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1. Introduction

As defined by Cartan [1] and Chevalley [2], pure spinors in even dimension d = 2n are

complex spinors λa which satisfy the constraint λa(σµ1..µj )abλ
b = 0 for 0 ≤ j < n, where

σµ1...µj is the antisymmetrized product of j Pauli matrices. So λaλb can be written as

λaλb =
1

n! 2n
σab

µ1...µn
(λcσµ1..µn

cd λd) (1.1)

where λσµ1...µnλ defines an n-dimensional complex plane, and thus complex coordinates

on R2n. In Euclidean space, this n-dimensional complex plane is preserved up to a phase

by a U(n) subgroup of SO(2n) rotations. So projective pure spinors in d = 2n Euclidean

dimensions parameterize the coset space SO(2n)/U(n)1. (For a more detailed account of

this correspondence, we refer the reader to the Appendix.)

In four dimensions, this is the coset space SO(4)/U(2) = CP1 which is parameterized

by a projective chiral spinor λa for a = 1 to 2. As is well-known, the twistor formalism

of Penrose makes use of this d = 4 projective pure spinor to construct solutions to d = 4

massless equations of motion [3] [4]. In six dimensions, the coset SO(6)/U(3) = CP3 is

parameterized by a projective chiral spinor λa for a = 1 to 4. Although it is less well-known

than its four-dimensional counterpart, this projective pure spinor in six dimensions can

similarly be used to construct twistor solutions to the d = 6 massless equations of motion,

as demonstrated by Hughston [5].

In this paper, these twistor constructions of solutions to massless equations of motion

will be generalized for projective pure spinors in any even dimension. Above six dimen-

sions, the construction becomes non-trivial since pure spinors for d ≥ 8 satisfy non-linear

constraints. For example, in eight dimensions, the coset SO(8)/U(4) is parameterized by

a projective chiral spinor λa for a = 1 to 8 satisfying the additional constraint λaλa = 0.

And in ten dimensions, the coset SO(10)/U(5) is parameterized by a projective chiral

spinor λa for a = 1 to 16 satisfying the constraint λaσµ
abλ

b = 0 where σµ
ab are the d = 10

Pauli matrices. So generalization of the Penrose twistor construction to higher dimensions

requires new techniques for integration over these coset spaces.

1 In Minkowski space, the n-dimensional complex plane is preserved by a U(n−1) subgroup of

SO(d− 2) rotations and is also preserved by (2n− 1) light-like boosts. So projective pure spinors

in Minkowski space contain the same number of variables as in Euclidean space, but the coset

space is modified to SO(2n − 1, 1)/U(n − 1) × R
2n−1.
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Here we limit ourselves to the simple question of solving linearized massless equations

of motion in flat spacetime. However, the fact that projective pure spinors provide an

elegant higher-dimensional generalization of this twistor construction suggests that pure

spinors may also be useful for generalizing other applications of four- dimensional twistors

to higher dimensions. Solutions of nonlinear problems, as well as linear problems in non-

flat background, are of special interest. For example, four- dimensional twistors have been

useful for constructing solutions of self-dual Yang-Mills [6] and self-dual gravity equations

[7], [8] , and for constructing Green’s functions on multi-Taub-NUT spaces [9]. It might be

possible that pure spinors will be useful for generalizing these nonlinear constructions to

higher dimensions. In particular, we use pure spinors in this paper to construct self-dual

abelian potentials in higher dimensions and one might hope that geometric insight from

this construction will lead to the proper formalism for a nonabelian generalization.

Note that ten-dimensional pure spinors have recently been used for covariantly quan-

tizing the superstring [10][11] and many of the techniques described here are generalizations

of techniques developed for quantization of the ten-dimensional superstring. So it would

not be surprising to find that pure spinors in ten dimensions are useful for constructing

solutions to d = 10 super-Yang-Mills and supergravity equations [12], which are the low-

energy equations of the superstring. However, it is not clear how the higher-dimensional

twistors described here can be generalized to higher-dimensional supertwistors.

There have been numerous approaches to generalizing the twistor formalism to higher

dimensions, most of which differ from each other and from our approach. For exam-

ple, Ward presents classes of various nonlinear equations for a nonabelian gauge field in

[13] that can be solved using higher-dimensional twistors. Also, twistor-like transforms

in higher dimensions have appeared in studies of the superparticle and superstring (e.g.

