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Abstract

In this paper we consider Prandtl’s boundary layer problem for incompressible laminar flow
past a wedge with heat transfer. When the Reynolds or Prandtl number is large the solution
of this roblem has two parabolic boundary layers; one in the velocity components, the other
in the temperature component. We construct a direct numerical method for computing
approximations to the solution of this problem using a compound piecewise-uniform mesh
appropriately fitted to the parabolic boundary layers. Using this numerical method we
approximate the self-similar solution of Prandtl’s problem in a finite rectangle excluding
the leading edge of the wedge, which is the source of an additional singularity caused by
incompatibility of the problem data. By means of extensive numerical experiments, for a
range of values of the Reynolds number, Prandtl number and number of mesh points, we
verify that the constructed numerical method is Reynolds and Prandtl uniform, in the sense
that the computed errors for the velocity components, their derivatives and the temperature
component, in the discrete maximum norm are Reynolds and Prandtl uniform. We use
a special numerical method related to the Blasius technique to compute a semi-analytic
reference solution, with required accuracy with respect to the Reynolds and Prandtl numbers,
for use in the error analysis.

Keywords: Thermal boundary layer, Prandtl boundary layer, numerical method, Reynolds—
and Prandtl-uniform.

1 Introduction

Incompressible laminar flow past a semi-infinite wedge W in the domain D = R*\W is gov-
erned by the Navier-Stokes equations. Using Prandtl’s approach the vertical momentum
equation is omitted and the horizontal momentum equation is simplified, see [2]. The new
momentum equation and energy equation are parabolic and singularly perturbed, which
means that the highest order derivative in each equation is multiplied by a singular pertur-
bation parameter. In the case of the momentum equation the parameter is the reciprocal of
the Reynolds number Re. In the case of the energy equation the parameter is the reciprocal
of the product of the Reynolds number and Prandtl number Pr. For convenience we use the
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notation € = - and ep, = 5, .

It is well known that for flow problems with large Reynolds or Prandtl number boundary
layers arise on the surface of the wedge. Also, when classical numerical methods are applied
to these problems, large errors occur especially in approximations of the derivatives, which
grow unboundedly as the Reynolds or Prandtl number increases. For this reason robust
layer-resolving numerical methods, in which the error is independent of the singular pertur-
bation parameters, are required. We want to solve Prandtl’s problem in a region including
the parabolic boundary layers. Since the solution of the problem has another singularity
at the leading edge of the wedge, we take as the computational domain the finite rectangle
2= (0.1,1.1) x (0, 1) on the upper side of the wedge, which is sufficiently far from the leading
edge that the leading edge singularity does not cause problems for the numerical method.
We denote the boundary of Q by I' = ' UI'r UT's UI'g where 'z, I'7, I'g and I'g denote,
respectively the left-hand, top, bottom and right-hand edges of 2. Prandtl’s boundary layer
problem in €2 is then

[ Find u. = (u.,v.) and t. such that for all (z,y) € Q
u. and t. satisfies the differential equations
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with boundary conditions
u. =0, t.=1landwv.=0o0nTIpg
u.=up I'LUIr

\

where U(z) = 2™, m = 5 55 and A is the angle of the wedge in radians.
Our goal is to construct an (Re, Pr, 3)—uniform numerical method for solving (P.), in the
sense that the method has error bounds, for the solutions and their derivatives, independent

of Re, Pr and S, for all Re € [1,00), Pr € [1,10000] and all 5 € [0,0.5].
2 Blasius similarity solution

Using the similarity transformation (see, for example, Reference [4])
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the velocity components of the Blasius’ solution ug and temperature component of the
Blasius’ solution tg of (P:) are given in terms of f and 6 by

up(@,y) = Uf' (n), ve(z,y) = —/ CELL(f + 221y ' (n)), ts(2,y) = 6(n)

and their scaled derivatives by similar expressions, for example

8UB (m+ 10)R€ 7
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where f and 6 are the solutions of the coupled non-linear problem

Find f € C3([0,00)) such that for all € [0, 00)
100+ S0 1)+ B0 () =0

0" (n) + Prf(n)d (n )

f(0)=0, 6(0) = '( ) =0, limy o f () =1 limy,e06(n) =0.

To find the components ug, vg of ug, their derivatives and tg, on the finite domain €2 for
all Re € [1,00], Pr € [1,00] and 8 € [0,0.5], we need to solve (Pg) numerically for f and
0 and their derivatives on the semi-infinite domain [0,00). Then we apply post-processing
to determine numerical approximations to u. and t.. An analogous process is described in
detail in [1] for flow past a two dimensional wedge.

