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Lattice fermion actions are constructed with path integrals which are equivalent to the free one-
flavour staggered fermion determinant. The Dirac operators used are local and have an identical
spectrum of states to the staggered theory. Operators obeying a generalised Ginsparg-Wilson rela-

tion are developed.

PACS numbers: 12.38.Gc, 11.15.Ha

I. INTRODUCTION

A complete study of QCD on the lattice requires
the numerical simulation of dynamical fermions. These
Monte Carlo calculations are extremely computationally
costly, since the effects of quarks must be included by first
integrating out the fermion path integral, and then de-
scribing the resulting non-local dynamics of the fermion
determinant. For a review of recent developments, see
e.g. [, l]. With present techniques, the most cost-
effective means of performing these simulations is to use
the staggered fermion formulation of Kogut and Susskind
[]. Recent calculations by the MILC collaboration []
have demonstrated good agreement between experimen-
tally known strong-interaction measurements and stag-
gered fermion lattice QCD simulation.

The formulation as it stands has a serious deficiency for
dynamical simulations. In four dimensions, the staggered
fermion determinant describes four flavours of fermion,
not one. This means that while it is very simple to
simulate four mass-degenerate fermions with the stag-
gered method, the study of one or two flavours must
use a fractional power of the fermion determinant. This
raises difficult theoretical problems: what are the fermion
fields, and what is the local action on these fields which
reproduces this determinant? Without a path-integral
representation of the fermion determinant, all the stan-
dard quantum field theory construction of propagators
(which are the two-point functions of the underlying
quark fields) is poorly defined. If no local action exists,
an even more severe issue arises, since there is then no
guarantee that the continuum limit of the lattice simu-
lation is in the same universality class as QCD and the
link with physics is lost.

In this paper, we describe a numerical construction of
an operator that defines a lattice quantum field theory
equivalent to a single, free staggered fermion. Most of
the construction is performed in two dimensions to ease
the computations, but some suggestive results in four di-
mensions indicate the same construction works there too.
Note that all the work in this paper is for the theory of
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free fermions, and the question of defining the interact-
ing theory remains open. We do however regard this
as a useful starting point for the more difficult problem
of finding a path integral representation of the staggered
fermion determinant in the presence of background gauge
fields and the construction presented does suggest how
to proceed further. The paper is organised as follows:
Sec. Dl briefly describes the free staggered fermion, and
Sec. Il describes the numerical construction of the local
operator. Sec. I then presents a different numerical
construction that is seen to obey a modified Ginsparg-
Wilson relation. In Secs. Bl and B2l a discussion of our
results and conclusions is given.

II. STAGGERED FERMIONS

In this section, a brief overview of the staggered
fermion formulation of Kogut and Susskind [f] is pre-
sented, emphasising some critical properties of the re-
sulting free quark operator.

The staggered fermion formalism is constructed by first
writing a naive representation of the Dirac operator on
the lattice

ij ij 1 i
My, = amdy 46" + 5 Z (V)™ (o4ay = dapy), (1)
u

where the FEuclidean space indices (z,y) and Dirac al-
gebra indices (i,7) have been included explicitly. This
operator has poles not only at zero momentum, but also
at the corners of the Brillouin zone. Counting these poles
suggests the field coupled through this interaction matrix
can be thought of as representing 2¢ flavours of fermions
in d dimensions. A local change of variable at every site

of the lattice, x(z) = T'(z)y(z) with

T(e) = [T ()™, (2)

diagonalises the naive operator M over the Dirac algebra.
The number of flavours is reduced by discarding all but
one of the diagonal components of y. The operator is
then regarded as acting on n, = 2¢/2%/2 = 24/2 flavours
of fermions. These flavours, all of which appear in a single



instance of the staggered field, are often termed “tastes”.
The operator on the field is then

1
Qoy = améy y + 3 ZW(”?) (Gotpy — do—py) - (3)
17

where n,(z) is the staggered phase, given by

p=1

(@) = (=1)&= 7. (4)