[14][12]). The resemblance of pure spinors and twistors has been noted by many people

(e.g. [15][16]), however, the references we are aware of which come closest to the explicit

approach presented here are [17] where the properties of twistor space are studied, as well

as [18] and [19] where the Penrose transform is constructed and proven to be one- to-one.

In section 2 of this paper, we review the twistor construction of massless solutions using

four and six-dimensional pure spinors. In section 3, we show how this twistor construction

extends to pure spinors in eight and ten dimensions. And in section 4, we generalize this

twistor construction to pure spinors in arbitrary even dimensions.
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2. Pure Spinors in Four and Six Dimensions

In four and six dimensions, projective pure spinors parameterize the coset spaces

SO(4)/U(2) = CP1 and SO(6)/U(3) = CP3, and are therefore described by complex

projective two-component and four-component spinors which have been called twistors. As

will be reviewed here, these twistors have been used for constructing solutions to massless

equations of motion in four [3][4]and six dimensions [5].

2.1. Four dimensions

As is well-known, Penrose has used complex projective two-component spinors to

construct twistor solutions to massless equations of motion in four dimensions [3][4]. To

describe this method in a manner which will generalize to higher dimensions, consider the

massless Klein-Gordon equation ∂µ∂µΦ(x) = 0 for a scalar field Φ(x) where µ = 1 to 4. It

is useful to combine xµ into a pair of complex coordinates, z1 = x1 + ix2 and z2 = x3 + ix4,

so that the Klein-Gordon equation (in Euclidean space2) is ∂zj
∂zj

Φ(z, z) = 0. Then if one

defines

w1 = z1 + uz2, w2 = z2 − uz1 (2.1)

where u is a complex variable, any holomorphic function f(w1, w2) will satisfy

(∂z1
∂z1

+ ∂z2
∂z2

)f(w1, w2) =

(

∂

∂w1
(−u

∂

∂w2
) +

∂

∂w2
(u

∂

∂w1
)

)

f(w1, w2) = 0. (2.2)

So the massless Klein-Gordon equation has the solution

Φ(z, z) =

∮

duf(u, w1, w2)|w1=z1+uz2,w2=z2−uz1
(2.3)

where
∮

du is a contour integral around any region in the complex plane.

This construction of massless d = 4 solutions can be made manifestly Lorentz covariant

by introducing a bosonic projective spinor λa for a = 1 to 2 and defining

wȧ = σµ
aȧxµλa (2.4)

where σµ
aȧ are the usual d = 4 Pauli matrices. Under d = 4 conformal transformations,

(λa, wȧ) transforms linearly as an SO(4, 2) spinor.

2 As usual, one can Wick rotate to Minkowski space by replacing x4 with ix4 so that z2 = x3+x4

and z2 = x3 − x4 are independent real variables.
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When λa = (1, u), the relation of (2.4) reduces to (2.1) and solution (2.3) can be

written covariantly as

Φ(x) =

∮

dλa λaF (λ, w)|w=xλ (2.5)

where F (hλa, hwȧ) = h−2F (λa, wȧ) so that the contour integral over the projective spinor

is well-defined. For example, choosing

F (λ, w) =
ǫȧḃA

ȧ
1A

ḃ
2

(Aċ
1wċ)(Aḋ

2wḋ)
(2.6)

generates the d = 4 Green’s function Φ(x) = (xµxµ)−1.

One can similarly construct massless d = 4 solutions to higher-spin equations by

considering functions F (λa, wȧ) satisfying the condition F (hλa, hwȧ) = h−N−2F (λa, wȧ).

If N is positive, one uses the formula

Φ(a1...aN )(x) =

∮

dλb λbλ
a1 ...λaN F (λ, w)|w=xλ. (2.7)

And if N is negative, one uses the formula

Φ(ȧ1...ȧ
−N )(x) =

∮

dλa λa

(

∂

∂wȧ1

...
∂

∂wȧ
−N

F (λ, w)

)

|w=xλ. (2.8)

Since ∂
∂xµ F (λ, w) = (λσµ)ȧ

∂
∂wȧ

F (λ, w), one can use σµ
aȧσµ bḃ = 2ǫabǫȧḃ to show that

σµ

bḃ
∂

∂xµ Φ(ba2...aN )(x) = 0 and σµ

bḃ
∂

∂xµ Φ(ḃȧ2...ȧ
−N )(x) = 0. So (2.7) and (2.8) describe solu-

tions for massless particles of spin |N |/2 and helicity N/2.

