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Abstract
Lee and Drysdale [13] and Sharir [16] have given suboptimal �������
	������� algorithms for

computing the Voronoi diagrams of line-segments or discs in the plane.
This paper adapts their methods to constructing the Voronoi diagram for disjoint convex sites

in three dimensions.
Let ������� be an upper bound on the number of features in any diagram involving � sites

in three dimensions. Even for point sites, ������� is �����  � , so it is reasonable to assume that�����������  is monotonically nondecreasing. Under this assumption, our construction with � sites
takes optimal time ������������� .

Results of Aurenhammer’s [3] and Chazelle’s [9] show that if the sites are spherical then the
diagram can be constructed in time �����  � , but ������� has yet to be determined for more general
classes of site.

The sites are assumed to be compact and semi-algebraic of bounded algebraic complexity. For
the sake of simplicity we assume that the sites are strictly convex and rounded (having no sharp
corners nor edges). Assuming strict convexity simplifies the analysis, as does the roundedness
assumption, though the latter is neither necessary nor restrictive.

1 Introduction
Given a set � of � sites, nonempty subsets of ��� , their Voronoi diagram is the set of points equidistant
from two or more closest sites. This definition makes most sense when the sites are pairwise disjoint�

E-mail paul j harrington@hotmail.com, odunlain@maths.tcd.ie, yap@cs.nyu.edu. A preliminary version of these
results was presented at the third Irish conference on the Mathematical Foundations of Computer Science and Information
Technology, Dublin, July 2004.
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Figure 1: two discs and one regular � -gon, � Voronoi edges (Paragraph 1.1). The edges, which are
unbounded, are indicated by broken curves.

closed, bounded, and convex [14]. For a general survey of Voronoi diagrams and their applications,
see [4].

In two dimensions the complexity of constructing Voronoi diagrams is well-understood. Of par-
ticular interest is calculating the Voronoi diagram of polygonal sites, and optimal  "!��$#&%(')�+* con-
struction times have been achieved [18,11]. Both these algorithms adapt to computing the Voronoi
diagram for a set of circular sites in two dimensions.

Naturally, one wants to develop algorithms for constructing Voronoi diagrams in three dimen-
sions. It seems that the simplest case to consider, apart from point-sites which are fully understood,
is the case of spherical sites. Here the complexity of the diagram is known to be  "!��+�* and can be
constructed in time  "!��,�* , from a reduction to convex polyhedra in ��- [3], and an optimal algorithm
for their construction [9]. So the case of spherical sites is also understood.

However, these reductions for spherical sites can hardly furnish algorithms for polyhedral sites,
where the complexity of the Voronoi diagram is as yet not settled. We continue, therefore, to study
how more mainstream 2-dimensional methods can be adapted to three dimensions.

We base our algorithm here on Sharir’s  "!��$#&%.'  �/* method for circular sites in two dimensions
[16], which itself is a modification of Lee and Drysdale’s method [13].

For the rest of this paper we shall be considering a set � of � disjoint convex sites: �10 23�42 .
The sites are assumed to have piecewise algebraic boundaries composed of a bounded number of
algebraic pieces each of bounded degree. It follows that the descriptive complexity of the diagram
depends only on the number � of sites and may be written as 56!7�/* .
(1.1) It is to be remarked that the algebraic complexity of sites does not noticeably affect the number
of features in 2-dimensional Voronoi diagrams, which have at most 8�9:� features (roughly) no matter
how complex the sites may be algebraically. On the other hand, in three dimensions, without the
algebraic degree bound, three sites can have an arbitrary number of Voronoi edges. Figure 1 gives an
example. A regular � -gon is sandwiched between two discs of equal radius, between the inner and
outer radius of the � -gon. There are � unbounded Voronoi edges.
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(i) (ii) (iii)

Figure 2: convex sets in 2 dimensions, (i) convex, (ii) strictly convex, and (iii) rounded.

2 Voronoi diagrams

(2.1) Three-dimensional space �;� is equipped with Euclidean distance: if <=0 !7>@?BADC:?�AFEG?�* andH 0I!�>KJ�ADC�JLAFE:JF* , thenM !
</A H *N0PO HRQ <SO�0UT !�>KJ Q >V?W* YX !7CZJ Q C(?�* SX ![E:J Q EG?W* W\
If ] is a nonnegative real number then ^_!
</AD]`* will denote the ball centred at < of radius ] . It may be
open or closed according to context.

^_!a<bAD]Z*N0dcB>fef� �hg Oi> Q <)Okjl]Zm (open), or ^_!
</AD]`*N0=cB>fef� �hg Oi> Q <)ORno]Zm (closed).

(2.2) Restriction on sets of sites. Throughout this paper, � will be a set of disjoint, nonempty,
closed, bounded, strictly convex, rounded sets (Definition 2.3) in ��� , which we shall call sites. It will
be assumed that each site is a semi-algebraic set of bounded algebraic complexity.

(2.3) Definition A set prqs�t� is strictly convex when for any >/ADCuevp�A the closed line-segment >VC
is contained in p and the open line-segment >VC is contained in the interior of p .

For any set p , its boundary (those points which are interior neither to p nor its complement) is
denoted w�p .

A convex set p is rounded if for every point <dexw@p there exists exactly one plane through <
tangent to p . Intuitively, p has no sharp corners or edges. See Figure 2.

(2.4) Proposition If p is bounded,1 nonempty, closed, and convex, then for every >yef��� there exists
a unique point C in p closest to > . The point C depends continuously on > , >_0zC if and only if >fe{p ,
and if >v|e}p then C"e}w@p (See, for instance, [14, Lemma 1.1]).

(2.5) Definition Write ~@�)!7>K* for the point in p closest to > . The map ~�� is called inward projection
onto p . Define

M !7>/Aiph*N0POi> Q ~@�)!�>K*�O , the distance from > to p .

(2.6) It follows from the above proposition that
M !�>/Aip�* is continuous in > .

(2.7) Definition For any point >�e��;� , the clearance sphere at > is the possibly degenerate sphere
whose centre is > and whose radius is the distance from > to the closest site or sites. See Figure 3.

The Voronoi diagram ��%.�G!��t* is the set of points > in � � such that the clearance sphere at >
touches two or more sites in � .

The open Voronoi cell of a site p in ��%.�G!��t* consists of all points whose clearance spheres meetp and no other site. The (closed) Voronoi cell consists of all points whose clearance spheres meet p .
1 � need not be bounded, but in this paper it always is.
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Figure 3: Clearance sphere: > is on ^_![p�AF��* , common to the p - and � -cells in ��%.�G![p�Ai�6AF��* , but at
positive distance from the � -cell.

(2.8) Degenerate clearance spheres, that is, of zero radius, are possible: > has nondegenerate clear-
ance sphere if and only if >fey�;�����l� . Since the sites are disjoint, the Voronoi diagram is contained
in � � ���l� .

