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1 Introduction

A self-dual gravitational instanton is a hyperkähler manifold of real dimen-
sion four. These can be distinguished from each other by the asymptotic
behaviour of the metric and their topology.

We give in this paper explicit formulae for asymptotically locally flat
(ALF) hyperkähler metrics of type Dk. The Ak case has been known for a
long time as the multi-Taub-NUT metric of Hawking [1] and is given in terms
of one harmonic function V (x) on R3

V (x) = 1/µ +
k+1
∑

1

1/|x − xi|.

The metric is
ds2 = V dx · dx + V −1(dθ + ω)2. (1)

where dω = ∗3dV and ω is to be interpreted as a connection form for a
principal circle bundle over the points of R3 where V is non-singular. Over a
large 2-sphere, this bundle has Chern class k +1. Now V ∼ 1/µ+(k +1)/|x|
is invariant under x 7→ −x and an ALF metric of type Dk is asymptotic
to the quotient of an A2k−5 metric by the action of this reflection. There
are also degenerate cases within the family – the D0 case is the 2-monopole
moduli space calculated in [2] and the D2 case was highlighted in [3] as an
approximation to the K3 metric. Both the derivation and formulas for the D0

metrics benefited from the presence of continuous symmetry groups whereas,
as we show here, the general Dk case has none, which perhaps explains the
more complicated features of what follows. The actual manifold on which the
metric is defined is, following [4], most conveniently taken to be a hyperkähler
quotient by a circle action on the moduli space of U(2) monopoles of charge
2 with singularities at the k points q1, . . . , qk ∈ R3.

The original interest in physics of self-dual gravitational instantons (of
which these metrics are examples) was motivated by their appearance in the
late seventies in the formulation of Euclidean quantum gravity [5, 1, 6]. In
this context they play a role similar to that of self-dual Yang-Mills solutions in
quantum gauge theories [7]. Since then, however, these objects have appeared
in various problems of quantum gauge theory, string theory and M-theory,
some of which we now mention. For concreteness, we concentrate on the case
of the Dk-type ALF gravitational instanton:
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• compactifications of supergravity, string and M-theory on self-dual
gravitational instantons preserve half the amount of supersymmetry
of the original theory – M-theory on Dk ALF spaces, for example,
emerges as a strong string coupling limit of type IIA string theory with
an O6-plane in the presence of k D6-branes [8]

• as discussed by Seiberg and Witten [9], quantum moduli spaces of su-
persymmetric N = 4 SU(2) gauge theories with k fundamental hyper-
multiplets in three dimensions are Dk ALF spaces

• these spaces can also be considered as moduli spaces of solutions of
Bogomolny equations with prescribed singularities, or as moduli spaces
of instantons on multi-Taub-NUT spaces that are invariant with respect
to the S1 symmetry [10].

We derive the formulas by two different methods. The first is based on
unpublished work of the second author carried out for the ALE case during a
visit to the University of Bonn in 1979. It followed the twistor approach to the
Ak case in [11], except that one needed a polynomial solution to x2−zy2 = a
(“Pell’s equation”), where z(ζ) is a quartic, instead of the simple factorization
xy = a as in the Ak case. This was solved by introducing the elliptic curve
w2 = z(ζ) and trying to factorize a = (x−wy)(x+wy) into elliptic functions.
There is a divisor class constraint (considered in 1828 by Abel [12]!) to doing
this.

Given the more recent interpretation of the ALF solutions in terms of
monopoles, the analogous elliptic curve is naturally described as the spectral
curve of the monopole, or the equivalent Nahm data. As with all spectral
curves, it is subject to a transcendental constraint and the key problem in
writing down the metric is to implement analytically this constraint on z(ζ),
cutting down the five coefficients of the quartic to give four coordinates on
the hyperkähler manifold.

The second method uses the generalized Legendre transform construction
of Lindstrom, Ivanov and Roček [13], [14] which has already been successfully
used for k = 0 and has begun to be applied to the problem considered here by
the first author in [15]. In this case the quartic z(ζ) appears in a fundamental
way and the constraint is expressed by a differential equation. We show how
these two expressions for the constraint coincide.

When the singularities of the monopole lie on a line through the origin,
the metric defines an explicit resolution of the Dk quotient singularity by
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a configuration of holomorphic 2-spheres, intersecting according to the Dk

Dynkin diagram. We hope to consider this special case, where there does
exist a circle action, in more detail elsewhere.

2 Singular monopoles

We shall use certain moduli spaces of singular monopoles to obtain our Dk

metrics, as in [15]. There are two approaches to this: through Nahm’s equa-
tions, which give us a concrete analytical description of the objects in the
space and the L2 metric defined on it, and the twistor approach which we
use here. The latter describes a generic point in the moduli space via an
algebraic curve, and allows us the possibility of an explicit determination of
the metric.

2.1 The twistor approach to monopoles

It was shown in [4], using the technique developed in [16] as well as results of
Kronheimer [17], that a charge 2 U(2) monopole solution to the Bogomolny
equations with k singularities is described by a spectral curve S in TP1

and two sections π and ρ of holomorphic line bundles L−µ(k)|S and Lµ(k)|S
respectively. Viewing TP1 as the total space of O(2) we denote by ζ an affine
coordinate on P1 and η the standard linear coordinate in the fibre. Then
Lµ(k) → TP1 denotes the line bundle with transition function ζ−k exp(µη/ζ).