A natural decomposition for the operator is to break

the lattice into hypercubes of side-length b = 2a contain-

ing 27 sites. A site on the full lattice can be labelled with
co-ordinates

a hypercube can be labelled by these hypercubic offset
vectors, p

Xo(N) = x(2N + p). (6)

Introducing a new spinor field % on the blocked lattice
sites, N

Y(N) =Y [T x,(N), (7)

gives the staggered fermion action in terms of these 2%/2
tastes of Dirac spinors,

:BM = 2NH + pu, (5) Sstag = b4 Z ’l/;(N)Q(N, Nl)w(Nl): (8)
N,N'
where N, are the co-ordinates of sites on the blocked
lattice and p, € {0,1}. The 27 staggered variables in  with
|
1
QIN, N ) =m(I @ Ddnn + Y (1 ® DALN, N') + 260 ® 1t5)0, (N, N'), (9)

w

where A, and O, are the simplest representations of the
first and second derivatives on the blocked lattice,

1
A,(N,N') = o7 ON i = ONpn), (10)

1
Ou(N,N') = 72 ON b N N = 20w ). (1)

This representation makes the Dirac and taste struc-
ture of the staggered operator more apparent. Taking
a direct fractional power of a matrix does not change
its structure, so it seems counterintuitive to expect the
matrix Q1/* to be a sensible representation of the one-
flavour Dirac operator, and this operator has been shown
to be non-local []. To construct a lattice fermion with
a more physical interpretation, begin by noting that the

operator is y5-hermitian, namely
QT = 1Q7s, (12)
so that
det QT = det Q, (13)
and
Vet Q1Q = det Q. (14)

The product 00 = QTQ is diagonal in the spinor index,
and has the form

O=> 0, (15)

The lattice interaction [J thus resembles 2¢ distinct copies
of the simple discretisation of the continuum Klein-
Gordon operator, —V? + m? on each of the 2¢ lattices
with spacing b = 2a.

III. AN EQUIVALENT LOCAL DIRAC
OPERATOR

In order to define a theory with a single flavour of
fermion, the standard method is to consider the appro-
priate fractional powers of the fermion determinant. A
single flavour of staggered fermion would then be repre-
sented by det Q'/"+. Tt is important to recognise the sig-
nificant theoretical difficulty with this prescription: the
fractional power of the determinant can no longer be writ-
ten directly as a path integral over Grassmann fields cou-
pled through a local operator (Ql/’” is non-local) and
hence all the standard quantum field theory mechanisms
for generating correlation functions by adding sources to
the path integral no longer follow. Locality ensures that
interacting theories are in the same universality class of
the continuum field theory. In order to define a sensi-
ble lattice quantum field theory, an operator with the

property

det D = det Q'/™, (16)

is required, where D defines local interactions [{]. With
this property a path integral representation can be made,



namely

det Q'/™ = /Dlﬁiw exp { =Dy} . (17)

Given this form, correlation functions of the theory can
then be constructed by adding source terms and following
the standard construction. In this section, an operator
D obeying Eq. A is defined numerically for the free
staggered fermion theory.

One observation in beginning the construction of D is
helpful: the operator will not obey the staggered-fermion
Dirac algebra (which scatters the spin and taste compo-
nents over the corners of the unit hypercube) since a
counting of degrees-of-freedom suggests there are certain
to be too many flavours. Instead, there must be sites on
the lattice with no quark field. To construct a fermion
field with the correct number of degrees of freedom in a
hypercube requires there to be 24/2 components, rather
than the 2¢ components of the staggered field. To begin
construction assume there is a single Dirac spinor at one
site per hypercube, with no degrees of freedom on the
other sites of the cell.

The equivalence property of Eq. is sufficient to de-
fine the path integral, but can be trivially satisfied for
the free theory: any non-singular matrix can be made
to obey this constraint after a rescaling. For the free
case a more stringent definition of equivalence must be
made, namely that the energy-momentum dispersion re-
lation for fermions in the two theories be related. This
will be satisfied if the operator itself squares to the free
Klein-Gordon operator on the blocked lattice, i.e. if (for
massless fermions)

DiD =-0O. (18)
In this work, this property will be denoted “strong”
equivalence, while the condition of Eq. B, which is trivial
for free fermions but non-trivial in the interacting theory
is denoted “weak” equivalence.