We remark without proof that the ‘roundedness’ requirement is not restrictive: suppose that for
every pPev� , p/�k0UcB> g M !�>/Aiph*�ns�`m . Let �K��0Uc:pb� g pPe��;m . If � is small enough so all sites in��� are disjoint, then ��%(�G![�;* and ��%(��!��K�i* coincide and if � satisfies all assumptions (2.2) except not
all sites are rounded, then �K� satisfies all the assumptions 2.2, including the semi-algebraic property,
and all sites are rounded.

(2.9) Definition The bisector ^_![p�AF��* separating p from � consists of all points >ve���� such thatM !7>/Aiph*N0 M !�>/Ai��* .
(2.10) Lemma ^_!�p�Ai�h* is unbounded and homeomorphic to a plane. Explicitly, let � be the plane
bisecting the closest pair of points in p and � : then the orthogonal projection from the bisector
onto the plane is a homeomorphism.

Partial proof. We shall show that the projection is injective.^_!�p�Ai�h* is a differentiable surface, and for any >�e�^"!�p�Ai�h* , if < and H are the points where its
clearance sphere touches < and H respectively, then the tangent plane � at > bisects the line-segment< H , so < and H are reflections of each other in � [14, Lemma 1.3].

Without loss of generality � is the C�E -plane, with p to its left and � to its right. If orthogonal
projection from ^"!�p�Ai�h* onto the C�E -plane is not injective, then there exist two points ![�tJ�A��tA��b*
and ![�  A��tA��b* in ^_![p�AF��* . Let � be the plane through these two points and parallel to the E -axis.^_![p�AF��*Y�{� contains two co-horizontal points, so it contains a local maximum or minimum in theE -direction, call it > . At this point > the tangent line � to ^"!�p�Ai�h*Y�f� is parallel to the > -axis. Let���z� be the tangent plane to ^_![p�Ai��* at > and </A H the points where its clearance sphere touches p
and � : < and H are mirror images in � , so  < H is perpendicular to � , hence perpendicular to the > axis.
This means that < and H have the same > -coordinates, which is impossible. Q.E.D.

(2.11) Here we introduce and define the features of ��%.�G![�t* : its cells, faces, edges, and vertices.
Cells have already been defined. For any sites p�Ai�=e}� , let ¡ be the set

cB>fe{^_!�p�Ai�h* g !£¢,p¥¤¦e}�t*§![p$¤+¨0spo©ªp¥¤+¨0s�=« ! M !7>/Aiph*N0 M !7>/Ai�h*�j M !7>/AFp$¤a*D*�*Fm \
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¡ is a relatively open subset of ^"!�p�Ai�h* . An open face (common to the boundary of the p - and � -
cells) is a (path)-connected component of ¡ , and a face is the closure of an open face. The trisector�h!�p�Ai�¬Ai��* separating three sites is the set of points equidistant from all three. Let � be the set of
points

cB> g !£¢,p ¤ e}�t*§![p ¤ ¨01p©ªp ¤ ¨0s�©yp ¤ ¨0s�s« ! M !�>/Aiph*N0 M !7>/Ai�h*S0 M !7>/AF��*;j M !7>/Aip ¤ *�*D*Fm \
� is a relatively open subset of the trisector ��![p�Ai�6AF��* . An open edge is a connected component
of � , and an edge is the closure of an open edge. A vertex is a point on the boundary of an open
edge. Edges can have zero, one, or two incident vertices. Edges with no incident vertex either extend
infinitely in both directions or are bounded closed loops. Edges with one incident vertex extend
infinitely in one direction.

The trisector is a 1-dimensional curve, possibly with several connected components (see Figure
1). There is a bound on the number of components since sites are semi-algebraic of bounded algebraic
complexity.

(2.12) Assumptions of general position. We make the following assumptions on convexity and
general position for the sites in � . In addition to the restrictions stated in Paragraph 2.2,

® The leftmost endpoints of all sites have distinct > -coordinates.

® No four sites have a common tangent plane.

® If p is a site and ¯ an edge on its cell boundary in ��%.�W!��t* , then ~K�S!�¯�* intersects every plane
orthogonal to the > -axis in a finite number of points.

® If ° is a point on w@p which is either a projected vertex or a stationary point with respect to the> -direction on a projected edge, or a seam edge (see Paragraph 3.10 below), and ± is another
such point, then ° and ± have different > -coordinates.

3 Frustums, the convex hull, and the inward projection of cell
boundary

Our algorithm is classical divide-and-conquer, partitioning � into two sets, calculating the diagrams
for each, and combining the results into one diagram. Later in this section (paragraph 3.15), the
output of the algorithm will be specified fully.

The algorithm needs the Voronoi cells to be divided into simple pieces which will be called frus-
tums. When combining two Voronoi diagrams, pairs of frustums will be processed. The combining
process will be initiated from certain points called starter points, and it will be necessary to find the
frustums containing the starter points in each diagram. Hence we need a point-location method for
frustums.

(3.1) w�5 is not always homeomorphic to a plane or sphere. Let 5 be the cell containing a sitep in ��%.��![�t* . The decomposition of 5 into frustums could be based on some kind of trapezoidal
decomposition of the faces on w@5 . This is adequate if 5 is bounded, since w@5 is, roughly speaking,
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Figure 4: part of an unbounded cell 5 where w@5 is not homeomorphic to a plane.

exposed

Figure 5: Convex hull, exposed and hidden regions, which are separated by seams.

a planar graph.2 However, if 5 is unbounded, then w@5 need not be homeomorphic to a plane nor a
sphere (Figure 4, also Figure 1).

For this reason the decomposition begins by projecting the faces, edges, and vertices from w@5
onto w@p , using the inward projection ~�� (2.5). This map is not necessarily surjective: where it isn’t,
the site meets the boundary of the convex hull. Convex hulls are discussed extensively in [7,17].

(3.2) Definition The convex hull ²³!��t* is the smallest convex set containing � � , that is, the inter-
section of all closed halfspaces containing all the sites in � .

Let p be a site and < a point in its boundary w@p . By definition, w@pµ´¶pµ´¶²�![�;* . Call < exposed
if it is in the boundary of ²�![�t* and hidden if it is interior to ²�!��t* . See Figure 5.

If the cell 5 containing a site p is bounded, then ~K� g w@5µ·¸w@p is a homeomorphism. If the cell
is unbounded, then ~@� g w�5=·¹w@p is not surjective, as the following lemma shows.

(3.3) Lemma Let p be a site, 5 the cell containing p in ��%.�W!��t* . Then (i) the restriction of ~,� to the
boundary w@5 of 5 is injective, and (ii) ~��)!7w@5�* consists of the hidden points on w�p .