There is a real structure σ given by σ(η, ζ) = (−η̄,−1/ζ̄). The spectral
curve S ⊂ TP1 for a charge 2 monopole is then given by an equation

η2 − yη − z = 0, (2)

where y is a real section of O(2) and z is a real section of O(4). The reality
condition for a section x of O(2n) is x(σ(ζ)) = (−1)nx(ζ)/ζ2n. Thus in the
patch ζ 6= ∞ the section x is given by a polynomial x(ζ) of degree 2n which

satisfies x(−1/ζ̄) = (−1)nx(ζ)/ζ2n.
The position of each of the k singularities of the monopole configuration

can be described by a real section qi of O(2), i = 1, . . . , k. We denote these
sections by P1

qi
⊂ TP1.

The two sections π and ρ on the spectral curve are interchanged by the
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real structure and satisfy

πρ =
k
∏

i=1

(η − qi) . (3)

There is a circle action on this data given by

(ρ, π) 7→ (λρ, λ−1π) (4)

Equation (3) says that the intersection of S with all the curves P1
qi

defines
(if S does not contain one of them as a component) a divisor on S of degree
4k, and the constraint on the spectral curve is expressed by the fact that
we can divide these into two sets of 2k points, one of which is a divisor for
L−µ(k)|S and the other for Lµ(k)|S.

2.2 The twistor approach to the moduli space

The spectral curve description fits into the twistor description of the hy-
perkähler metric on the moduli space, which we recall from [4], and is similar
to the case of non-singular monopoles in [2]. Let

D = {(η, y, z) ∈ O(2) ⊕O(2) ⊕O(4)|η2 − yη − z = 0}

which has a projection p1(η, y, z) = η onto TP1 and another p2(η, y, z) =
(y, z) which represents D as a ramified double covering of O(2) ⊕O(4). We
let V µ be the rank 2 holomorphic vector bundle on O(2)⊕O(4) which is the
direct image sheaf

V µ = (p2)∗(p
∗
1L

µ).

Then the direct image of the equation (3) defines a subvariety Z of V µ(k)⊕
V −µ(k) which will be a model of our twistor space. There is some resolution
of singularities to be carried out, but that doesn’t affect the determination of
the metric. In the twistor space approach we need to find the twistor lines,
which are sections of p : Z → P1. The quadratic and quartic y, z define a
section of O(2) ⊕O(4) and the functorial property of the direct image says
that π, ρ define a lifting to Z ⊂ V µ(k) ⊕ V −µ(k).

Over ζ 6= 0, the direct image equation for Z can be written as

(x1 + ηx2)(y1 + ηy2) =
∏

i

(η − qi) mod η2 − yη − z = 0
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or equivalently,

x1y1 + zx2y2 = p(y, z)

x2y1 + x1y2 + yx2y2 = q(y, z) (5)

where
∏

i

(η − qi) = p + ηq mod η2 − yη − z = 0.

This equation defines a 5-dimensional twistor space for an 8-dimensional
hyperkähler manifold – the moduli space of charge 2 singular monopoles.
There is a symplectic form along the fibres which can be written as in [15] as

ω = 4
2
∑

j=1

dρ(βj) ∧ dβj

ρ(βj)
, (6)

with η = βj being roots of η2 − yη − z = 0, but in coordinates x1, x2, y, z
above as

ω = 4
(x1dx1 + (yx1 − zx2)dx2) ∧ dy + (x1dx2 − x2dx1) ∧ dz

x2
1 − zx2

2 + yx1x2

2.3 The hyperkähler quotient

To obtain a 4-dimensional manifold we shall take a hyperkähler quotient by
a circle action which at the twistor space level is given by (4) and in the
above coordinates is

(x1, x2, y1, y2, y, z) 7→ (λx1, λx2, λ
−1y1, λ

−1y2, y, z).

In coordinates x1, x2, y, z the vector field generated by this action is

X = x1
∂

∂x1

+ x2
∂

∂x2

so that
i(X)ω = 4dy.

Remark: The moment map for this action is 4y. From the point of view of
monopoles this can be interpreted in terms of the centre of mass, in which
case the more natural value would be y/2 which amounts to a rescaling of ω.
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The hyperkähler quotient from the twistor point of view is just the fibre-
wise symplectic quotient, so we set the moment map y = 0 (this means that
the centre of mass of the monopole is at the origin) and take the quotient by
the C∗ action. Putting y = 0 in (5), gives

x1y1 + zx2y2 = p(y, z)

x2y1 + x1y2 = q(y, z) (7)

We need a smooth 4-manifold so the circle action on the zero set of the
hyperkähler moment map must be free. In the nonsingular monopole case
this is automatic: up to a finite covering the moduli space is isometric to a
product M 0

k ×S1×R3. The action is not necessarily free in the singular case.
For example, the moduli space of charge 1 monopoles with k singularities is
the Ak−1 ALF space – multi-Taub-NUT space – and the triholomorphic circle
action has fixed points.