2.2. Six dimensions

Although less familiar than the two-component twistor formulas in four dimensions,

projective four-component complex spinors have been used to construct twistor solutions

to massless equations of motion in six dimensions [5]. For example, consider the Klein-

Gordon massless equation ∂µ∂µΦ(x) = 0 for a scalar field Φ(x) where µ = 1 to 6. As

before, combine xµ into a triplet of complex coordinates, z1 = x1 + ix2, z2 = x3 + ix4 and

z3 = x5+ix6, so that the Klein-Gordon equation (in Euclidean space) is ∂zj
∂zj

Φ(z, z) = 0.

Then if one defines

vj = zj + ujkzk (2.9)
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where ujk = −ukj are three independent complex variables, any holomorphic function

f(v1, v2, v3) will satisfy

∂zj
∂zj

f(v1, v2, v3) = ujk
∂

∂vj

∂

∂vk
f(v1, v2, v3) = 0 (2.10)

because of the antisymmetry of ujk. So the massless Klein-Gordon equation has the

solution

Φ(z, z) = (

∮

du)3f(ujk, vl)|vj=zj+ujkzk
(2.11)

where the three contour integrals for the ujk variables are chosen arbitrarily.

This construction of massless d = 6 solutions can be made manifestly Lorentz covariant

by introducing a projective spinor λa for a = 1 to 4 and defining

wa = σµ
abxµλb (2.12)

where σµ
ab = −σµ

ba are the d = 6 Pauli matrices. Under d = 6 conformal transformations,

(λa, wḃ) transforms linearly as an SO(6, 2) spinor.

When λa = (1, u23, u31, u12), one can check that with a suitable choice for the Pauli

matrices,

wa = (
1

2
ǫjklujkzl, v1, v2, v3) (2.13)

where vj is defined in (2.9). Note that (2.13) satisfies λawa = 0, as implied by (2.12).

Furthermore, the massless solution (2.11) can be covariantly written as

Φ(x) =

∮

ǫabcddλa ∧ dλb ∧ dλc λdF (λ, w)|w=xλ (2.14)

where F (hλa, hwb) = h−4F (λa, wb) so that the integral over the projective spinor is well-

defined. For example, choosing

F (λ, w) =
ǫabcdA

a
1A

b
2A

c
3A

d
4

∏4
r=1(A

e
rwe)

(2.15)

generates the d = 6 Green’s function Φ(x) = (xµxµ)−2.

One can similarly construct massless d = 6 solutions to higher-spin equations by

considering functions F (λa, wb) satisfying the condition F (hλa, hwb) = h−N−4F (λa, wb).

When N is positive, one uses the formula

Φ(a1...aN )(x) =

∮

ǫbcdedλb ∧ dλc ∧ dλd λeλa1 ...λaN F (λ, w)|w=xλ. (2.16)
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And when N is negative, one uses the formula

Φ(a1...a
−N )(x) =

∮

ǫbcdedλb ∧ dλc ∧ dλd λe

(

∂

∂wa1

...
∂

∂wa
−N

F (λ, w)

)

|w=xλ. (2.17)

Since ∂
∂xµ F (λ, w) = (λσµ)a

∂
∂wa

F (λ, w), one can use σµ
abσµ cd = 2ǫabcd to show that

σµ
bc

∂
∂xµ Φ(ca2...aN )(x) = 0 either when N is positive or negative. So the solutions of (2.16)

and (2.17) describe a massless spin 1
2 field when N = ±1, a self-dual three-form field-

strength when N = ±2, etc.

3. Pure Spinors in Eight and Ten Dimensions

Using the methods of the previous section, it is easy to generalize the non-covariant

construction of (2.3) and (2.11) to arbitrary even dimension. To solve the massless Klein-

Gordon equation ∂µ∂µΦ(x) = 0 for a scalar field Φ(x) where µ = 1 to 2n, first combine

xµ into n complex coordinates, zj = x2j−1 + ix2j for j = 1 to n, so that the Klein-Gordon

equation in Euclidean space is ∂zj
∂zj

Φ(z, z) = 0. Defining

vj = zj + ujkzk (3.1)

where ujk = −ukj are n(n − 1)/2 independent complex variables, one finds that any

holomorphic function f(vj, ujk) satisfies

∂zj
∂zj

f(v, u) = ujk
∂

∂vj

∂

∂vk
f(v, u) = 0. (3.2)

So the massless Klein-Gordon equation has the solution

Φ(z, z) = (

∮

du)n(n−1)/2f(v, u)|vj=zj+ujkzk
(3.3)

where the n(n − 1)/2 contour integrals for ujk are chosen arbitrarily.