Proof. Given <ue³w@p , let � be the tangent plane to p at < , and � be the ray extending from < in
the direction of the outward unit normal — that is, ��0~)º J� !
<K* .

For (i), note that if >/AD> ¤ e}� and Oi> ¤ Q <)O4»IOi> Q <SO then the closed ball ^"!7>/A(Oi> Q <)OW* intersectsp only at < and is strictly interior to the open ball ^_!�> ¤ A(Oi> ¤ Q <)OW* except at < . In particular if >ye{w@5 ,
so ^_!�>/A(Oi> Q <)OW* touches another site � at a point H , then H is interior to ^_!7> ¤ A(Oi> ¤ Q <)OW* and > ¤ , being
closer to � than to p , is not in 5 . Therefore � can intersect w@5 at at most one point, which proves
that the restriction of ~@� to w@5 is injective.

(ii) If < is exposed, then the open half-space bounded by � and containing � does not intersect²�![�;* . Therefore, for any point >re¼� , the closed ball ^_!7>/A(Oi> Q <)OW* , which is interior to this
halfspace except at < , intersects ²�![�;* only at < . But ²³!��t*t���o���1p , so > is closer to p than any
other site, and cannot belong to w@5 , so <½|ef~K��!7w@5�* .

2It may have multiple edges and closed loops without incident vertices.

6



e

ee

e

t

t

t
t

t

p

p

p

Figure 6: Convex hull of four spheres, forming a rounded tetrahedron. Exposed facets, tunnel facets,
and planar facets are marked e, t, and p, respectively.

Conversely, suppose �6�¾w@5=01¿ , so for all >fe}� the closest point in �o� is < . For every positive
integer � , let > be the point in � at distance � from < . Then > has clearance � , so

À�Á �¶Â �SA
where

ÀVÁ 0dcBC g OiC Q >)ORÃ¶�+m . Therefore

Â ��´¶Ä Á ÀVÁ \
The set on the right is the closed halfspace bounded by � and containing p , which implies that<ye{w@²�!��t* , so < is a exposed boundary point. Q.E.D.

(3.4) If Å comprises the exposed and ² the hidden points on w@p , then Å1Æy²Ç0dw@p and it can be
shown that Å is relatively closed and ² relatively open in w@p and that w@ÅÈ0xw�² is a Jordan curve
separating ² from the relative interior of Å . Points on the common boundary of Å and ² are called
seam points.

(3.5) Definition The p�Ai� -seam on p is the set of seam points on w@p relative to ²�!�p�Ai�h* , the convex
hull of c:p�Ai��m alone.

(3.6) Under the assumption that p and � are strictly convex and rounded, it can be shown that thep�Ai� -seam is homeomorphic to a circle. (There is also a �¬Aip -seam on w�� .)

(3.7) Structure of É³!�Ê+* . The boundary of ²�!��t* is composed of exposed facets on site boundaries,
tunnel facets, and planar facets (triangular facets) meeting three sites. See [17]. Exposed facets are
connected components of the exposed region, tunnel facets are surfaces generated by line-segments
touching two sites, planar facets are bounded by triangles, and facets meeting four or more sites are
ruled out by general position (2.12). Figure 6 illustrates these features.

If Ë is a planar facet, then the three corners on its boundary are the unique points of contact of Ë
with sites in � . Its sides are shared with three tunnel facets.

(3.8) Lemma Let < be a seam point on w@p . Then there exists a site � such that <Ì0Í#&Î&Ï Á ~¦�)!�> Á * ,
where > Á all belong to the same unbounded p�Ai� -face in ��%.�W!��t* . Also, < is on the p�Ai� -seam.
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Proof. The point < is in the boundary of the hidden region. Therefore there exists a sequence < Á
of point in the hidden region converging to < . By Lemma 3.3, there exist (unique) points > Á elw@5
such that < Á 0�~¦�)!7> Á * . Since there are a finite number of different faces, all the > Á can be assumed
to come from the same face of ��%(�G![�;* .

If instead of � we turn our attention to ²�![p�AF��* and ��%.��![p�Ai��* , the hull and diagram for c:p�Ai��m ,
then < is an exposed point in ²�![p�AF��* and also the limit of hidden points relative to c:p�Ai�Ðm , so it is
in the p�Ai� -seam. Q.E.D.

In the above lemma the points > Á do not converge, they tend to infinity. Similarly,

(3.9) Lemma Let <UeÑw@p be a corner of a planar facet meeting three sites p�Ai�¬Ai� . Then < is
common to the p�AF� - and p�AF� -seams, and there exists a sequence of points > Á tending to infinity on
the p�Ai�6AF� -trisector such that ~@�)!�> Á *�·Ò< . (Proof omitted.)

(3.10) Boundary of exposed facets in w¦Ó . By Lemma 3.8, the boundaries of the exposed facets
on w@p are contained in the union of the p�Ai� -seams. If < is an exposed point where the p�Ai� - andp�Ai� -seams intersect, then it is one of the corners of a planar facet touching p�Ai�¬A and � . Therefore
the exposed facet boundaries can be decomposed into edges and vertices, where the edges are part of
seams and the vertices are corners of planar facets.

(3.11) Projecting a cell boundary on the site boundary. Let 5 be the cell containing the site p in��%.�G!��t* .5 is bounded if and only if p contains no exposed points. The boundary of 5 consists of faces,
edges, and vertices, and if 5 is bounded then it is a generalised planar graph, see Paragraph 3.1. As
mentioned at the start of this section, w@5 need not be homeomorphic to a plane if 5 is unbounded, and
for this reason we project w@5 onto w@p , producing a generalised planar graph (there can be multiple
edges and closed-loop edges without incident vertices).

The subdivision of w@p arising from ~��)!7w@5�* is summarised as follows.

(3.12) Theorem Let 5 be the cell containing p in ��%.�G!��t* . The restriction of ~,� to w@5 is injective,
and its image consists of the hidden points in w@p (Lemma 3.3). If 5 is unbounded then the remainder
of w@p consists of the exposed points, that is, the union of exposed facets. The boundary of the exposed
facets consists of seam edges meeting at the corners of adjacent planar facets (3.10).

Let Ô be the (generalised) graph structure on w�p , subdividing the hidden region by the projected
graph structure from w@5 , and whose other faces are the exposed facets, bounded by seam edges and
vertices from planar facets.

(3.13) Description of face boundaries. The boundary of a p�Ai� -face Ë in ��%.�W!��t* consists of some
Jordan chains of edges, together with, if Ë is unbounded, one or more unbounded chains of edges.