Suppose we have a fixed point, then there is a fixed twistor line, so on each
fibre of the twistor space a fixed point, which from (4) is where x1 = x2 = 0.
This means p = q = 0. But with y = 0, p and q are defined by

r(η) =
∏

i

(η − qi) = p + ηq mod η2 − z = 0

thus

p(z) =
1

2
(r(η) + r(−η)), q(z) =

1

2η
(r(η) − r(−η))

and p and q have a common zero if r(η) and r(−η) have a common zero, i.e.
qi = −qj (for all ζ). If qi = 0, then q(0) = r′(0) so since the qi are distinct,
the action doesn’t have a fixed point. Thus, so long as the positions of the
singularities of the monopole satisfy qi 6= −qj for any i 6= j, we shall produce
a non-singular 4-manifold as a hyperkähler quotient.

The equation of the twistor space of the quotient can be obtained by
using the C∗-invariant coordinates

P = 2x1y1 − p, Q = 2x2y2 − q

and then from (7)
P − p

Q − q
= z

x2

x1

= z
Q + q

P + p
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which gives

P 2 − zQ2 =
k
∏

i=1

(

z − q2
i

)

. (8)

The holomorphic symplectic form along the fibres is then

ω = d

(

1√
z

log
P +

√
zQ

P −√
zQ

)

∧ dz. (9)

Remark: Equation (8) defines a subvariety of the rank 2 direct image vector
bundle V 2µ(2k) over O(4). Concretely, V 2µ has transition matrix

(

P̃
Q̃

)

=
(

cosh(2µ
√

z/ζ)
√

z sinh(2µ
√

z/ζ)
ζ2 sinh(2µ

√
z/ζ)/

√
z ζ2 cosh(2µ

√
z/ζ)

)(

P
Q

)

.

Note that if z̃ = z/ζ4 then

P̃ 2 − z̃Q̃2 = P 2 − zQ2

which describes a global holomorphic quadratic form (u, u) on V , singular on
the zero section z = 0. The null-directions are P ± √

zQ which are globally
defined on the double covering O(2) and are the line bundles L±2µ. This
quadratic form gives a more invariant way of writing (8):

(u, u) =
k
∏

i=1

(

z − q2
i

)

. (10)

2.4 The Dk singularity

The fibre over ζ ∈ P1 in the 3-dimensional variety defined by (10) has the
equation

P 2 − zQ2 =
k
∏

i=1

(

z + p2
i

)

(11)

if we set pi = iqi(ζ). The universal deformation of the Dk singularity has the
form

x2 − zy2 =
1

z

(

k
∏

i=1

(z + p2
i ) −

k
∏

i=1

p2
i

)

+ 2i
k
∏

i=1

piy

and putting

P = iyz −
k
∏

i=1

pi, Q = ix
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we obtain (11). If the p2
i are distinct for a fixed ζ and if none of the pi vanish,

(11) defines a smooth surface and (x, y, z) 7→ (P,Q, z) is a biholomorphic
map.

At the finite number of values of ζ at which a pi vanishes, the fibre is
singular and the actual twistor space Z for the hyperkähler metric involves a
resolution of these singularities. The singular points are replaced by compact
rational curves, but since a generic twistor line misses the singularities, we
do not need to use this fact to calculate the metric. On the other hand, our
formulae are not sufficiently manageable here to use the explicit form of the
metric to describe these resolutions, as was done in the Ak case in [11].

The existence of these compact curves in certain fibres gives us informa-
tion about the Killing fields for the metric. Any such vector field induces
a holomorphic vector field on the twistor space, taking fibres to fibres. The
generic fibre is an affine surface in C3 and so has no compact subvarieties
other than points, since the coordinate functions must be constant. Thus
the vector field must preserve those fibres with rational curves. There are
then two alternatives. One is that it preserves all fibres and therefore defines
a triholomorphic Killing field, but this is impossible: if an ALF space has a
trihilomorphic isometry, then its metric is exactly equal to the metric given
in Eq.(1). The other, since a holomorphic vector field on the sphere has at
most two zeros, is that there are only two singular fibres, which is the case
when all the pi vanish at two antipodal points on P1. In this case the singular
fibre is the Dk singularity x2−zy2 = zk−1. In another paper we shall explore
more explicitly the resolution of this singularity by our twistor lines, but for
the present this argument shows that our metrics for a generic choice of pi

have no Killing fields.

3 The equations defining the constraint

The main problem in determining a metric in the twistor approach is to find
the twistor lines – holomorphic sections of the projection Z → O(4) → P1.
From the construction above, we have a rational curve C in O(4) defined
by z = z(ζ) where z(ζ) is a quartic polynomial, and to lift it further we
needed a section u(ζ) of V 2µ(2k) over C, which from the functorial property
of the direct image was equivalent to a section a = P +

√
zQ of L2µ(2k) on

the spectral curve. For the section u(ζ) to satisfy (10) is equivalent to the
existence of sections a = P +

√
zQ, b = P − √

zQ on the spectral curve S
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satisfying

ab =
k
∏

i=1

(

z − q2
i

)

.

The spectral curve of the monopole had sections π, ρ such that

πρ =
k
∏

i=1

(η − qi) .