To express this solution in a Lorentz-covariant manner using pure spinors, it will be

necessary to know how to integrate the pure spinors over the coset space SO(2n)/U(n).

When n = 5, an integration method for pure spinors was developed in [11] for quantization

of the ten-dimensional superstring. As will be shown here, this integration method is easily

generalized for arbitrary n, which will allow the massless solution of (3.3) to be expressed

in a Lorentz-covariant manner. Before describing this twistor construction for arbitrary

even dimension, it will be convenient to first describe the twistor construction for d = 8

and d = 10.
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3.1. Eight dimensions

In eight dimensions, a pure spinor is described by a chiral spinor λa for a = 1 to 8

which satisfies the additional constraint λaλa = 0. To covariantize vj and ujk of (3.1) for

j = 1 to 4, define the antichiral spinor

wȧ = σµ
aȧxµλa (3.4)

where σµ
aȧ are the d = 8 Pauli matrices. Note that wȧ is an antichiral pure spinor and

under d = 8 conformal transformations, (λa, wȧ) transforms linearly as an SO(8, 2) spinor.

When λa = (1, ujk, −1
8ǫjklmujkulm), one can choose a representation of the d = 8

Pauli matrices such that

wȧ = (vj ,
1

2
ǫjklmvkulm). (3.5)

Note that (3.5) satisfies σµ
aȧλawȧ = 0, as implied by (3.4). To covariantize the massless

solution of (3.3), one needs to define a suitable integration measure for integrating λa over

the coset space SO(8)/U(4).

To define such an integration measure, note that

[dλ]d=8 ≡ (Cbλ
b)−1ǫa1...a8

dλa1 ∧ ... ∧ dλa6λa7Ca8 (3.6)

is independent of the choice of Cb and is therefore Lorentz-invariant. To show independence

of Cb, use λaλa = 0 and λadλa = 0 to show that (3.6) is invariant under the transformation

δCa = fλa + gCa + ǫabc1...c6
λbhc1...c6 (3.7)

where f , g and hc1...c6 are arbitrary parameters. Since (3.7) can be used to change Ca in

an arbitrary manner, (3.6) is independent of Ca.

Using the measure factor of (3.6), the solution of (3.3) can be written in Lorentz-

covariant form as

Φ(x) =

∮

[dλ]d=8F (λ, w)|w=xλ (3.8)

where F (hλa, hwȧ) = h−6F (λa, wȧ) so that the integral over the projective spinor is well-

defined. For example, choosing

F (λ, w) =
ǫḃ1...ḃ8

Aḃ1
1 ...Aḃ7

7 wḃ8

∏7
j=1(A

ȧ
jwȧ)

(3.9)
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generates the d = 8 Green’s function Φ(x) = (xµxµ)−3.

One can similarly construct massless d = 8 solutions to higher-spin equations by using

the formula

Φ(a1...aN )(x) =

∮

[dλ]d=8λ
a1 ...λaN F (λ, w)|w=xλ (3.10)

where F (λa, wȧ) satisfies the condition F (hλa, hwȧ) = h−N−6F (λa, wȧ) for N positive.

Since
∂

∂xµ
F (λ, w) = (λσµ)ȧ

∂

∂wȧ
F (λ, w),

σµ
aȧσµ bḃλ

aλb = 0 implies that σµ

bḃ
∂

∂xµ Φ(ba2...aN )(x) = 0. So (3.10) describes a massless

spin 1
2 field when N = 1, a self-dual four-form field-strength when N = 2, etc. But unlike

the d = 4 and d = 6 cases, one cannot construct massless solutions when N is negative

since σµ
aȧσµ bḃ

∂
∂wȧ

∂
∂wḃ

does not necessarily vanish.

3.2. Ten dimensions

In ten dimensions, a pure spinor is described by a chiral spinor λa for a = 1 to 16

which satisfies the additional constraint λaσµ
abλ

a = 0 where σµ
ab = σµ

ba are the d = 10 Pauli

matrices. To covariantize vj and ujk of (3.1) for j = 1 to 5, define the antichiral spinor

wa = σµ
abxµλb. (3.11)

Note that wa is an antichiral pure spinor and under d = 10 conformal transformations,

(λa, wa) transforms linearly as an SO(10, 2) spinor.