If Ë is bounded then one of these curves bounds Ë from the outside, the outer boundary,and
the others from the inside. If it is unbounded, it is natural to arrange the outer boundary in cyclic
order around Ë . To do this, recall that ^_![p�Ai��* can be projected homeomorphically onto a plane
(Lemma 2.10); let Ë ¤ be the image of Ë under this projection and intersect it with a large discÕ

, large enough to contain all bounded features and intersect all unbounded features of Ë ¤ . Each
unbounded component of w@Ë ¤ intersects w Õ twice, and the order of these intersection points fixes
an anticlockwise order between the unbounded components, and also an anticlockwise order within

8



the unbounded components. This order is independent of
Õ

, if
Õ

is sufficiently large, and induces a
corresponding order on the boundary of Ë .

Each intersection point on w@Ë ¤ �}w Õ is on an infinite ‘branch’ of a Voronoi edge bounding Ë .
An unbounded edge with no incident vertex has two branches, an unbounded edge with an incident
vertex has one, and it corresponds to a unique seam vertex (Lemma 3.9). A segment of Ë ¤ �¾w Õ joins
two intersection points and corresponds to a p�Ai� -seam edge (Lemma 3.8). We say that the branches
inducing two adjacent intersection points on Ë ¤ �Öw Õ are adjacent.

(3.14) Definition An infinite branch of Ë is called a vertex at infinity, and where two branches of Ë
are adjacent then they bound an edge at infinity.

(3.15) Output of the Voronoi diagram computation. At this point we state explicitly what the
required output should be. It also represents the input available from the two recursive calls on the
two subsets of � . Since � is in general position (2.12), every edge is incident to three faces and every
vertex to four cells, six faces, and four edges.

Input is a list of disjoint compact convex sites p , with suitable descriptions as semi-algebraic sets.
The output is as follows.

® For each site p , the list of faces incident to its cell in ��%.�G!��t* .
® For each face, its boundary components, in cyclic order for the Jordan-curve components, while

the unbounded components are presented together in cyclic order as discussed above.

® For each unbounded branch as discussed above,

® For each face, its two incident cells.

® For each edge, its three incident faces and cells and its bounding vertices (at most two).

® For each vertex, its four incident edges, six incident faces, and four incident cells.

® A network representing the infinite branches and their incidence relationships, that is for each
branch (vertex at infinity) a record describing the three adjacent edges at infinity, on the three
incident faces, and for each edge at infinity, a record describing the two vertices at infinity
which it connects.

(3.16) Lemma For any cell 5 in ��%.�G!��t* , the structure of w@5 can be extracted from the above infor-
mation in linear time.

Proof. That is, the faces, edges, and vertices can be copied in linear time, and their incidence
relations generated in linear time. Faces, edges, and vertices can be copied through the various lists
mentioned above.

For each edge, there are two incident faces on w@5 , and they can be extracted immediately from
the three faces incident in ��%.�W!��t* . Also, the vertices incident to each edge are available.

For each vertex, there are three incident edges on w@5 , which are easily extracted from the four
incident edges in ��%.�G!��t* . Q.E.D.
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Figure 7: Quad on w@p , and the frustum extending it.

(3.17) Lemma For every site p , the generalised graph Ô can be constructed in linear time.

Proof. For bounded edges and faces the incidences in Ô are inherited from w@5 (Lemma 3.16).
The vertices on the exposed facets correspond to unbounded edges (Lemma 3.9). The seam edges
correspond to unbounded faces (Lemma 3.8). The seam edges and vertices are inherited from the
network described in Paragraph 3.15. Q.E.D.

(3.18) Definition With Ô as introduced, its faces are subdivided into ‘quads’ as follows.
Through each vertex <ªe{w@p , let � be the plane through < parallel to the C�E -plane. Introduce two

new edges by following the curve ���yw@p until it meets nearby edges of Ô . Do the same with points< which are local maxima or minima of edges of Ô , in the > -direction.
The resulting planar subdivision of w@p is denoted Ô6!�p�Ai�t* , called the augmented graph. A quad

is a face of Ô×![p�Ai�t* . Every quad is incident to at most four edges. For every quad
Õ

,

5�Ö~ º J� ! Õ *
is called a frustum. See Figure 7, also Figure 12.

The frustums provide a decomposition of 5��`p into simple regions.
It will be necessary to furnish a point-location structure whereby, given a point >¶ed5��`p , the

correct frustum containing > can be found. Equivalently one needs to find the quad containing ~b�)!7>K*
in w@p . This is a point-location problem in Ô×![p�AF�;* .

To construct the augmented graph Ô6!�p�Ai�t* from the graph Ô discussed above, for each face ofÔ6!�p�Ai�t* one needs the vertices (and turning points) sorted with respect to the > -coordinate. This is
easily done directly using sorting, but we must avoid the #Ø%.'t� runtime factor needed to sort.

This will be considered in Section 5.

4 Divide-and-conquer algorithm

(4.1) The divide-and-conquer algorithm. The algorithm is recursive, partitioning the sites into
two sets �s0Ñ�³ÆÙ� . � consists of sites whose leftmost endpoints are further left than those in � .
Recursively, ��%.�G!��t* and ��%.�G!���* are calculated, and the contour, the set of points whose closest sites
include at least one from � and one from � , is calculated.
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(4.2) Definition Let Ú�J§A \W\G\ AÛÚ Á be the leftmost endpoints of all sites in � , given in strictly (see 2.2)
ascending order of > -coordinate, and let pYÜ be a listing of the sites in the same order. If �Ù»s8 then �
consists of the first Ý£�b|.Þ�ß sites in the list and �10z���`� .

Let à (respectively, ^ ) be the set of points whose clearance spheres touch sites in � (respectively,� ).
The contour is the intersection à��f^ , i.e., the set of all points whose clearance spheres touch at

least one site in � and at least one site in � .

(4.3) Lemma The contour is a surface in ��� , possibly disconnected.

Sketch proof. The contour is a union of faces, edges, and vertices of ��%(��!��t* . It is a surface in the
sense that if < is a point in the contour, there exists a neighbourhood

À
of < such that

À
intersects the

contour in an open disc. This is certainly true if < is interior to a face of the contour. If < is interior
to an edge, then there are three incident cells (2.12) of which at least one is from à and one from ^ .
Then < is on the union of two contour faces. If < is a vertex there are four incident cells, at least one
and at most three from à . There are six faces meeting at < . If one cell is from à or one from ^ thenÀ

can be interior to the union of its three bounding faces. If two are from à , then
À

is in the union
of four contour faces. Q.E.D.

Our regions à and ^ are defined the same way as regions in Sharir’s algorithm, which takes
time  ×!7�$#Ø%.')�+* to combine them along the contour, leading to an  ×!7�$#Ø%.'  �+* construction of 2-
dimensional Voronoi diagrams [16].

(4.4) Definition Granted a fixed upper bound on the algebraic complexity of the sites, 5×!��+* is a
suitable upper bound for the maximum total number of features over all possible diagrams ��%.��![�;*
where � varies over all possible sets of � sites satisfying 2.12.

