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Abstract

Fermionic zero modes associated with doubly periodic SU(2) instantons of unit

charge are considered. In cases where the action density exhibits two ‘instanton cores’

the zero mode peaks on one of four line-segments joining the two constituents. Which
of the four possibilities is realised depends on the fermionic boundary conditions;

doubly periodic, doubly anti-periodic or mixed.

In this Letter we consider fermionic zero modes for the recently discussed doubly peri-
odic instantons [, B]. Two complementary constituent descriptions of these objects were
provided; charge one instantons can be built out of two overlapping instanton cores or two
static monopoles. Explicit computations show that in square tori the action density peaks
at two points in 7% x R? in line with the core picture. For elongated tori with high as-
pect ratios the action density is concentrated in two tubes which can be interpreted as the
worldlines of monopole constituents. The basic properties of these monopoles (separation
and mass ratio) follow much the same pattern as found for the monopole constituents of
calorons [H, @ B, B]. Here we compute the zero mode density within a two-dimensional
slice including the constituent locations for various boundary conditions. These results

are compared with the action density calculations reported in refs. [ . Of particular



interest are the localisation properties of the zero modes with respect to the instanton core
constituents and their evolution as the aspect ratio, or temperature, is increased.

To begin we recall some basic definitions regarding gauge fields on T2 x R?. A doubly-
periodic gauge potential is understood to be an anti-hermitian potential defined throughout

R* which is periodic modulo gauge transformations U; and U, in two directions

AM(ZL’(),ZL’l—FLl,l’Q,ZL'g) = U1 (A#($0,$1,$2,$3)+au) Ul_l, (1)
Ap(xo, 21,20 + Lo, x3) = U (Au(wo, 21, 22, 23) + 0,) Uz_l-

In general the transition functions Uy and U, are z-dependent. However we will work in a
gauge where they are constant commuting group elements. Then tr U; and tr U, are the
two holonomies (assuming that A; and Aj; vanish at infinity). We specialise to self-dual

SU(2) potentials in the one-instanton sector. The Weyl operator
DY(A) = —ol (9, + A,) (2)

with 0':5 = (1,—u7y, —imy, —173) and 7; are Pauli matrices, is expected to have a single
fermionic zero mode. To specify the periodicity properties of the fermionic zero mode two

phases are required

U(zo, 21 + L1, 20, 2352) = MU U (20, 21, 20, 735 2) (3)

. o 1201, .
U(zg, x1, 22 + Lo, x5;2) = 272Uy W (xg, x1, Tq, 3; 2).

To make contact with the Nahm formalism the phases are parametrised by dimensionful
coordinates z; and z; rather than angles; these have the interpretation as coordinates of
the dual torus, TQ, since the replacements z;y — z1 4 27 /Ly 29 — 29 + 27w/ Ly leave the
boundary conditions unchanged. Such general boundary conditions have also been studied
in a lattice context [A]. The choice z; = z3 = 0 leads to periodic fermions while z; = 7/ Ly,
29 = m/ Ly provides ‘physical’ anti-periodic solutions. Another interesting case is when z
and z, are correlated with the two holonomies.

The transition functions can be parametrised as follows
—twy L7 —twa LT
U1:€ 113’ U2:€ 223’ (4)

where w = (wy,wq), like z = (z1,23), can be considered an element of the dual torus.

Note that there is no charge-one instanton solution for trivial holonomy w = 0. Like R*



instantons and calorons the & = 1 solution has a scale parameter, A, which can be thought
of as the instanton size. The scale parameter fixes another property of the instanton namely

its flux k; asymptotically the instanton has the form
A#(l’) ~ a#(l’o,l’g)Tg, (5)

where a, is a U(1) self-dual potential in R?. The flux is defined through

k= lim L/ (ap dxo + as dzs), (6)
C(R)

R—oo 21

where C'(R) is a circle of radius R in the xg — x5 plane. The sign of s is ambiguous since
the signs of the a, can be flipped via a constant gauge transformation (a Weyl reflection).
Moreover, we may assume that « lies between 0 and 1 since k can be changed by an integer
amount via a smooth gauge transformation. The asymptotic flux can also have non-zero
components in the compact x; and x5 directions, i.e. a; and a; need not be zero. When
a; = ay = 0 the instanton has a radial symmetry; the action density depends on zy, z,
and r = \/m only. In this case the action density decays exponentially and there is
a simple relation between the scale parameter A and the flux