Setting

a(η, ζ) = ρ(η, ζ)π(−η, ζ), b(η, ζ) = (−1)kρ(−η, ζ)π(η, ζ)

gives sections a, b of L2µ(2k)|S and L−2µ(2k)|S respectively such that

ab =
k
∏

i=1

(

z − q2
i

)

is satisfied. If the αij are roots of z(ζ) − q2
i (ζ), then a vanishes at points

(η, ζ) = ((−1)jqi(αij), αij) ∈ S ∈ TP1. The section b vanishes at (η, ζ) =
(−(−1)jqi(αij), αij) .

A rotation of R3 acts as a fractional linear transformation on the coordi-
nate ζ. Using such a transformation we can put z(ζ) in the form r1ζ

3−r2ζ
2−

r1ζ with real r2 and r1 ≥ 0. In these coordinates we shall solve the constraint
equation for the spectral curve η2 = z(ζ) using Weierstrass elliptic functions:
η =

√
r1P ′(u)/2 and ζ = P(u) + r2/3r1, where u is the affine coordinate on

C/Γ representing the torus η2 = z(ζ). Note that η → −η corresponds to
u → −u. In what follows we order the points αij so that ρ vanishes at αi2

and αi4, while π vanishes at αi1 and αi3. Let uij be the zeros of the sections
ρ and π corresponding to (qi(αij), αij), then the condition for the sections to
be doubly periodic translates into

2µ
√

r1 +
k
∑

i=1

4
∑

j=1

(−1)juij = 0, (12)

or in terms of z and ζ

∑

ij

(−1)j
∫ αij dζ√

z
= −4µ. (13)
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¿From the fact that a/b is a section of L4µ|S with zeroes at (−1)juij and
poles at −(−1)juij it follows (see [4] and [15]) that with a = P +

√
zQ, b =

P −√
zQ and ζW the Weierstrass zeta function

log
a

b
= −2µ

√
r1 (ζW (u + u∞) + ζW (u − u∞)) + log

∏

ij

σ(u − (−1)juij)

σ(u + (−1)juij)
.

(14)
Returning to z and ζ

1
√

z(ζ)
log

a

b
=
∑

ij

(−1)j
∫ αij dξ

(ξ − ζ)
√

z(ξ)
. (15)

4 From the twistor space to the metric

The first calculation uses Penrose’s original nonlinear graviton construction
[18]. First we calculate the conformal structure and then use the holomorphic
form to determine the volume form. The 4-dimensional spacetime M is the
space of twistor lines, a tangent vector is a holomorphic section of the normal
bundle and it is a null vector for the conformal structure if and only if that
section vanishes somewhere on the twistor line. This is the infinitesimal
version of the statement that two points in M are null separated if the
twistor lines meet.

4.1 The complex conformal structure

The twistor line is given by

η2 = z(ζ) = A
4
∏

j=1

(ζ − aj) (16)

and we define

χ(ζ) =
1√
z

log
a

b
=

1√
z

log
P (ζ) +

√

z(ζ)Q(ζ)

P (ζ) −
√

z(ζ)Q(ζ)
, (17)

so that the symplectic form given by equation (9) is

ω = dχ ∧ dz. (18)
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We can think of the variables aj and A satisfying the constraint (13) as
providing four real coordinates on the Dk ALF manifold M. Later we shall
change coordinates to z(0) and Q(0).

Varying the parameters A and aj under the constraint (13) we are seek-
ing the condition for an infinitesimal variation to vanish. From now on we
denote the infinitesimal variations by a prime, e.g. A′, a′

j, z
′ etc. Putting the

variation of equation (16) to zero we have

z′

z
=

A′

A
−

4
∑

j=1

a′
j

ζ − aj

= 0, (19)

while the vanishing of the variation of the constraint (13) gives

∑

ij

(−1)j
α′

ij
√

z(αij)
=
∑

ij

(−1)j
∫ αij dζ

2
√

z(ζ)

(

A′

A
−
∑

l

a′
l

ζ − al

)

, (20)

and for the second term on the right hand side we note that

1

2

∑

ij

(−1)j
∫ αij dζ

(ζ − al)
√

z(ζ)
=

1

2
χ(al) =

= lim
ζ→al

1

2
√

z(ζ)
log

P (ζ) +
√

z(ζ)Q(ζ)

P (ζ) −
√

z(ζ)Q(ζ)
=

Q(al)

P (al)
, (21)

as z(al) = 0. Let us introduce a function

L(ζ) =
∑

i

li(ζ)

z(ζ) − q2
i (ζ)

, (22)

where li are cubic polynomials in ζ such that li(αij) = qi(αij) (Lagrange
interpolation polynomials). Also let

l = lim
ζ→∞

ζL(ζ). (23)

Then using the constraint equation (13) and substituting α′
ij in equation (20)

we find
A′

A
(2µ − l) =

4
∑

l=1

a′
l

(

L(al) −
Q(al)

P (al)

)

(24)
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The variation of χ is

χ′ =
(

L(ζ) − 1

2
χ(ζ)

)

z′

z
+

4
∑

l=1

a′
l

ζ − al

[

L(al) −
Q(al)

P (al)

]

. (25)

Requiring the variation of χ and z to vanish gives firstly

4
∑

l=1

a′
l

ζ − al

[

L(al) −
Q(al)

P (al)

]

= 0. (26)

and secondly, eliminating A′ from the equations (19) and (24) leads to

4
∑

l=1

a′
l

ζ − al

[

2µ − l + al

(

L(al) −
Q(al)

P (al)

)]

= 0. (27)

Equations (26) and (27) give a system of two equations cubic in ζ and linear
in a′

l. Our task is to find the condition on the coefficients of these equations
to have a common solution for ζ. This condition is provided by the vanishing
of the resultant R of the system (26, 27), which is a polynomial in a′

l of degree
six. However, if a′

j = 0 then ζ = aj solves the equations and so R must be
divisible by a′

1a
′
2a

′
3a

′
4. This means

S(a′
l) = R(a′

l)/(a
′
1a

′
2a

′
3a

′
4) (28)

is a polynomial which is quadratic in the variations and so is the quadratic
form defining the conformal structure.