(4.5) Since the diagram for point-sites has complexity at least
Õ �  for some constant

Õ
, [14], we

assume that 5×!��+*RÃ�áK!7�+*â�  where áK!7�/* is nondecreasing. It is for this reason that 56!7�+* is taken to
be an upper bound rather than the exact estimate.

(4.6) Runtime estimate In the recursive algorithm, if we can combine à with ^ in time  ×!�56!7�/*D* ,
then we get an  ×!�56!7�+*�* construction algorithm, since in that case the runtime ��!��+* satisfies

��!��+*tn¶56!7�+* X Þ��h!7�,|.ÞZ*LA
and we have the following

(4.7) Lemma On the assumption that 56!7�/*)0�bFáK!7�/* where áK!7�/* is nondecreasing, �h!7�/* is  ×!�56!7�/*D* .
Proof. Divide the recurrence by �b , getting

¡h!7�/*�0oáK!7�+* X 8Þ ¡h! � Þ *LA
where ¡h!7�+*)0�h!��+*Û|��K . Informally put, the solution is

¡�!��+*)0áK!7�/* X 8Þ áK! � Þ * X 8ã áK! � ã * \G\G\ n¶Þ�áK!��+*LA
since áK!��+* is nondecreasing. Therefore �h!7�/*tn¶Þ:�bDáK!��+*N0sÞ.56!7�/* . Q.E.D.
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Figure 8: Illustrating Lemma 4.9 in 2-dimensional form
.

(4.8) Lemma (i) Every Voronoi cell is star-shaped relative to the site it contains. (ii) Therefore it is
path-connected.

Proof. For (i), see [14, Lemma 2.1]. That is, suppose that p is the site contained in the cell, >
is a point in the cell, and C the point on p closest to > (we allow C³0ä> when >e�p ). Then the
line-segment >VC is entirely contained in the cell.

If å is another point in the cell, and E the point in p closest to å , the polygonal path >VC�E(å
connects > to å in the cell. Q.E.D.

(4.9) Lemma The region à is (path-) connected, and if Ô is a sufficiently large closed ball thenÔ�æà is path connected.

Proof. For each site p , let < be the leftmost point in p and �Yç be the horizontal ray extending
leftwards from < . ( �/ç is parallel to the > -axis.)

Suppose p¼el� . Consider a point H moving leftwards along �Yç . The spheres with centre H and
radius O H¥Q <)O have rightmost point < , which is left of all sites in � , so H is always closer to p than
to any site in � : it may be closer to other sites in � , but in any case �Nç�´oà .

Let p ¤ be the unique site in � with leftmost left endpoint, and let that endpoint be < ¤ . There is
a vertical plane è , normal to the > -axis, which separates < ¤ from the left endpoints of all other sites
in � . All sites in � except p ¤ are to the right of è . The hyperboloid of revolution with focus < ¤
and directrix è separates into two open regions of which one, ¡ say, is convex. Every point in ¡ is
closer to < ¤ than to any site except p ¤ , so ¡ is contained in the cell owned by p ¤ in ��%.�G!��t* . Therefore¡�´oà . Each one of the rays �/ç (except �/çFé ) intersects the hyperboloid and so intersects ¡ , and also�bçFéb´s¡ . See Figure 8.

Let > and C be two points in à . Let �+ç and �)ê be the horizontal rays connected with the cells
containing > and C respectively. By Lemma 4.8, there are paths in à connecting > to < and C to H .
Since �/ç and �)ê are contained in à and both intersect the convex set ¡Í´sà , there is a path joining< to H in à , so there is a path joining > to C in à , as required.

If Ô is a sufficiently large closed ball, so it contains all the sites, and all the rays �Nç intersect ¡
within Ô , then the intersections of the cells with Ô are star-shaped, and by the same arguments ÔÙ��à
is path connected. Q.E.D.

The recursive routine needs to construct the contour by developing it locally. It is necessary to
furnish starting points from which to develop the contour, one for each contour component. Corollary
4.10 below could say ‘exactly one component.’ That is implicit in Lemma 4.11.

12
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Figure 9: Corollary 4.10: where ë ¤ and ì are separated by í .

(4.10) Corollary Every component of ^ is incident to at most one contour component.

Proof (sketch). We use a theorem of Alexander’s [12, Chapter VII, Theorem 1], that if í is a
smooth compact 2-manifold in � � then � � �`í has two components of which í is their common
boundary.3

Let î be a component of ^ .
Suppose that w�î contains two contour components ë and ì . If ë is bounded then one can

‘push’ this surface component slightly into ^ to obtain a smooth manifold í with the property thatí encloses all cells from à incident to ë , but cells incident to ì are outside í . Since í ´�^ this
contradicts the connectedness of à .

If ë and ì are unbounded then let Ô be a large closed ball centred at the origin which contains
all sites and bounded features of ��%.�G!��t* and intersects all unbounded features, and such that Ôz�ªà
is connected (Lemma 4.9). It can be sufficiently large to include all points on the contour which are
stationary points with respect to distance from the origin. Then w�Ô intersects ë in a finite union of
disjoint (topological) circles, where a neighbourhood of each circle is entirely within à on one side
and within ^ on the other.

Choose a point ï on ^1�uì��ªw@Ô , so that for any (topological) circle ð on w@Ô not meeting ï ,
the component of w@Ô¾�`ð containing ï is the outside, and the other is regarded as the inside, of ð .ëd�fÔ is a manifold with boundary

Õ 0dë��yw@Ô :
Õ

is a disjoint union of (topological) circles.
Classify the faces of w@Ô¾� Õ as follows. ËY? is the face of w@Ô¾� Õ outside all the circles in

Õ
. It includes

the point ï . This face has level zero. Inductively, the face at level ñ X 8 are those faces incident to
the inner boundary of faces at level ñ .

Complete the manifold with boundary ër�vÔ to a manifold ë ¤ by adding all odd-level faces.
Push ë ¤ slightly into ò 0µ!�^¶�ªÔh*,ÆÖw�ÔoÆÙ!������`Ô�* to form a smooth manifold í which is entirely
contained in ò and disjoint from ì , and whose interior contains ËS? , hence contains a point < fromà . The exterior of í contains ï eÌà . Also since Ô¶�ªà is compact, it can be assumed that í has
positive distance from Ô�æà .

By Alexander’s theorem every path from < to ï intersects í . But àd�½Ô is path-connected
(Lemma 4.9), so it contains a path from < to ï in àÙ��Ô . This path intersects í at a point at positive
distance from Ô�æà , a contradiction. Q.E.D.

(4.11) Lemma In  ×!7�K�* time overall, at least one point on each contour component can be com-
puted.