When λa = (1, ujk, −1
8 ǫjklmnujkulm), one can choose a representation of the d = 10

Pauli matrices such that

wa = (vj ,
1

2
v[kulm],

1

8
ǫjklmnvjuklumn), (3.12)

which satisfies λawa = λa(σµν)a
bwb = 0, as implied by (3.11). To covariantize the massless

solution of (3.3), one needs to define a suitable integration measure for integrating λa over

the coset space SO(10)/U(5).

Such a measure was defined in [11] as

[dλ]d=10 ≡ (Cbλ
b)−3ǫa1...a16

dλa1 ∧ ... ∧ dλa10λa11(Cσµ)a12(Cσν)a13(Cσρ)a14(σµνρ)
a15a16 ,

(3.13)
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where [dλ]10 is independent of the choice of Cb and is therefore Lorentz-invariant. A

simple way to show independence of the measure of Cb is by using invariance under the

U(1) × SU(5) subgroup which preserves the pure spinor λa up to a phase. Under U(1) ×

SU(5), the sixteen components of an SO(10) chiral spinor transform as (15/2, 101/2, 5−3/2)

representations and the sixteen components of an SO(10) antichiral spinor transform as

(53/2, 10−1/2, 1−5/2) representations, where the subscript denotes the U(1) charge. So by

our choice of the U(1) × SU(5) subgroup, λa transforms as an SU(5) singlet with U(1)

charge 5/2. Furthermore, since λaσµ
abdλb = 0, dλa carries either U(1) charge 5/2 or

1/2. Therefore, dλ[a1 ∧ ... ∧ dλa10λa11] carries U(1) charge 15/2, which implies by U(1)

conservation that only the component of Cb in the 1−5/2 representation contributes to

(3.13). Finally, it is easy to see that (3.13) is invariant under scale transformations of

this 1−5/2 component because there are an equal number of Cb’s in the numerator and

denominator of (3.13).

Using the measure factor of (3.13), the solution of (3.3) can be written in Lorentz-

covariant form as

Φ(x) =

∮

[dλ]d=10F (λ, w)|w=xλ (3.14)

where F (hλa, hwb) = h−8F (λa, wb) so that the integral over the projective spinor is well-

defined. For example, choosing

F (λ, w) =
ǫb1...b16A

b1
1 ...Ab11

11 (σµw)b12(σνw)b13(σρw)b14(σµνρ)
b15b16

∏11
r=1(A

a
rwa)

(3.15)

generates the d = 10 Green’s function Φ(x) = (xµxµ)−4.

One can similarly construct massless d = 10 solutions to higher-spin equations by

using the formula

Φ(a1...aN )(x) =

∮

[dλ]d=10λ
a1 ...λaN F (λ, w)|w=xλ (3.16)

where F (λa, wb) satisfies the condition F (hλa, hwb) = h−N−8F (λa, wb) for N positive.

Since ∂
∂xµ F (λ, w) = (λσµ)a

∂
∂wa

F (λ, w), one can use σµ
abσµ cdλ

aλc = 0 to show that

σµ
bc

∂
∂xµ Φ(ca2...aN )(x) = 0. So (3.16) describes a massless spin 1

2 field when N = 1, a

self-dual five-form field-strength when N = 2, etc. As in the d = 8 case, one cannot con-

struct massless solutions when N is negative since σµ
abσµ cd

∂
∂wb

∂
∂wd

does not necessarily

vanish.
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4. Twistor Construction in Higher Dimensions

In this section, we will generalize the constructions of the previous sections to arbitrary

even dimension. In dimension d = 2n, a pure spinor is defined as a chiral spinor λa for

a = 1 to 2n−1 which satisfies the additional constraints

λaσ
µ1...µn−4

ab λb = λaσ
µ1...µn−8

ab λb = λaσ
µ1...µn−12

ab λb = ... = 0. (4.1)

To covariantize ujk and vj of (3.1) for j = 1 to n, define the antichiral pure spinor

wb = σµ

ab
xµλa (4.2)

where σµ

ab
are the d = 2n Pauli matrices and b denotes b = ḃ when n is even and b = b

when n is odd. Under d = 2n conformal transformations, (λa, wb) transforms linearly as

an SO(2n, 2) spinor.