For convenience we introduce

Ci = L(ai) −
Q(ai)

P (ai)
= L(ai) −

1

2
χ(ai), Di = 2µ − l + aiCi. (29)

Computing the resultant (see Appendix) we find

S(dai) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑4
i=1 Didai 0 a2

1D1 a2
2D2 a2

3D3 a2
4D4

0 0 a1D1 a2D2 a3D3 a4D4

0 −∑4
i=1 Didai/ai D1 D2 D3 D4

∑4
i=1 Cidai 0 a2

1C1 a2
2C2 a2

3C3 a2
4C4

0 0 a1C1 a2C2 a3C3 a4C4

0 −∑4
i=1 Cidai/ai C1 C2 C3 C4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(30)

where we use differentials dai instead of the primes a′
i.
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4.2 The real metric

To impose the reality condition, we note that the map ζ → −1/ζ̄ takes
the set of four roots {a1, a2, a3, a4} into itself, so that for a permutation
σ : (1, 2, 3, 4) → (2, 1, 4, 3) we have aσ(i) = −1/āi. Now noting that

L(−1

ζ̄
) = ζ2L(ζ) − lζ, (31)

χ(−1

ζ̄
) = ζ2χ(ζ) − 4µζ, (32)

it follows that

Cσ(i) = aiDi, Dσ(i) = −aiCi (33)

aσ(i)Cσ(i) = −Di, aσ(i)Dσ(i) = Ci (34)

a2
σ(i)Cσ(i) =

Di

ai

, a2
σ(i)Dσ(i) = −Ci

ai

. (35)

With these relations, one can easily check that S̄ = S/(a1a2a3a4), and the
quantities

A0 =
4
∑

i=1

Cidai, B0 =
4
∑

i=1

Didai (36)

satisfy

A0 =
4
∑

i=1

Di

dai

ai

, B0 = −
4
∑

i=1

Ci

dai

ai

. (37)

Thus, we find that the metric is proportional to the real symmetric two-form

1√
a1a2a3a4

S = (A0B0) G

(

A0

B0

)

, (38)

with

G =
1√

a1a2a3a4

(

[a2D, aD, aC,C] −[a2D, aD,D, aC]
[aD, a2C, aC,C] [aD,D, a2C, aC]

)

. (39)

Here we use the notation

[e, f, g, h] = det











e1 f1 g1 h1

e2 f2 g2 h2

e3 f3 g3 h3

e4 f4 g4 h4











. (40)
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Observing that

a1a2a3a4 = [aD,D, a2C, aC]/[aD,D, a2C, aC]

= −[a2D, aD,D, aC]/[aD, a2C, aC,C] (41)

we have |[aD,D, a2C, aC]|G given by

(

[a2D, aD, aC,C][aD,D, a2C, aC] [aD,D, a2C, aC][aD, a2C, aC,C]

[aD, a2C, aC,C][aD,D, a2C, aC] [aD,D, a2C, aC][aD,D, a2C, aC]

)

.

(42)
Utilizing the identity relating the determinants derived in the Appendix

[aC,C, a2D, aD][a2C, aC, aD,D] =

[C, aC, a2C, aD][C, aC, a2C, aD] + [C, aC,D, aD]2, (43)

we have
|[aD,D, a2C, aC]|
[aD,D, aC,C]2

G =

(

1 + γγ̄ γ̄δ
γδ̄ δδ̄

)

, (44)

where

γ =
[aD, a2C, aC,C]

[aD,D, aC,C]
, δ =

[aD,D, a2C, aC]

[aD,D, aC,C]
. (45)

Next we identify the differentials A0 and B0 in terms of the coordinates
z(0), χ(0).

A0 = (2µ − l)
dz(0)

z(0)
, B0 = dχ(0) −

(

L(0) − 1

2
χ(0)

)

dz(0)

z(0)
(46)

¿From the definition of χ (17) we have

dχ = 2
dQ

P
+





Q

P
− Q

P

k
∑

j=1

z

z − qj

− 1

2
χ





dz

z
, (47)

thus

B0 = 2
dQ

P
+





Q

P
− Q

P

k
∑

j=1

z(0)

z(0) − qj

− L(0)





dz(0)

z(0)
. (48)

The conformal structure, from (44) can therefore be written as

ds2 ∼ A0A0 + (γ̄A0 + δ̄B0)(γA0 + δB0). (49)
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The volume corresponding to the expression on the right-hand-side is

Vol = −(2µ − l)2|δ|2
zz̄P P̄

dz ∧ dz̄ ∧ dQ ∧ dQ̄. (50)