3This is the Jordan Curve Theorem in 3 dimensions.
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Proof. The ideas in [13,16] work well. We take all the sites � in � , and connect them to sites in� , so the line-segments connecting them necessarily cross the contour.
Given a site � in � , choose any reference point H in � , and calculate the site p in � closest to H ,

and the point < on p closest to H . The line-segment < H is entirely contained in the cell owned by p
in ��%.�W!��t* . Since one end is closer to � and the other to � , < H intersects the contour at a point > . The
line-segment <V> is contained in the cell owned by p in ��%.�W!��t* . If any point C interior to > H were in
that cell, then it would not be star-shaped, contradicting Lemma 4.8. Hence all of > H is in the region^ , and therefore in the connected component of ^ containing H .

For each site �$Ü in � , let 5;Ü denote the cell owned by p in ��%.�G!óc:p�Ai��Ü7m.* . By Lemma 4.8 the
line-segment < H intersects its boundary, the p�Ai��Ü -bisector, in at most one point >¦Ü . If it exists, >VÜ is
the point on < H equidistant from < and ��Ü , and its existence can be checked, and >¦Ü computed, in time "!Û8�* .

The point > is where < H meets the boundary of ôo5tÜ , and <V>f0µôÙ<V>�Ü , so > is the >VÜ closest to <
on < H . Thus > can be computed in time  "!��+* , and > is a contour starting point.

Overall, for all sites � , the cost is  ×!7�,�* . Every contour component is incident to at least one cell
from � , and this procedure returns a point on the component from that cell (Corollary 4.10). In other
words, there is at least one starting point on every contour component. Q.E.D.

Recall that 5×!��+* bounds the maximum number of features on � -site Voronoi diagrams. We now
return to consideration of frustums (paragraph 3.18).

(4.12) Lemma The subdivision of cells of ��%.�G!��t* into frustums yields  ×!�56!7�+*�* frustums.

Proof. The boundary of each frustum has bounded algebraic complexity, and each frustum con-
tains at least one of  "![5×!��+*�* features — the projection of a Voronoi vertex or a vertex bounding a
seam edge or a point where a projected Voronoi edge or a seam edge is orthogonal to the > -axis, and
each such point is incident to a bounded number of frustums. Q.E.D.

Up to now the semi-algebraic character of sites has not been used. Now,

(4.13) Lemma If Ë and Ë ¤ are frustums, then Ë��6Ë ¤ is a semi-algebraic set of bounded complexity.
(This will be addressed in Section 6.)

The question of finding the frustums containing contour starting points is deferred to Section 5.

(4.14) To construct a contour component can be reduced to ‘meshing’ frustums. A starting-point is
taken, which is contained in a pair

À Aiò of frustums,
À

from ��%(��!��t* and ò from ��%.��![��* : there-
fore the contour intersects both these frustums. Graphs representing the incidence relations between
frustums (in ��%.��![�t* and ��%.��![��* ) are assumed available.

If p and � are the sites whose cells contain these frustums in ��%.�G!��t* and ��%(��!���* respectively, the
contour piece is part of the !�p�Ai�h* -bisector, call it ^ . The boundary of ^l� À �6ò can be calculated.
This boundary is incident to other frustums, which can be marked for later processing. Generally dur-
ing the processing, the boundary of that part of the contour component already developed is retained,
with incidence relation connecting it to the frustums in ��%.��![�t* and ��%.��![��* , and a queue of frustum
pairs incident to this boundary is retained. As a frustum pair is removed from the queue, the boundary
of their intersection with the contour is computed, and used to adjust the developing boundary.

Next we estimate the overall cost of computing the contour.

14



(i) (ii)

(iii) (iv)

Figure 10: Illustrating the four cases in Lemma 4.15.

(4.15) Lemma The overall cost of computing the contour by meshing frustum pairs is  "!�56!7�/*D* .
Proof. We argue that whenever we process a frustum pair

À Aiò , where
À

is a frustum from a cell5 in ��%(��!��t* , and ò from a cell in ��%.�G!���* , one can link the operation to one of  "![5×!��+*D* features.
The frustum

À
is a region of the form

À 015�æ~ º J� ! Õ *LA
where

Õ
is a ‘quad’ on w@p and 5 is the cell containing p in ��%.�G![�t* . The quad is bounded by at most

two projected edges and two pseudo-edges, orthogonal to the > -axis. The frustum has at most four
‘inner corners,’ (pseudo-)vertices bounding the quad

Õ
, and four ‘outer corners,’ (pseudo-)vertices

on Ëd�Ùw@5 , which may be considered points at infinity if
À

is unbounded. The base of
À

on w@p
remains closer to p than to any other site in � , so no frustum can be entirely deleted in forming��%.�G!��t* . See Figure 10. Analysis of the features linked to the meshing operation raises four cases.
Let � be the site in � whose cell contains ò .

Case (i): when a corner, necessarily an outer corner, of
À

is closer to � than p then a corner is
‘absorbed.’ (It is on the other side of the contour.) The local computation can be charged to a corner
that is absorbed. This charge is also legitimate for corners at infinity. Similarly if a corner of ò
becomes closer to p .

Case (ii): when points on one of the (outer) sides of
À

are closer to � , but the corners are not,
one or more sides of

À
intersects the p�Ai� -bisector. Case (ii) is where the bisector intersects a true

edge of ��%.�G!��t* . If one of these intersecting sides is part of a true Voronoi edge, then it intersects
the contour at two vertices of ��%.�G!��t* , which can be charged with the local computation: there are at
most 56!7�/* such vertices.

Case (iii): where an (outer) pseudo-edge contains points closer to � but its endpoints don’t,
the p�Ai� -bisector intersects the outer face in a curve meeting this pseudo-edge at least twice. The
intersection is in an edge of ��%.�G!��t* . By a form of Rolle’s Theorem, that edge includes a local
maximum with respect to the > -direction, and there are  ×!�56!7�+*�* such points in ��%(�G![�;* .

Case (iv): the bisector intersects the top face of the frustum but intersects no frustum edges. We
have a closed-loop Voronoi edge in ��%.��![�;* and there are at most 56!7�/* such edges. Q.E.D.
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(4.16) Assembling ��%.�G!��t* . At this point we have generated a list of pairs !�ËtJ§AFË  * of frustums, Ë)J
from ��%.�W!��t* and Ë  from ��%.��![��* respectively, meeting along the contour. There are  "![5×!��+*D* such
pairs. We need a description of ��%(��!��t* as specified in paragraph 3.15.

For each pair !�Ë)J�AiË  * , there are a bounded number of intersections of ËtJ��½Ë  with contour
features, and we can generate a set of triples

!�Ë)J�AFË  Aiõb*
where õ varies over these feature intersections. Since every frustum has a face on a site boundary,
a frustum may be reduced in volume because it intersects the contour, but it cannot be removed
completely.