The properties expected from a well defined lattice
Dirac operator D are locality, the correct continuum
limit for momenta below the cutoff, 7/a and invertibility
at all non-zero momenta. Once these properties are
satisfied the Nielsen-Ninomiya theorem [[] excludes the
possibility of having invariance under continuous chiral
transformations. This last issue will be dealt with in
the next section. Here, before beginning to describe in
detail our proposal of a Dirac operator it is helpful to
state what locality means. An action density which has
nearest-neighbour interactions or interactions that are
identically zero beyond a few lattice units is certainly
local, but no physical principle requires this extreme

wolay, as) = wy(ar, —as) = w,

(“"Q(”Qa ”’1) = “”Q(”’?) —a1) =

(""Q(_H'Qa ”’1) = “"Q(_GQ)

case [[]. On the lattice an action is termed local if
its couplings have exponentially decaying tails at large
distances. This property is ensured if D(p) is an analytic
periodic function of the momenta p, with period 27 /a.

The following ansatz for a solution to the “strong”
equivalence constraint for the blocked lattice with spac-
ing b is made:

D =yupu— 4, (19)
with p, and ¢ such that D obeys Eq. & so
Pulu — ¢’ =0. (20)

A numerical prescription for constructing an effective
representation of the Dirac operator for massless fermions
is used. To begin, a sequence of “ultra-local” operators of
finite, increasing range is defined. The finite range opera-
tor can be described with a number of coefficients weight-
ing each distinct hopping term. The hopping terms are
taken from A, the set of all vectors a whose range is less
than r. The “taxi-driver” metric is used to define the
range of a vector a with components a;, so

r(a) = Z|ai|.

In two dimensions then,

{(0,0)},

{(Oa O)J (1) 0); (_1J0); (0) 1)) (Oa _1)}a e (22)

(21)

Ao =
Ay =

A general ansatz for both p# and ¢, connecting fields at
sites x and y is then

Phy =Y wh(@a)dctay, (23)
acAd,
and
Ix,y = Z wq(a)dxtay- (24)

acA,

The coefficients are constrained so that the required sym-
metries of each operator are preserved to ensure the ac-
tion is a scalar. This implies that the coefficients w,
form a trivial representation of the lattice rotation group,
while wf form a fundamental representation. In two di-
mensions (where the relevant rotation groups is Cy,) the
required irreducible representations are Ay for ¢ and E

for p. This in turn implies the relations

—ay,as) = wy(—ay, —as) =

—(11), (25)



and

w;(al, as) = wzl, (a1,—as) = —wzl,(—al, as) = —wzl,(—al, —as) =

wz(ag,al) = —wz(ag, —ay) = w?

One further constraint is added to improve the represen-
tation of low-momentum states. The coefficient w,(0, 0)
is chosen such that the operator ¢ vanishes on a zero-
momentum plane-wave. The number of free parameters
in the operators p and ¢ in two and four dimensions is
given for a few low ranges in Table ll

d=2 d=4
Range  p* q " q
1 1 1 1 1
2 3 2 3 3
3 6 4 7 6
4 10 6 14 11
5 15 9 25 17

10 55 30 189 93

TABLE I: The number of free parameters in the finite-range
operators in two and four dimensional lattice actions

A sequence of lattice Dirac operators, Dy, Ds, ... with
increasing range is then considered. Each operator in
the sequence is chosen to minimise p2, a positive-definite
measure of the difference between the two sides of Eq.

B namely

1
2 _ 2 ‘
i = 4d2NSTr (X;), (27)

with N, the number of sites on the blocked lattice and
X, =DID, +00. (28)

Note there are certainly an infinite number of actions
obeying the equivalence principle of Eq. B2 Most of
these will be non-local but there could well be more than
one local action. The following hypothesis is made. If
a local action obeying “strong” equivalence exists, then
the measure p, should fall exponentially, and the oper-
ator D, should have exponentially falling coefficients in-
side A,. D, is the best ultra-local approximation to the
solution of the equivalence condition of Eq. B The coef-
ficients of the action a long way from the boundary of the
operator should also converge as the range is increased.