On the other hand the volume should be equal to 1
4
ω ∧ ω̄ for ω given by

equation (9). Thus comparing the two expressions for ω = 2dQ ∧ dz/P we
have the final metric

ds2 =

∣

∣

∣

∣

∣

z

(2µ − l)δ

∣

∣

∣

∣

∣

(A0A0 + (γ̄A0 + δ̄B0)(γA0 + δB0)). (51)

5 The generalized Legendre transform

We have obtained the hyperkähler metrics above by following the twistor
space approach. In this section, we apply a different technique given by
generalized Legendre transform [14, 19]. It has been successfully applied in
the case of D0 ALF in [13] to reproduce Atiyah-Hitchin metric, and to study
Dk ALF metrics in [20].

We start with a brief outline of the construction. Using, as earlier, z as
one of the complex coordinates on the fibres of the twistor space. In the
patch ζ 6= ∞ it has the form

z(ζ) = z + vζ + wζ2 − v̄ζ3 + z̄ζ4. (52)

The second coordinate χ (see (17)) is such that the holomorphic twistorial
two-form has the form ω = dχ ∧ dz. If the section χ is represented by the
function χ1 in the patch ζ 6= ∞ and χ2 in the patch ζ 6= 0, then we define a
function f̂ and a contour C such that

∮

C

dζ

ζj
f̂ =

∮

0

dζ

ζj−2
χ1 −

∮

∞

dζ

ζj
χ2. (53)

Given f̂ we define G such that ∂G/∂z(ζ) = f̂/ζ2. Next, we define the function
of the coefficients of z(ζ)

F (z, v, w, v̄, z̄) =
1

2πi

∮

C

dζ

ζ2
G. (54)

The generalized Legendre transform construction generates a formula for a
Kähler potential K(z, z̄, u, ū) of the coordinates z and u. We impose the
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differential constraint ∂F/∂w = 0 which determines w as a function of z and
v, and perform a Legendre transform on F with respect to coordinates v and
v̄:

K(z, z̄, u, ū) = F − vu − v̄ū, u =
∂F

∂v
, ū =

∂F

∂v̄
. (55)

In our case the above procedure produces

∮

C

dζ

ζj
f̂ = −4µ

∮

0

dζ

ζj
ζ +

(∮

0
−
∮

∞

)

dζ

ζj−2
χ1, (56)

since we chose uij so that (12) holds, we have

F (z, v, w, v̄, z̄) = −4µ
1

2πi

∮

0

dζ

ζ

z(ζ)

ζ2

− 1

2πi

k
∑

i=1

∑

l=0,1

∮

Cl
i

dζ

ζ

√

z(ζ) + (−1)lqi(ζ)

ζ
log(

√

z(ζ) + (−1)lqi(ζ)).

A careful derivation of this formula can be found in [15]. For each i the
pair (C0

i , C
1
i ) consists of 4 figure-eight shaped contours on the Riemann

surface η2 = z(ζ), each contour surrounding two out of the eight points
(η, ζ) = (±qi(αij), αij). The projection of C0

i on the ζ plane coincides with
the projection of C1

i . The two contours C1
i have figure-eight shapes encircling

points αij clockwise for odd j and counterclockwise for even j. With this in
mind we obtain

∑

l=0,1

1

2πi

∮

Cl
i

dζ√
z
f(ζ) log(

√
z + (−1)lqi) = 2

4
∑

j=1

(−1)j
∫ αij dζ√

z
f(ζ). (57)

For convenience let us define matrices

F =







Fvv Fvw Fvv̄

Fwv Fww Fwv̄

Fv̄v Fv̄w Fv̄v̄





 , (58)

where the subscripts of F denote partial derivatives (e.g. Fvw = ∂2F/∂v∂w),
and

G =







Gvv Gvw Gvv̄

Gwv Gww Gwv̄

Gv̄v Gv̄w Gv̄v̄





 = F−1, (59)
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where the superscripts merely label the components of G. The components
of the metric are

Kzz̄ = Fzz̄ − FzaG
abFbz̄ (60)

Kuz̄ = Fz̄aG
av, Kuū = −Gvv̄ (61)

where a and b are summed over the values (v, w, v̄). And the metric is

ds2 =
−1

Gvv̄

(

−Gvv̄(Fzz̄ − Fza′Ga′b′Fb′z̄ + Fza′Ga′v̄(Gvv̄)−1Gvb′Fb′z̄)dzdz̄+

+ (FzbG
bv̄dz − Gvv̄du)(Fz̄aG

avdz̄ − Gvv̄dū)
)

(62)

Since for a = v as well as for b = v̄ we have Gvv̄Gab = Gav̄Gvb, we introduce
also an index a′ taking values w, v̄ and b′ with values v, w. The unwieldy
coefficient of dzdz̄ simplifies due to the identity (see Appendix for the proof)

det K(z,u) = det

(

Fzz̄ − Fza′Ga′b′Fb′z̄ Fza′Ga′v̄

Gvb′Fb′z̄ −Gvv̄

)

= 1, (63)

and the metric has the following simple form

ds2 =
1

β

(

dzdz̄ + (αdz + βdu)(ᾱdz̄ + β̄dū)
)