For every frustum Ë from � (respectively, � ) not intersecting the contour, so it is preserved intact
in ��%.��![�t* , generate triples !�Ë�Ai¿�Aiõ/* or !�¿�AiË�Aiõb* .

Form a graph whose nodes are these triples, with edges joining !�ËtJ§AFË  Aiõ/* to ![Ô�J�AiÔ  A�áV* if õ andá are part of the same feature meeting at adjacent frustums.
The connected components of this graph correspond to the features of ��%.��![�t* . The features can

be labelled and specified in time  ×!�56!7�/*D* .
A face is incident to a cell if and only if it intersects Ë�J or Ë  for at least one pair ![Ë�J§AFË  * whereË)J or Ë  is nonempty and contained in that cell.
An edge is incident to a face if and only if both edge and incident face similarly intersect someË)J or Ë  .
A vertex is incident to an edge if and only if both vertex and incident edge similarly intersect

some Ë)J or Ë  .
Two unbounded branches of an unbounded edge are adjacent along a face in the sense given

paragraph 3.15 if and only if they are connected by a chain of frustums intersecting the face, the
chain not meeting another branch between them.

Thus the features of ��%.�W!��t* , and their incidence relations, can be computed from the frustums
and starting points in time  ×!�56!7�/*D* overall.

5 Cavities and the quad subdivision
In this section we consider how to construct the quad decomposition on which the frustums are based.

(5.1) Mapping w@p into the plane. Let p be a site in � , 5 its cell in ��%.��![�;* . For purposes of
point-location, it is convenient to separate w@p into its ‘front’ and ‘back’ parts. These two parts are
separated by the set î of all points on w�p where the tangent plane is parallel to the C -axis.

(5.2) Lemma The set î is a Jordan curve on w@p .

Sketch of proof. Since p is compact, strictly convex and rounded, the map from w@p to �t , where

�  0�c�!7>/ADC�AFE�* g >  X C  X E  m�A
taking each boundary point < to the outer unit normal at that point, is a homeomorphism. î is the
inverse image of ëx0dc�!7>/ADö�AFE�* g >  X E  0x8:m \
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Since ë is a circle, î is a Jordan curve.
Recall that Ô is the graph structure on w�p arising from the inward projection of w@5 , together

with the exposed faces on w@p . The same curve î separates Ô into front and back parts, which can
each be projected injectively onto the �  by orthogonal projection. So we can simplify the picture by
assuming that the graph Ô is a planar graph (bounded by the projection of î ).

The graph Ô can be split along this curve in linear time. The front and back halves each project
injectively onto the >¦E plane under orthogonal projection. Furthermore, trapezoidal pseudo-edges
project onto vertical line-segments. Vertices project onto vertices and points on edges where the
tangent plane is normal to the > -axis project onto points where the tangent is vertical. Piecewise
algebraic edges project onto piecewise algebraic edges. Thus we can for the rest of this section
confine our attention to calculating a subdivision of a plane (generalised) graph into quads by vertical
edges.

(5.3) Proposition Let Ë be a face on Ô , with its boundary presented as � X 8 Jordan chains. Then
the face can be subdivided into quads in time  ×!7± X ��#Ø%.'  �¦* where ± is the total number of vertices
bounding Ë .

Proof. If �10¸ö then Chazelle’s linear-time algorithm [8] for triangulating a simple polygon
provides a quad decomposition for simple polygons, and it can be adapted to our problem here where
the polygons are not piecewise linear but piecewise algebraic of bounded degree.

More generally, the bounding polygons can be combined into one which can be processed by
Chazelle’s algorithm, within the stated time-bound. See [5].

See also [2].

We shall prove that the sum of all the � mentioned in the above proposition is  "!��$#&%.'�÷V�/* . Just
as faces of the original graph Ô on w@p either come from w�5 by inward projection, or are exposed
facets, we can maintain the distinction in the plane graph Ô . Let us call them exposed and hidden
faces of Ô .

(5.4) Cavities. Let Ë be a p�AF� -face in ��%.�W!��t* , ~��)![Ë�* its projection. If Ë is unbounded then
its unbounded edges projected onto edges which are connected together by seam edges, so all the
unbounded edges on Ë together form part of the outer boundary. If Ë is bounded then, since thep�Ai� -bisector is unbounded, Ë has a well-defined outer boundary which projects into w¦~,��!�Ëh* .

If ~¦�)![Ë�* is not simply connected then w@Ë contains closed loops different from its outer boundary,
each of which can be surrounded by a loop � in the relative interior of Ë .

The loop � can be extended to a topological sphere � contained in the cells of p and � and not
meeting any other cell.

To define � , connect points in � to corresponding points in ~K�)!��t* and ~¦ø�!��t* along lines of
projection. This produces a topological cylinder bounded by ~,�)![�;* and ~¦ø�![�;* . The Jordan curve~¦�)![�;* separates w@p into two discs; add to the cylinder the disc containing ~,�S!�ù:* . Similarly add a
disc in w�� , completing the topological sphere � . � is contained in 5sÆÙ5 ¤ , the cells containing p
and � in ��%(��!��t* , and intersects no other cell. According to Alexander’s Theorem [12, Chapter VII,
Theorem I], � separates �t� into two connected open regions, one bounded, of which it is the common
boundary. The bounded region contains part of w@Ë . Therefore it intersects other cells besides 5 and5 ¤ , and cells are connected, so it contains a union of cells of ��%(��!��t* . These cells are ‘sandwiched’
between 5 and 5 ¤ . See Figure 11.
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Figure 11: cavity between p - and � -cells. The hatched lines indicate part of the enclosing topological
sphere � .

(5.5) Definition A cavity is a connected union of cells of ��%.�W!��t* , incident to the inner boundary of
a face Ë and sandwiched between the two cells meeting at Ë as discussed above.

(5.6) Theorem The total number of vertices common to a cavity and a surrounding face, counted
over all faces, is ú�!��$#&%.'�÷V�/* .

Proof. We count the Voronoi edges as they meet the boundary in clockwise order. Claim that for
any sites î{ADë meeting the cavity boundary, their longest alternating subsequence

\G\G\ î \W\G\ ë \G\W\ î \G\G\ ë \G\G\
is bounded, because if we consider the Voronoi diagram of p�Ai�6AÛî{ADë , ignoring the other sites, then
each alternation î \G\G\ ë is marked by a Voronoi vertex. The number of such Voronoi vertices is
bounded since the sites have bounded algebraic complexity.

In other words, the cavity boundary edges form a Davenport-Schinzel sequence of bounded type
and there are ú�!7]Y#&%.'Z÷¦]`* of them [1]. Since the sites in different cavities are distinct, ûÇ]�no� , so the
overall number of such vertices is ú�!7�$#Ø%.' ÷ �+* . Q.E.D.