T2

Tl (7)

K =

These special radial solutions have seven parameters; the flux £ (or equivalently the size \)
the two holonomies and four translations in 72 x R?. Together the k — —x ambiguity and
the kK = k+1 equivalence imply that the fluxes k and 1 — k are physically indistinguishable.
This gives two possible instanton sizes Ay = \/m and \y = \/(1 — k)L Ly/m. In [0

it was argued that the instanton possesses two instanton core constituents with sizes Ay and

Ag. Taking x, = 0 as the position of the first core the second is centred at x1 = Ly Lawsy/m,
g = —LiLywy /T, xg = z3 = 0, i.e. the core separation is fixed by the holonomies. For
square tori (L = Lg) explicit calculations of the action density clearly show two instanton-
like peaks at the expected locations.

In the special case kK = % the two cores are identical. Here the flux can be interpreted as
a center vortex. These solutions are decompactified four torus instantons of unit charge (the
Lo, L3 — oo limit of an SU(2) instanton on T* with periods Lg, Ly, Ly and L3). The center

vortex is a remnant of a torus twist, Zg3 = —1l, see ref. [H]. Because of the exponential



decay, the k = % solutions are expected to approximate four torus instantons with large
but finite Lo and L3 extremely well (see also [H]). These doubly periodic instantons can be
seen as the opposite extreme to 't Hooft’s constant curvature solutions which exist when
LiLy = 2LoLs. An analytic interpolation between these two regimes is still lacking (see
however [[]). In the absence of analytic solutions a constituent description (in terms of
cores, monopoles or otherwise) as well as information concerning the moduli-spaces and
their metrics would represent a considerable advance.

If one period is much larger than the other, say Ly >> Lj, the core picture fails;
the action density is concentrated around two monopole worldlines. These monopole con-
stituents follow a similar pattern to that observed for charge one calorons; w, determines
the mass ratio of the two monopoles and their spatial separation is mA*/L, = xL;. The
caloron zero mode [ localises to one of the monopole constituents according to the value
of z. As z passes through a critical value (where z is correlated with the holonomy) the
zero mode switches its support to the other monopole. If z is exactly at a critical value the
zero mode peaks at both monopole locations. Furthermore these delocalised zero modes do
not decay exponentially (the decay is sufficiently fast to give a normalisable solution). In
the doubly periodic case we have to distinguish between the core (L; &~ L;) and monopole
(L1 >> Ly or Ly >> Lq) regimes. If L1 >> L, the fermionic zero mode is expected to be
caloron-like in that it will localise to one monopole for —w; < z; < wy and the other for
wy < z3 < —wy + 27/ Ly. If 23 = +wy the zero mode will see both monopoles (assuming
z1 # Fwi, since as we shall argue (z1,22) = +(wy,wz) are very special cases). What is
less obvious is how the zero mode behaves in the core regime. We have computed the
zero mode density UT(z; 2)U(z; z) within the two-dimensional slice zo = z3 = 0 for various
choices of k, w and z. When [ = L,, the zero mode localises to one of four lines joining
the cores.

1

w; = wy = sm. Here the two (equal sized)

Consider the case 4 = Ly = 1, k = !

T
cores are particularly well resolved in the action density. They are located at the origin
(z1,22) = (0,0), and in the centre of the torus (zy,23) = (4,3). For 2z = 2z, = «, the
physical anti-periodic case, the zero mode is not localised on a single core but smeared
around a line-segment joining the core at the corner (z1,22) = (0,1) and core in the

middle of the torus (z1,z,) = (3, 3), see the left plot in figure @l
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Figure 1: zero mode density UTW and action density —itrf?forz; =0,k =3, w=
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and z = 7(1,1) (anti-periodic).

Taking instead z = 0, the periodic case, yields a similar line-localisation but with a
different pairing arrangement; it stretches between the core in the middle and that at

(z1,22) = (1,0), see the left plot in figure B

Figure 2: zero mode density ¥TW for 2, = 0, x =  and z = (0,0) (periodic) and z = (0, %)

(periodic in z; and anti-periodic in 2z3).