The sequence of ultra-local actions D, was computed
numerically by finding the minimum of y,.. The calcu-
lations were performed for massless fermions. A short
check demonstrated the localisation properties were bet-
ter for massive fermions.

2

(—az,a1) = —wy(—az, —ay). (26)
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FIG. 1: The error function, u, for lattice actions of range up

to 106.

A. Results

A multi-dimensional Newton-Raphson solver was used,
since both the slope and Hessian of g, can be computed
easily. The GNU multiple precision library (GMP) was
used [{] when numerical precision was required beyond
64-bit native arithmetic. Some checks were made to test
if the minimum in u, was a global one. A range of dif-
ferent starting values of the action parameters were used
to seed the Newton-Raphson search and a simulated an-
nealing algorithm was run to search for a minimum at
short ranges. A number of local minima were found in
many cases making it difficult to determine if the global
minima was reached. This issue is discussed later.

1. Two dimensions

Fig. B shows the dependence of p, for the optimal
action as a function of the finite range of the action, r.
A clear signal for exponential fall-off is displayed: p,,
the discrepancy between DI D, and —O falls by thirty
decades as the action range is increased from b to 10b.
The coefficients in ¢ and p, of the action Diq are pre-
sented in Fig. l The on-lattice-axis and diagonal terms
are presented. For the operator p,, on-axis refers to the
terms in p; with off-set vector (a,0) and those in ps with
off-set (0,a). Note that by symmetry, terms in p; with
off-set (0,a) vanish identically. An exponential fall-off
over eighteen decades is observed, providing solid evi-
dence for the existence of a local operator. At 64-bit
machine precision, terms with ranges beyond about 6b
would have uncomputably small contributions to the ac-
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FIG. 2: The coefficients in g and p,., the composite operators
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FIG. 3: The eigenvalues of the approximately equivalent

Dirac operator, [J1g. The eigenvalues are scaled so the first
doubler, with momentum (, 0) has A = 1.

tion of a plane wave state. Notice the terms in the two
operators p, and ¢ are very similar in magnitude and
have similar localisation range. Fig. H shows the eigen-
value spectrum of the operator Dyg. The eigenvalues are
purely real when all components of the operator p, van-
ish, ¢e. at the doubling points. The real parts of the
eigenvalues for the doublers are close to 0 (for the prop-

agating mode), 1 and /2.

2. Four dimensions

A similar construction was followed for the four-
dimensional action. A sequence of operators on the four-
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FIG. 4: The error function, p, for four-dimensional lattice
actions of range up to 5b.
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FIG. 5: The coefficients in ¢ and p, in the four-dimensional
action s as a function of the separation between the fields
in the bilinear

dimensional lattice with spacing b = 2a was determined.
The operators in the action again took the general form of
Eqns. B and B with ¢ transforming trivially under the
four-dimensional rotation group and p, transforming un-
der the fundamental representation. The computational
cost of the four-dimensional calculation means that only
actions up to range r = 5 have been constructed. Fig.
B shows the fall-off of u, in the sequence of actions. A
rapid decay of p, as r is increased is again observed. No-
tice also the fall-off accelerates at range r = 4, once the
action increases beyond the bounds of the unit hypercube
on the spacing-b lattice.

In Fig. B the magnitude of the coefficients on the axis
and diagonals of the operator Dy are displayed. A similar
pattern to the two-dimensional case is seen, with a five-
decade decay over five lattice hops being observed. The
data suggest a local operator exists in four dimensions as
well as two.



IV. THE GINSPARG-WILSON RELATION

The presence of the operator ¢ in the definition of Eq.
B means D does not anticommute with ~5, which would
guarantee that the fermionic action is invariant under
continuous chiral transformations. This is expected from
the Nielsen-Ninomiya theorem. As is now well known,
the theorem can be bypassed if one does not insist that
the chiral transformations assume their canonical form
on the lattice i}, ). In particular it was shown that
the Ginsparg-Wilson relation,

{7, D} = 2Dy RD, (29)

implies an exact symmetry of the fermionic action which
may be regarded as a lattice form of an infinitesimal chi-
ral rotation.