Now we can finish the subdivision of the projected graph Ô in w@p , as described before Lemma
3.17.

(5.7) Lemma All the faces can be subdivided into quads in overall time  "![5×!��+*�* .
Proof. Let Ë be a face on Ô . By Proposition 5.3, Ë can be subdivided into quads in time "!�± X �;#&%('  �V* where ± is the total number of vertices bounding Ë and � X 8 the number of boundary

components. By Theorem 5.6, û � is ú�!��$#&%(' ÷ �/* , where the sum is over all hidden faces (projected
from cell boundaries). The total number of vertices and edges on the exposed facets is bounded by
the complexity of the convex hull ²�!��t* , which is also bounded by 5×!��+*D* , so the overall time is "![5×!��+* X �$#&%('  �$#Ø%.'Z÷V�+* , which is  ×!�56!7�/*D* since 5×!��+* is ü�!7�  * . Q.E.D.

Having taken the front and back of w@p separately, split the graph by the Jordan curve separately,
and projecting into the >¦E -plane, we produced the graph Ô in the plane (there are two such graphs),
which we now have subdivided into quads. Let Ô6!�p�Ai�t* denote the quad subdivision of Ô — it is the
front or back of the true graph Ô×![p�AF�;* on w@p (Definition 3.18).

It remains to construct a monotone subdivision of Ô6!�p�Ai�t* .
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Figure 12: the monotone subdivision Ô×![p�Ai�t* .
(5.8) Definition A planar region is monotone if its intersection with any vertical line is connected
[10, Chapter 11]. A monotone subdivision of the plane is a subdivision into monotone regions.

In [10, Chapter 11] a planar-point location structure is built for monotone subdivisions. The
construction is given for straight-edge subdivisions without vertical edges, but it is remarked there that
the method applies generally, in particular to our graph Ô6!�p�Ai�t* , if infinite horizontal rays are added
extending from the leftmost and rightmost points of Ô×![p�Ai�t* , to produce a monotone subdivision.
See figure 12. Therefore

(5.9) Proposition Let Ô6!�p�Ai�t* have � features. In  "!��V* time a data-structure can be constructed to
locate the quad containing a given point in time  "!�#&%('  �¦* [10, Lemmas 11.8, 11.9].

Taking all sites p together we get quad search structures for each site boundary in time  ×!�56!7�+*�* .
(5.10) Corollary Search structures can be constructed in time  "![5×!��+*D* which solve the following
queries in time  ×!7#Ø%.'  �+* : Given a point > in the cell owned by p in ��%(��!��t* , but not in p itself,
return the frustum (or few neighbouring frustums) containing > .

Proof. In time  "!�#&%.'  �+* , calculate the unique quad or quads on w@p containing ~K�)!�>K* . These
quads are the bases of the frustums containing > . Q.E.D.

6 The features of ý}þ�ÿ������ are semi-algebraic
A set �r´È� Á is a algebraic half-space if it satisfies a polynomial inequality. If the inequality is
strict, then the halfspace is open, otherwise it is closed. It is basic set if it is the intersection of
finitely many algebraic half-spaces. It is semialgebraic if it is the Boolean combination of algebraic
half-spaces.

A predicate p6!7>K* is semialgebraic iff the set cB>yef� Á g p×!�>K*Fm is semialgebraic. A function õS!
<K*
is semialgebraic if its graph c�!a</AiõN!a<K*�* g <yeu� Á m is a semialgebraic set.

A set �1´�� Á is a ñ -cell (or simply, cell) if it is homeomorphic to an open ñ -ball ( ñ�0xö�A \G\G\ AD� ).
The following result may be called the fundamental theorem of semialgebraic sets:

(6.1) Proposition (a) Semialgebraic sets are closed under projection.
(b) A semialgebraic set is a finite union of cells where these cells are semialgebraic sets and form a
regular cell complex.

These results follow from the theory of cylindrical cell decomposition [15,6].
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(6.2) Theorem Let àhAi^ be semialgebraic sets. Then the following are semialgebraic:
(a) The boundary wVà .
(b) The distance function

M !
</ADà�* .
(c) The convex hull ²�!�à�* .
(d) Each connected component of à .

Proof. (a) We have <ye{wVà iff for all ]�»oö , there is some H J�euà such that 2 < QÖH J�2  jl]  and anotherH  |euà such that 2 < Q½H  2  jl] 
(b) We have >Í0 M !
</ADà�* iff there is some H ePà such that 2 < QdH 2 Ì0 >V and for all ]1eÑà ,2 < Q ]¦2 kÃo>V .
(c) Suppose àÑ´=� Á . Then <½e�²�!7à�* iff there exists <¦?�A \G\G\ A7< Á e�à and �+?�A \G\G\ AD� Á e�� ö�AG8	� such
that <_0sû ÁÜ�
�? �bÜ <�Ü and 8k0sû ÁÜ�
�? �/Ü .
(d) By the fundamental theorem of semialgebraic sets, we can partition à into finitely many cells.
Clearly each connected component of à is the finite union of these cells. Q.E.D.

Let ð be a collection of pairwise disjoint semialgebraic bodies in � Á . For ��´zð , we define
À !��t*S0 À� !��t* := ci<fef� Á g !�¢�à�Ai^Íe}�t*§!�¢,5µe}ðÈ�k�t*�� M !
</ADà�*N0 M !a</Ai^Ð*�n M ![5�*��[m \

Each connected component of
À !��t* is a Voronoi cell.

(6.3) Corollary Voronoi cells are semialgebraic.

Proof.
À ![��AFðÙ* is semialgebraic. By the previous theorem (d), its connected components (i.e.,

Voronoi cells) are semialgebraic. Q.E.D.

(6.4) Lemma If � is a set of disjoint strictly convex compact semialgebraic sites and �/� consists
of the expanded version of these sites, then the expanded (rounded) sites are semialgebraic. (See
Paragraph 2.8).

Proof. If p is a strictly convex compact semialgebraic site, its expansion is pN�Ð0Òci< g !�� H eph*§!L2 < Q½H 2 �no��W*Dm . This is a semialgebraic set. Q.E.D.

(6.5) Lemma The convex hull of semialgebraic sites is semialgebraic. (Theorem 6.2 (c).)

(6.6) Lemma The projection of Voronoi edges and faces from the boundary of the p -cell in ��%(��!��t*
onto w@p is semialgebraic.

Proof. These are projections ~��)!�à�* of semialgebraic sets à onto the semialgebraic set w@p .

>feu~¦�S!7à�*��"« !���C"euà�*L!£¢KE×e{p�*L!L2 > Q C/2  nI2 E Q C/2  *
Q.E.D.

(6.7) Lemma If p and � are disjoint sites then the p�Ai� -seam is semialgebraic.

(6.8) Lemma Frustums are semialgebraic.
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