The zero modes densities in figures @l and B (left plots) can be mapped into each other
by a 180 degree rotation. The other two pairing arrangements are given by z = (0,7),
where the zero mode stretches between the cores at (z1,z;) = (0,0) and (z1,22) = (3, 3)
and z = (m,0), where the zero mode stretches between the cores at (z1,z2) = (1,1) and

(21,%2) = (3, 3). The transition between two of the four possible arrangements is a smooth



one. For example, taking z = (0,7/2) generates a superposition of two of the four generic
pairings, namely between z = (0,7) and z = (0,0), see the right plot in figure &

The transition from the above situation to the finite temperature case is accessed by
increasing L; (or Lg) starting from L; = Ly. This was done in [F] for the action den-
sity showing the crossover from instanton cores to monopole constituents. In figure H we
show the corresponding zero mode densities for zero modes with anti-periodic boundary

conditions, and aspect ratios a = L;/L, = 2,2,3.
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Figure 3: zero mode density WTW for z, = 0 k =

(anti-periodic)



The equal length case a = 1 is already shown in figure @ If ¢ > 1 the zero mode
peaks at one of the monopole worldlines. In fact the monopole structure emerges in the

zero modes before it is visible in the action density; the a = % zero mode already has some

resemblance to the large a monopole like regime whereas (stretched) cores are still visible
in the action density. In figure 4 we show zero mode and action densities for the case
Kk = %. In the a = 1 core regime the zero mode density peaks at the smaller core but one
still can see a preferred line joining the smaller core at the centre to the larger core at the
corner (x1,z3) = (0,1). Here the evolution to the monopole regime is slower due to the

presence of a smaller core. But as with the k = % case the monopole structure appears in

the zero mode density before it can be seen in the action density.

LTS
"'"'"'""':'" >
LRI

%

V0w, /] Zz

ZRRL LT 5 27

ARIFATS 3 > 3
2%/

27
209,
2RISR
"" ""l"’l/"
LR 27
42
RZAAL

(LI
TSR
IZIIIZ‘,‘Z‘;}?’;\ &
[T

]

Figure 4: zero mode density WV for z, = 0, k =

(anti-periodic)

A further interesting case concerns the limit where z approaches tw. If k # % the zero
mode does localise to a single core as z approaches w or —w. However at z = w the zero

mode is not normalisable. If ¥(x,z) is normalised then for a fixed z it tends to zero as z



tends to w. When k = % the zero mode also becomes non-normalisable as z approaches w
but during the approach the pair structure survives, i.e. however close z is to w the zero
mode will not be localised to a single core. When z = w the equation D'¥ = 0 has two
solutions W!(z) and W (z) which are supported at the first and second core, respectively.
These ‘zero modes’ are smooth but not normalisable. Like the z = w caloron zero mode
they decay algebraically - but not fast enough to be normalisable. As z approaches w the

zero mode has the form

W(x;2) ~ |2 — w| U (2) + |2 — w| (21 + izg — wy — 1wy W (). (8)

As z approaches w the W!T contribution is suppressed if £ < % and for k > % the first

term is suppressed. Accordingly, the zero mode is localised at the smaller core. If k = %
neither core is favoured and the pair localisation persists. Note that the zero mode density
depends on the phase of z; 4 129 — wy — 4wy so that the form of UTW for z ~ w depends
on the direction of approach to w. This is why all four pairings can be seen in the z — w
limit when k = %

The plots presented in this Letter were generated using an explicit formula for ¥(x; z)
valid in the two-dimensional slice zg = z3 = 0. To conclude we outline the derivation of
this formula. The construction hinges on the fact that the SU(2) gauge potential, A,(x),

has a simple abelian Nahm transform, A(Z), with components [f]
Ar(e) = —i0,0(2), An(e) = i0,0(),  Ao(=) = Aslz) =0, )

where ¢(z) is doubly-periodic and harmonic except at two flux singularities in T?2. This
is the form of the Nahm potential associated with radially symmetric one instantons on
T? x R% 1In the non-radial case, which we do not consider here, Ao and As are non-zero
(see also [[]). The instanton can be expressed as a Nahm transform of A(z):

Ape) = [ B 0 sa) (i), (10)

T

where ¥?(z;z) (p = 1,2) are orthonormal and periodic (with respect to z; — 21 4 27/ [4

and zy — 23 4 27w/ Ly) zero modes of the Weyl operator

DI(A) = —olDi(A), (11)



where DQ(A) =0/0z, + AM(Z) —x, for p =1,2 and DQ(A) = AM(Z) —x, for p=10,3.