(64)

where
α = FzbG

bv̄, β = −Gvv̄. (65)

To find expressions for the exact form of α, β, and u note that

u = Fv = − 1

2πi

k
∑

i=1

∮

C1

i

dζ

ζ

1√
z

log(
√

z − qi), (66)

ū = Fv̄ =
1

2πi

k
∑

i=1

∮

C1

i

dζ

ζ

ζ2

√
z

log(
√

z − qi), (67)

Fw = −4µ − 1

2πi

k
∑

i=1

∮

C1

i

dζ√
z

log(
√

z − qi). (68)

If we introduce pn defined by

pn =
1

2πi

k
∑

i=1

∮

C1

i

dζ

2

ζn+2

z

(

− log(
√

z − qi)√
z

+
1√

z − qi

)

(69)
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then

G−1 = F =







−p−2 −p−1 p0

−p−1 −p0 p1

p0 p1 −p2





 , (70)

and
Fzv = −p−3, Fzw = −p−2, Fzv̄ = p−1. (71)

Let D = det F, then

α =
1

D

∣

∣

∣

∣

∣

∣

∣

p−3 p−2 p−1

p−2 p−1 p0

p−1 p0 p1

∣

∣

∣

∣

∣

∣

∣

, β =
1

D

∣

∣

∣

∣

∣

p−1 p0

p0 p1

∣

∣

∣

∣

∣

. (72)

6 Comparison of the two approaches

From the form of the one-forms A0 and B0 of equation (46) combined with
the expression (15, 17) for χ we can identify u = χ(0) and

A0 = (2µ − l)
dz

z
, B0 = du − (L(0) − u)

dz

z
. (73)

The two expressions (51),(64) for the metric coincide if

α =

(

γ − (L(0) − u)
δ

2µ − l

)

eiφ, (74)

β = z
δ

2µ − l
eiφ (75)

for some real-valued function φ. To start, we use the expressions (45) for δ
and γ to find

δ

2µ − l
=

[1, a, aC, a2C]

[(2µ − l)a + a2C, 1, aC, C]
(76)

γ − (L(0) + u)δ

2µ − l
= − [L(0) + u − C, a, aC, a2C]

[(2µ − l)a + a2C, 1, aC, C]
(77)

On the other hand, introducing Πl =
∏

j 6=l(al − aj) and using (69), one
finds

p2 = −2µ − l

z̄
− 1

z̄

4
∑

l=1

a4
l

Πl

Cl, (78)
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pn = −1

z̄

4
∑

l=1

an+2
l

Πl

Cl, −2 ≤ n ≤ 1 (79)

p−3 = −1

z̄

1

a1a2a3a4

(L(0) − 1

2
χ(0)) − 1

z̄

4
∑

l=1

1

alΠl

Cl, (80)

which leads to the following expressions for the determinants (see Appendix)

z̄3

∣

∣

∣

∣

∣

∣

∣

p−3 p−2 p−1

p−2 p−1 p0

p−1 p0 p1

∣

∣

∣

∣

∣

∣

∣

=
1

a1a2a3a4

[L(0) − 1
2
χ(0) − C, a, aC, a2C]

[1, a, a2, a3]
, (81)

p−1p1 − p2
0 =

−1

z̄2

[1, a, aC, a2C]

[1, a, a2, a3]
, (82)

z̄3D = − [(2µ − l)a + a2C, 1, aC, C]

[1, a, a2, a3]
. (83)

Indeed, recalling that a1a2a3a4 = z/z̄ we find

α = − z̄

z

[L(0) − 1
2
χ(0) − C, a, aC, a2C]

[(2µ − l)a + a2C, 1, aC, C]
, (84)

β = z̄
[1, a, aC, a2C]

[(2µ − l)a + a2C, 1, aC, C]
. (85)

Thus the relations (74) indeed hold with eiφ = z̄/z.
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Appendix

Resultants

Here we find the condition on coefficients Ci and Di for the following system
of equations to have a solution in ζ

4
∑

j=1

Cj

ζ − aj

= 0,
4
∑

j=1

Dj

ζ − aj

= 0.
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To compare with the expressions of Section 4 put Cj = Cjdaj and Dj =
Djdaj. For convenience let us introduce polynomials h(ζ) =

∏4
i=1(ζ−ai) and

gj(ζ) = h(ζ)/(ζ − aj). Then for

M(ζ) =
4
∑

i=1

Cigi(ζ), N(ζ) =
4
∑

i=1

Digi(ζ), (86)

the above system is equivalent to the system of two third order equations
M(ζ) = 0 = N(ζ). M and N have no common root if and only if the
six polynomials M(ζ), ζM(ζ), ζ2M(ζ), N(ζ), ζN(ζ), ζ2N(ζ) are linearly in-
dependent. These are fifth order polynomials and can be expanded in the
basis formed by e.g. h(ζ), ζh(ζ), gi(ζ).