For a Dirac operator obeying Eq. B three properties
follow:

DT = "/5D"/5, (30)
DD = —0O7, (31)
D1 = %ﬂ (32)

The propagator D~! then satisfies the following relation

{75a D_l} = 2R7s, (33)
with

q

R= O (34)
The construction of Sec. Il does not ensure the oper-
ator R is local, and so there is no apparent lattice chiral
symmetry. Eqn. Bl does suggest the definition of an al-
ternative sequence of actions, D,(-GW) which might lead
to a Dirac operator obeying a (generalised) Ginsparg-
Wilson relation. Consider an operator of range r with

the form

D) = 3, pt + OR._y, (35)

r

where R,_1 is a local operator with finite range r — 1.
Note this implies the scalar operator ¢, = OR,_; has
range r as before. If the limit of the sequence DY) s
a solution to Eqn. B and p* and R remain local, then
a local operator, equivalent to the staggered fermion and
obeying a generalised Ginsparg-Wilson relation will be
constructed.

A simple consequence of Eq. Bis then that chiral sym-
metry is partly preserved, in particular the lagrangian
L = /D4 is invariant under the local symmetry trans-
formation:

5 = (1 - %RD) v, (36)

ST=T <1 _ %DR) ”e. (37)
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FIG. 6: The error function, p, for two-dimensional lattice
operators constructed with the Ginsparg-Wilson constraint

of Eqn. B
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FIG. 7: The coeflicients in g and p, in the two-dimensional
(aw)

action Djg as a function of the separation between the
fields in the bilinear.

A. results

The operator sequence minimising p, of Eq. Bl was
computed for the two-dimensional lattice. As before, the
Newton solver was used for minimisation with the con-
straint of Eqn. B The problem of finding multiple local
minima was observed and was more extreme than the
initial construction of Sec. M The dependence of .
for the operator obeying the Ginsparg-Wilson constraint
is shown in Fig. B Exponential decay of the discrep-
ancy measurement, u, as the range r is increased is seen
again this time over twelve orders-of-magnitude. Fig. H
shows the fall-off of the symmetry-breaking kernel for the
optimised action DEE;W). An exponential fall-off of eight
decades is observed. The terms in the operator ¢ are thus
exponentially localised. The derivative operator, p, also
has local coefficients. The eigenvalues of the operator

Dggw) are shown in Fig. B along with those for the un-
constrained two-dimensional action construction of Sec.



T I T I T I T
.t~ .
Lt ey
- ./ "‘ 7 o E
“.' ’ .
g . et
05 ‘j' “‘,‘,.:-‘,.'- '..-",.'.:‘. —
P
Co
i
7 ¢ 7
<
e O
5 * i
I
L
'\ "\,"
05 Yy e sl -
v":‘ Wt
LR N
o s
e e * c. 2
L e . .. i
: . : .’. i
e
1 l 1 l 1 l 1
0 0.5 1 1.5

Re A

FIG. 8: The eigenvalues of the two operators, Dio (blue) and
DIGW)

10 (red). The eigenvalues are scaled such that A =1 for
momentum (7, 0).

V. DISCUSSION

A numerical construction of ultra-local, approximate
actions can never prove the existence of a fermion with a
well defined local action (unless the action is itself ultra-
local), but the calculations in this paper do present strong
evidence for the existence of an equivalent, local the-
ory to the one-flavour free staggered fermion. In two
dimensions, the mis-match between the dispersion spec-
trum of the ultra-local theory and the staggered fermion
can be made as small as 10739 with an action of range
10b. At this range, terms in the action are as small as
108, The construction for four-dimensional theories is
more difficult, but evidence for locality is seen here too.
The numerical construction of the action was performed
for massless fermions. Some short tests with massive
fermions suggest the localisation properties of these ac-
tions are better still; the massless fermion represents the
hardest case to reproduce.

