a path joining a to

b, and
C ∩ ∂F ′ = C1 ∩ ∂F ′,

so these sets have the same number of components.
If e is an edge of G then F ⊆ D1 is a bounded face of G1, and

C1 ∩ ∂F = (C ∩ ∂F ) ∪ e.

But e meets two components of C ∩ ∂F , so the excess of G1 is less than that of G in this case.
In this case the excess of G2 is also less than that of G, since every face of G2 is a face of G, and

F is not a face of G2.
If e is not an edge of G then F is split into two faces F1 and F2, and every component of C1∩∂F1

disjoint from e is a component of C ∩ ∂F. Again, two components of C ∩ ∂F meet the component
containing e in C1 ∩ ∂F1, so this has fewer components that C ∩ ∂G, and in case also the excess of
G1 is less than that of G. By symmetry, the same holds for G2 in this case, proving the claim.

A vertex of G, G1, or G2, is an inner vertex if and only if it is in interior(C), interior(C1), or
interior(C2).

Let v be an inner vertex of G1. Since G1 is a subgraph of G, every edge of G1 incident to v is an
edge of G. Let e′ be an edge of G incident to v. Then

interior(e′) ⊆ interior(C), interior(e′) ∩ e = ∅, and e′ ∩ interior(C1) 6= ∅,

so interior(e′) ⊆ interior(C1) and e′ ∈ G1.
Thus the neighbours of v in G1 are its neighbours in G. Let fi, i = 1, 2, be the restrictions of f to

the vertices in Ci.
Since G1 is connected with external boundary C1 (Lemma 2.6), there is a unique barycentric

extension g1 of f1 to G1. Since the set of neighbours of inner vertices in G1 is the same in G1 as in
G, g1 and g satisfy the same equations for vertices in G1, so g1 is the restriction of g′ to G1.

By induction, g1 is an embedding of G1 into D1. Thus the restriction of g′ to G1 is an embedding.
Similarly the restriction of g′ to G2 is an embedding. If g′ were not an embedding then there would
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be an edge of G1 which intersects the relative interior of an edge of G2, or vice-versa. Such an
intersection can only occur in D1 ∩ D2. But D1 ∩ D2 = e, so no such intersection can occur.

If G′ 6= G then e is not an edge of G. Either G′ consists of G with one more edge e, joining two
external vertices, so g′ and g are defined for the same vertices and g is an embedding of G, or G′

consists of G with a path Q replaced by a single edge e. In this case g would embed Q in a straight
line from a to b, so its image as a point-set coincides with g ′(e), and again g is an embedding. Q.E.D.

(2.10) Corollary An embedded graph admits a convex embedding iff it admits a barycentric embed-
ding.

3 Ambient isotopy
Stein [10] mentions that different embeddings of a semi-admissible3 plane embedded graph are ambi-
ent isotopic, but does not prove it. Semi-admissibility and admissibility differ in the matter of inverted
subgraphs (see also [12]). Stein’s paper is concerned with when a planar embedding exists in which
the bounded faces are convex (with polygonal boundary). It does not stipulate a straight-edge embed-
ding. He disposes of the difficulty of inverted subgraphs, multiple edges, etcetera, by allowing edges
to be subdivided with new vertices.

Thus Stein’s result is about piecewise-linear convex embeddings of graphs. In fact, to insist on
condition (iv) of Definition 2.2 would hamper the isotopy proof, so in this section we discuss semi-
admissible graphs.

(3.1) Definition Given topological spaces X and Y , an isotopy is a continuous map h : [0, 1]×X →
Y such that for each t, 0 ≤ t ≤ 1, the map ht : X → Y ; x 7→ h(t, x) is a homeomorphism.

This section gives an outline proof of the following isotopy theorem (Corollary 3.6). Let G1

and G2 be two semi-admissible plane embeddings of the same graph G, and such that their external
boundaries are images of the same cycle C of G, with the same orientation. Then there exists an
isotopy: R

2 → R
2 taking the vertices, edges, and faces of G1 to those of G2.

(3.2) Proposition Suppose G is a semi-admissible plane embedded graph (Definition 2.2, (i–iii)).
Then either G has one bounded face or there exist two bounded faces F ′ and F ′′ such that ∂F ′ ∩
∂F ′′ = Q is nonempty (and connected), and if F = F ′ ∪ interior(Q) ∪ F ′′, then for every other face
A of G, ∂A ∩ ∂F is connected.

Furthermore, if G′ is the embedded graph obtained by removing the edges and inner vertices on
Q, hence merging F ′ and F ′′ into a single face F, then G′ is semi-admissible with the same external
boundary as G. (The first part was proved in [10], and the rest follow immediately.)

(3.3) Definition Let G1 and G2 be two plane embedded graphs. The embeddings are ambient home-
omorphic (respectively, ambient isotopic) if there is a homeomorphism (respectively, an isotopy) from
R

2 to itself taking the vertices, edges, and faces of G1 bijectively onto those of G2.

(3.4) Lemma If G1 and G2 are plane embeddings of a θ-graph G (Paragraph 2.4), then they are
ambient homeomorphic. (Follows from the Schönflies theorem 1.10: proof omitted.)

3The term ‘semi-admissible’ is not used in [10].
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(3.5) Corollary If G1 and G2 be two semi-admissible embeddings of the same graph G with the same
boundary cycle, then they are ambient homeomorphic.

Proof. This is a simple application of Stein’s result (Lemma 3.2), and is by induction on the
number of bounded faces. If G is a simple cycle then this is just the Schönflies Theorem (Proposition
1.10).

For the inductive step, choose faces F ′ and F ′′ of G1 separated by a path Q such that F =
F ′ ∪ interior(Q) ∪ F ′′ has the properties stated in Lemma 3.2. Let H be the subgraph of G obtained
by removing the edges and inner vertices of Q, and let H 1 be the modified embedding where F ′

and F ′′ are merged into F. Then H1 is a semi-admissible embedding of H. Similarly a modified
embedding H2 is obtained from G2. By induction, H1 and H2 are ambient homeomorphic through
a homeomorphism h′. Let D1 and D2 be the images of F under the respective embeddings. D2 =
h′(D1). They contain images Q1 and Q2 of the path Q.

By Lemma 3.4, there exists a homeomorphism h : D1 → D2 which agrees with h′ on ∂D1 and
takes (F ′)1 to (F ′)2, (F ′′)1 to (F ′′)2, and Q1 to Q2, and also takes the vertices and edges in Q1 to
those in Q2. Extend h to R

2 by making it coincide with h′ outside (∂F )1. Then h is an ambient
homeomorphism between G1 and G2. Q.E.D.

(3.6) Corollary If G1 and G2 are semi-admissible embeddings of the same graph with the same
external boundary in the same anticlockwise order C1 and C2, then the embeddings are connected
by an isotopy.

Sketch proof. There is an ambient homeomorphism h connecting them (Corollary 3.5). Accord-
ing to [11], h is isotopic to the identity or to reflection in the x-axis. Furthermore, if h preserves the
orientation of any Jordan curve, as it does in this case, it is isotopic to the identity. This yields an
isotopy carrying G2 to G1.

Specialising G1 to G itself, an admissible embedding, and G2 to a barycentric embedding, we get

(3.7) Corollary Let G be an admissible embedding of a planar graph, and suppose f is a map taking
its external vertices to the corners of a convex polygon, in the same anticlockwise order. Then G is
isotopic to the barycentric extension of f .
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