It is convenient to introduce

A0 =
4
∑

i=1

Ci, B0 =
4
∑

i=1

Di, A1 =
4
∑

i=1

aiCi, B1 =
4
∑

i=1

aiDi, (87)

then

ζM(ζ) = A0h(ζ) +
∑

ajCjgj(ζ) (88)

ζ2M(ζ) = A0ζh(ζ) + A1h(ζ) +
∑

a2
jCjgj(ζ), (89)

with analogous expressions for N(ζ).
Now the condition for the existence of a solution is the vanishing of the

Sylvester determinant

R =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

B0 B1 a2
1D1 a2

2D2 a2
3D3 a2

4D4

0 B0 a1D1 a2D2 a3D3 a4D4

0 0 D1 D2 D3 D4

A0 A1 a2
1C1 a2

2C2 a2
3C3 a2

4C4

0 A0 a1C1 a2C2 a3C3 a4C4

0 0 C1 C2 C3 C4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(90)

One finds R to be given by

R = εijklCiDjak(A0Dk − B0Ck)
[

a2
l (A0Dl − B0Cl) − al(B1Cl − A1Dl)

]

. (91)
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Introducing A2 =
∑4

i=1 Ci/ai and B2 =
∑4

i=1 Di/ai we have

R =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

B0 0 a2
1D1 a2

2D2 a2
3D3 a2

4D4

0 0 a1D1 a2D2 a3D3 a4D4

0 −B2 D1 D2 D3 D4

A0 0 a2
1C1 a2

2C2 a2
3C3 a2

4C4

0 0 a1C1 a2C2 a3C3 a4C4

0 −A2 C1 C2 C3 C4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(92)

Determinant relations

Computing the determinant of the 8 × 8 matrix

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aC 0
C C/a

a2D aD
aD 0
0 D
D D/a
0 C
0 aC

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aC 0
0 C/a
0 aD

aD 0
−aD D

0 D/a
−aC C
−a2C aC

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aC 0
0 C/a
0 aD

aD 0
0 D
0 D/a
0 C

−a2C aC

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (93)

On the other hand the same determinant equals

−[aC,C, a2D,D][aC,C,D,D/a] + [C/a,C, aC,D][aC, a2D, aD,D]

+[aC,C, aD,D]2. (94)

Thus
[aC,C, a2D, aD][a2C, aC, aD,D] =

[C, aC, a2C, aD][C, aC, a2C, aD] + [C, aC,D, aD]2 (95)

which produces equation (43) used in Section 4.

The determinant of K(z,u)

The function z(ζ) trivially satisfies the relations z(ζ)zz̄ = −z(ζ)vv̄, z(ζ)za′ =
z(ζ)v(a′−1), z(ζ)b′z̄ = −z(ζ)(b′+1)v̄, which implies analogous relations for F.

det K(z,u) = −Gvv̄Fzz̄ + Fza′

(

Gvv̄Ga′b′ − Ga′v̄Gvb′
)

Fb′z̄. (96)
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For an n×n matrix A we denote by A(k) the k-th compound matrix, which is
the matrix composed of all order k minors of A. The adjugate compound ma-
trix adj(k) is obtained from A(k) by replacing each k-minor by its complemen-
tary minor with the corresponding factor of (−1)l and transposition. In other
words, due to the Laplace expansion of determinants, A(k)adj(k)A = det A 1.
Thus from the Binet-Cauchy theorem

G(2) =
(

F (2)
)−1

=
1

det F
adj(2)F. (97)

Thus utilizing the relations Fzz̄ = −Fvv̄, Fza′ = Fv(a′−1), and Fb′z̄ = −F(b′+1)v̄

we have

det K(z,u) =
1

det F

(

Fvv̄F
(1)
vv̄ − Fv(a′−1)F(b′+1)v̄adj(2)F(v,a′;b′,v̄)

)

. (98)

The expression in brackets above is exactly the Cauchy expansion for det F.
Thus we have det K(z,u) = 1.

Relations between the pn and Cl expressions

We observe that

[1, a, a2, a3] = εijklΠiΠj

ak − aj

aj − ai

, (99)

without summation over the repeated indices. Then

(2z̄)2(p−1p1 − p2
0) =

∑

i,l

al − ai

ΠiΠl

aiCia
2
l Cl =

=
−1

2

1

[1, a, a2, a3]
εijkl(ak − aj)aiCia

2
l Cl = − [1, a, aC, a2C]

[1, a, a2, a3]
. (100)

Next note the identities

4
∑

l=1

ak
l

Πl

=







1, k = 3
0, 0 ≤ k ≤ 2
−1/a1a2a3a4, k = −1

(101)

Using these we have

−(2z̄)3

∣

∣

∣

∣

∣

∣

∣

p−3 p−2 p−1

p−2 p−1 p0

p−1 p0 p1

∣

∣

∣

∣

∣

∣

∣

=
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= det











1/a
1
a
a2











diag(
1

Π1

,
1

Π2

,
1

Π3

,
1

Π4

)(C − L(0) +
1

2
χ(0), aC, a2C, a) =

= − 1

a1a2a3a4

[L(0) − 1
2
χ(0) − C, a, aC, a2C]

[1, a, a2, a3]
,

as well as

(2z̄)3D = det











1
a
a2

a3











diag(
1

Π1

,
1

Π2

,
1

Π3

,
1

Π4

)
(

C, aC, a2C + a(2µ − l), 1
)

=

= − [(2µ − l)a + a2C, 1, aC, C]

[1, a, a2, a3]
. (102)
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in Ouvre Complétes, Cristiania (1881).
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