When

λa = (1, uj1j2 , −
1

8
u[j1j2uj3j4], −

1

48
u[j1j2uj3j4uj5j6], ...), (4.3)

one can choose a representation of the d = 2n Pauli matrices such that

wa = (vj1 ,
1

2
v[j1uj2j3],

1

8
v[j1uj2j3uj4j5], ...) (4.4)

which satisfies

λσµ1...µn−3w = λσµ1...µn−5w = λσµ1...µn−7w = ... = 0, (4.5)

as implied by (4.2).

To define integration of pure spinors over the coset space SO(2n)/U(n), a central role

will be played by a Lorentz-invariant tensor

T [a1...aR](b1...bS) (4.6)

which is antisymmetric in its first R indices, symmetric in its last S indices, and satisfies

T [a1...aR](b1...bS)σ
µ1...µn−4

b1b2
= T [a1...aR](b1...bS)σ

µ1...µn−8

b1b2
= ... = 0.

When d = 2n, R = 2n−1 − 1 − n(n − 1)/2 and S = (n − 2)(n − 3)/2. This tensor can be

explicitly constructed by defining

T [a1...aR](b1...bS)θa1
...θaR

τb1 ...τbs
= (4.7)

10



(
∂

∂τ
σj1...jn

∂

∂τ
)(

∂

∂τ
σjn+1...j2n

∂

∂τ
)...(

∂

∂τ
σjn(n−2)+1...jn(n−1)

∂

∂τ
)

(τ
∂

∂θ
)(τσj1j2

∂

∂θ
)(τσj3j4

∂

∂θ
)...(τσjn(n−1)−1jn(n−1)

∂

∂θ
) (θ)2

n−1

where θa is a fermionic spinor and τa is a bosonic pure spinor.3 Note that there are

(2n − 2) ∂
∂τ

’s, n2−n+2
2

τ ’s, n2−n+2
2

∂
∂θ

’s, and 2n−1 θ’s on the right-hand side of (4.7),

which agrees with the powers of τ and θ on the left-hand side of (4.7). When n = 4,

T abτb is proportional to τa, and when n = 5, T [a1...a5](b1b2b3)τb1τb2τb3 is proportional to

(σµτ)a1(σντ)a2(σρτ)a3(σµνρ)
a4a5 .

To define integration over λa, note that the measure factor

[dλ]d=2n ≡ (Cfλf )−Sǫa1...an(n−1)/2bc1...cR
dλa1 ∧ ... ∧ dλan(n−1)/2 λbT [c1...cR](e1...eS)Ce1

...CeS

(4.8)

is independent of the choice of Cb and is therefore Lorentz-invariant. As in the d = 10

case described in the previous section, the easiest way to prove independence of (4.8) on

Cb is to use the invariance under the U(1) × SU(n) subgroup which preserves the pure

spinor λa up to a phase. Under U(1)×SU(n), the components of an SO(2n) chiral spinor

transform with U(1) charges (n/2, (n − 4)/2, (n − 8)/2, ...), and λa transforms with U(1)

charge n/2. Furthermore, since λaσµ1...µn−4dλ = λaσµ1...µn−8dλ = ... = 0, dλa carries

either U(1) charge n/2 or (n − 4)/2. Therefore, dλ[a1 ∧ ... ∧ dλan(n−1)/2 λb] carries U(1)

charge n(n − 2)(n − 3)/4, which implies by U(1) conservation that only the component

of Cb with U(1) charge −n/2 contributes to (4.8). Finally, it is easy to see that (4.8) is

invariant under scale transformations of this −n/2 component because there is an equal

number of Cb’s in the numerator and denominator of (4.8).

Using the measure factor of (4.8), the solution of (3.3) can be written in Lorentz-

covariant form as

Φ(x) =

∮

[dλ]d=2nF (λ, w)|w=xλ (4.9)

where F (hλa, hwb) = h2−2nF (λa, wb) so that the integral over the projective spinor is

well-defined. For example, choosing

F (λ, w) =
ǫb1...bM c1...cR

Ab1
1 ...AbM

M T [c1...cR](e1...eS)we1
...weS

∏M
j=1(A

a
jwa)

(4.10)

3 It is interesting to note that (4.7) is the state with maximum number of τ ’s in the cohomology

of the nilpotent operator Q = τa
∂

∂θa
. When n = 5, Q is the zero-momentum contribution to the

BRST operator for the d = 10 superparticle.[20]
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generates the d = 2n Green’s function Φ(x) = (xµxµ)1−n where M = (n2 − n + 2)/2.