The Nahm zero modes can be written in the form

. ©M(z; 2) R 0
V(z;x) = Dy(A) , Vi (z;7) = Dy(A) , (12)
0 (2 2)
where the o® are specific singular solutions of the 72 Laplace equation

(D2() plesn) =0 (13)

The fermionic zero mode W(z;z) can be written in a similar fashion to the Nahm zero

modes
®W(z; 2) 0
W(z; ) = D(A) — D(A) , (14)
0 ®?)(z; 2)
where ®(1) and ®?) are specific singular solutions of the 72 x R? Laplace equation
9 2
<8—:1:M + AM(;L')> O(z;2) =0. (15)
In fact, one of the components of ®® is )
(1) ( - (2)( .
@z T A A
oM (z;2) = (=) , O (z;2) = (=) . (16)
M (z;2) P (21 x)

The other components, ") and (), can be obtained from the requirement that ®() and
() generate the same zero mode, i.e. equation (E). This requirement amounts to four
first order PDEs for M) and ¢(). The integrability condition for these equations can be

expressed as another Laplace-type equation
d 2 eW(z2)
(8— + Af(:z:)) =0, (17)
x
g P ()

where AE(Q?) is an SU(1,1) self-dual potential which is related to A,(z) by a simple

Backlund-type transformation; more details of this structure will be given elsewhere.



The Nahm zero modes () lead to an instanton potential

73 . . v

Ay = —5895” log p — 2mi(m — ZTQ)KP@EJ_?

T3 , , v*

A, = —50“ log p 4 2mi(my — ZTQ)/ipaf” ?, (18)
and Az = AI”, Az, = —AL , where p(z) is real and periodic and v(z) is complex and
periodic up to a constant phase. Here we have used two sets of complex coordinates for
T? x R?*; in the compact directions x|, = 1 + izg, Z| = 21 — i3, and in the transverse
non-compact directions x; = xg + 223, ¥, = x9 — tx3. Derivatives and potentials are

defined as (‘L” 2((9171 10y, ), Ay = %(Al —1Ajy) and similarly for the other coordinates.
Inserting (EH) into (EM) one can express the components of U(z; z) without reference to the
¢, Two components are obtained using the () representation

@ (2)

Uy = 2Z\/_ || \/_ Uy = 2\/,58“%7 (19)

and the remaining two components derive from the ®(!) representation

o) o)
\IIIZ = 2\/,5@@%, q;22 = 21\/_8I” \/_

Here we have written the zero mode components ¥,, where « is a spinor index and p an

(20)

SU(2) color index. The representation of the caloron zero mode given in [ has the same

derivative structure. The fermionic zero mode given here has the normalisation

/ d*z W (2;2)W(z;2) = 4L, Ly, (21)
T2 xR?
and so the normalised zero mode density is
2)
+10,, 2

vty = L ( L ) (22)

We have written A,(z), ¥®(z;z) and ¥(z;2) in terms of the auxiliary objects p(z),

(1) 2 @) |2 )2
a“o a"o 10, 5

v(z) and ¢®)(z;z). These can be expressed in terms of contributions to the inverse of

DI(A)Dy(A) which has the form [

(DHAD(D) ™ (2.2

= (o0 + ia3)€_¢(z) Ky(z, 2 :1;)6_(‘5(2’) + 5(00 — i03)6¢(2)[&’_(2, 2'; a;)e(b(zl). (23)

1
2

10



The key formulae are
plz) = Ki(—w,—w;z) = K_(w,w;z), v(z)=Ki(w, —w;z), (24)

and
é(z) A—(va;a/’)’ S0(2)(2’1,) — e—qﬁ(z) A-}-(Zv _w;l’)‘
VP VP

In [2] explicit forms for the Ky functions were given for the two dimensional slice z, = 0.

¢W(zyz) = e (25)

Although the zero mode formulae involves x| -derivatives they do not contribute if z; = 0.
Using ([4) and () the components of the smooth non-normalisable zero modes W!(z)

and U’ (z) can be recovered. For £ < 1 and z close to w, ¥(z;z) ~ |z — w|*¥!(z) where

I o v I v IS/ ;o_ep, 1
\Illl - QZC\/ﬁaI”;v \IIQI - QCﬁangv \II12 - R&ﬂ_ga \IIZZ - maf”;v (26)

where ¢ is defined by e ?() ~ ¢|z — w|* for z close to w. For large |z,| we have [H]
p o |z |7%* (v decays exponentially) implying that NZAR V2 |z 1 [2#=1) which is indeed too

slowly decaying to normalise the solution.
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