The numerical search for a global minima of Eqn.
a non-linear function of the action parameters, w, and
wq is made difficult by the presence of local minima. It
is difficult to find convincing evidence that the Newton-
Raphson solver has found the global minimum for large
actions, although searches using different starting points
often converged to a common fixed point. An empiri-
cal observation is important; the minima with smaller
values of p, tend to have better localisation properties
(their coefficients fall faster). This implies if the searches
have not found the global minima, these will represent
better actions than those already uncovered, improving
the construction rather than spoiling it.

For the constrained construction to build an opera-
tor obeying the (generalised) Ginsparg-Wilson relation,
the localisation ranges were about twice that of the un-
constrained construction and good evidence for exponen-
tially local actions is seen. The problem of finding global
minima seems to be exacerbated. Solutions to the stan-
dard GW relation (with R = I) are now well known
LA, ILZ]). Tt is important to recognise a solution with
R = Iis impossible for the equivalent theory; this can be
seen easily by considering the doubler momenta, (m,0)
and (m, 7). For these two points, the eigenvalues of D
must be 1 and /2 respectively, while R = T would de-
mand they were both unity.

The evidence in this paper (and in Ref. [2I]) put
staggered-fermion simulations on a more robust footing,
but there remain many unanswered questions. For stag-
gered fermion simulations to be correct descriptions of
quantum field theory, one must demonstrate two postu-
lates; firstly that a local path-integral representation of
the fractional power of the staggered determinant exists
and secondly the validity of calculations performed by
assuming the propagator of this theory is related to the
inverse of the full staggered matrix, @~'. The work in
this paper hints at the right question to address the first
issue, but does not address the second point. In using
Q! as the fermion propagator a clear problem arises.
In four dimensions, too many pion operators can be con-
structed for example. The residual symmetry of the stag-
gered matrix ensures these states lie in mass-degenerate
multiplets [Ld, [L4, [L€], but “taste-breaking” interactions
split their masses. These splittings vanish in the con-
tinuum limit. Recent work on the low-energy eigenvalue
spectrum is beginning to resolve this issue [[L&, ILY, 0]

Future work offers an optimistic possible outcome; if an
effective operator can be constructed for QCD, it seems
this operator might obey a Ginsparg-Wilson relation and
the lattice physicist will have the best of both worlds:
cheap dynamical-configuration generation algorithms us-
ing the staggered formulation with a theoretically well
defined action (possibly with an exact GW chiral sym-
metry) to compute propagators. This would not be a
“mixed action” simulation, where different valence and
sea quark actions are employed. The first obstacle to
extending the construction of Sec. I to incorporate
gauge interactions is that the operator Q1Q is not pro-
portional to (I ® I) in Dirac-taste indices and so does
not decompose directly into n; decoupled parts. This
is the “strong” definition of equivalence required for the
free theory, but a re-definition of u, to measure viola-
tions in “weak” equivalence can be made. This is under
investigation and few conclusions about the success of
this programme can be drawn. A number of difficult
questions arise immediately, since the two theories would
have different apparent symmetries.



VI. CONCLUSIONS

In this paper, a local lattice Dirac operator whose de-
terminant is identical to the free staggered-fermion de-
terminant, and whose energy-momentum dispersion rela-
tions are identical (although with different degeneracies)
is described as the end-point of a sequence of actions of
increasing, finite range. The first few ultra-local actions
in the sequence are constructed numerically and conver-
gence of the sequence is demonstrated in both two and
four dimensions.

The spectrum of the operator is free from doublers and
its low-energy dynamics correctly describes the propaga-
tion of free fermions up to corrections of O(a?p?), a prop-
erty it inherits from its staggered parent. The operator
acts on a full Dirac spinor situated only on the sites of a
blocked lattice with spacing b = 2a.

A constraint is added to the construction to define an

operator that obeys a generalised Ginsparg-Wilson rela-
tion. In this action, the chiral symmetry breaking in the
propagator 1s described by a local operator, diagonal in
the spin index. This implies the existence of a fermion
whose path integral is the same as that of one staggered
flavour and with an exact chiral symmetry on the lattice.
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