One can similarly construct massless d = 2n solutions to higher-spin equations by

using the formula

Φ(a1...aN )(x) =

∮

[dλ]d=2nλa1 ...λaN F (λ, w)|w=xλ (4.11)

where F (λa, wb) satisfies the condition F (hλa, hwb) = h−N+2−2nF (λa, wb) for N posi-

tive. Since ∂
∂xµ F (λ, w) = (λσµ)a

∂
∂wa

F (λ, w), one can use σµ

ab
σµ cdλ

aλc = 0 to show that

σµ
bc

∂
∂xµ Φ(ba2...aN )(x) = 0. So (4.11) describes a massless spin 1

2 field when N = 1, a self-

dual n-form field-strength when N = 2, etc. Unlike the d = 4 and d = 6 cases, one cannot

construct massless solutions when N is negative since σµ

ab
σ

µ cd
∂

∂w
b

∂
∂w

d

does not necessarily

vanish.
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Appendix

Here we collect some facts about pure spinors, elucidating their relation to a few

descriptions of conventional twistors. In particular, we discuss the relation of pure spinors

to complex structures on R2n, as well as to isotropic complex Grassmanians.

4.1. Complex Structures on R2n

Consider all complex structures on R2n that are compatible with the flat metric. Since

these are produced by all orthonormal changes of coordinates modulo the complex changes

of coordinates, the moduli space of all complex structures is SO(2n)/U(n).

Let us write this in more detail. Identifying R2n with Cn, with z ∈ Cn given by

coordinates zi so that z = (z1, . . . , zn), the metric is given by

ds2 = (z, z)G

(

z
z

)

, G =

(

0 1n

1n 0

)

.
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If M ∈ SO(2n), then M satisfies MM † = 1 and M = GMG in the (z, z) basis. That is,

M can be written in a block form

M =

(

T U
U T

)

,

with

TT † + UU† = 1, (4.12)

TU t + UT t = 0. (4.13)

Such a matrix M defines complex coordinates v = Tz + Uz. Unitary transformations
(

Λ 0
0 Λ

)

, ΛΛ† = 1,

respect the complex structure, v ∼ Λv, and generically can be used to put T = 1n. This

can be compared to formula (3.1) for vj in the text.

4.2. Isotropic Grassmanian

Dropping the normalization condition (4.12) and considering now Λ ∈ GL(n,C), we

observe that there is a unique solution to (4.12) on the GL(n,C) orbit. Thus SO(2n)/U(n)

can be thought of as the space of pairs (T, U) ∼ (ΛT, ΛU) with

det(TT † + UU†) 6= 0

TU t + UT t = 0.

The latter is the space of isotropic n-planes in C2n. That is, the 2n × n matrix

(

T
U

)

defines Cn ⊂ C2n that is isotropic since

(T, U)G

(

T t

U t

)

= 0.

Thus

SO(2n)/U(n) = G0
n(C2n),

the isotropic Grassmanian. This space is of real dimension n(n − 1).

Given (T, U)t, we consider a coordinate patch with det U 6= 0. Then (T, U)t ∼

(U−1T, 1)t and the elements of the antisymmetric matrix U−1T provide coordinates in the

patch. A different choice of basis amounts to a permutation of rows in (T, U)t. There are

exactly 2n−1 such permutations respecting the orientation of the space. Thus the isotropic

Grassmanian G0
n(C2n) is covered by a minimum of 2n−1 coordinate charts, in other words

its Lusternik-Schnirelmann category is 2n−1.
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4.3. Pure Spinors

For a pure spinor λα the only nonvanishing form is of degree n. Moreover, it is

simple, i.e. its coefficients satisfy λαγi1...in

αβ λβ = a
[i1
1 ai2

2 . . . a
in]
n for some complex linearly

independent vectors a1, a2, . . . an. Thus each pure spinor defines a complex n-plane in C2n.

Moreover, this plane is isotropic since

gi1j1(λ
αγi1...in

αβ λβ)(λγγj1...jn

γδ λδ) = 0.

This correspondence is known as the Cartan map. It is one-to-one for projective pure

spinors. Thus the space of all projective pure spinors is the isotropic Grassmanian

G0
n(C2n). We conclude that projective pure spinors parameterize complex structures on

R2n.
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