Here, we make use of the Blasius similarity solution of Prandtl’s problem in two ways. First,
we use it to provide the required artificial boundary conditions on the boundary of 2 in
the direct numerical method for Prandtl’s problem discussed in the next section. Secondly,
we use it as a reference solution for the unknown exact solution in the expression for the
error. Since the Blasius solution is known to converge (Re, Pr, #)-uniformly to the solution
of Prandtl’s problem, we can compute (Re, Pr, 3)—uniform error bounds. For this purpose
we use the Blasius solution for (Pg) when N=8192, namely U%% and T892  which provides
the required accuracy for the velocity components U812 V8192 their derlvatlves D, V5192
D, V92, their scaled derivatives 1/eD,U%'""? and the temperature component T§92.

(Pg)

3 Direct Numerical method for Prandtl’s Problem

The aim of this section is to construct a direct numerical method to solve the Prandtl problem
(P.) for all Re € [1,00), Pr € [1,10000] and S € [0,0.5]. We require a compound piecewise—
uniform fitted mesh QN in the rectangle €2, where N=(N,, N,). We define the mesh as the
tensor product QN = QNm x Qv where the one-dimensional mesh in the z direction is the
uniform mesh inm = {:L'z A 0.1 +iN;',0 <i < N,} and the mesh in the y-direction is
the compound piecewise—uniform fitted mesh

O ={y; 9= 0pri g, 0<J < iy =op+ (0 —op)(j = )5 3 <5 <P



It is important to note that the transition points ¢ and op, are chosen so that there are fine
meshes in the boundary layers whenever they are required. The appropriate choices in this
case are

o = min{3, /elnN,}, op, = min{10, \/e\/Ep,InN,}.

The factors /e and /e,/ep, may be motivated from a priori estimates of the derivatives of
the solution u.,t. or from asymptotic analysis. For simplicity we take N, = N, = V.

The problem (F.) is discretized by the following non-linear upwind finite difference method
on the piecewise uniform fitted mesh QN

(Find U, = (U, V) and 7. such that for all mesh points (z;,y;) € QN
U, and T, satisfies the finite mesh difference equations

—555(]5(371‘, Y;) + UD, Ud(zi,y5) + VeDyUc (24, y5) = U%
_ggPr(S;Te(xia yj) + UEDE_TE(:E'L" y]) + ‘/EDZTE(-T;Z; yj) =0

with boundary conditions

U.=0, T.=1and V,=0o0nlp

UE = UB and TE = TB FLUFT

\

where D, D} and D,, D; are the standard first—order backward, respectively forward,
finite difference operators in the z and y directions, the upwind finite difference operator Dy

is defined by

V'E(wza yJ)Dy Us(xz; y]) - { V;(:L-“ yJ)D;—UE(.T“ yJ) if V;-(-/Ez; y]) <0

and 55 is the standard second order centered finite difference operator in the y direction.
Changes between forward and backward differences are required because, at angles § >
0.1, V. is initially negative and then becomes positive. Note that, without these changes,
the tridiagonal system is not diagonally dominant and the continuation algorithm fails to
converge.

Since (PN) is a non-linear finite difference method an iterative method is required for its

solution. This is obtained by replacing the system of non-linear equations by the following



sequence of systems of linear equations

( With the boundary condition UM = U892 on Ty, for each i,1 <i < N,
use the initial guess U]y, = UMi-1|y. and for m = 1,..., M; solve the following
two point boundary value problem for U™ (x;, ;)
—e6 UM (23, y;) + U Dy UM (i, ;) + VI DEUM(a,y;) =U%e 1 <j<N-—1
with the boundary Condltlons U" = Upg on I'g UT'r, and the initial guess for VEO\ x, =0.
Also solve the initial value problem for V™ (x;, y;)

(AY) § D Ui, ) + Dy V(i ;) = 0
with initial condition V" = 0 on I's.
Continue to iterate between the equations for U7" until m = M;, where M; is such that
max(|UM — UM g, 3= [V = VM-l %,) < tol.
Finally, solve the two point boundary value problem for T, (z;, ;)
—ceprOuTe (i, y;) + UMD, T3, y5) + VMDUT, (25,y;) =0, 1<j<N-—1

| with the boundary conditions 7, = T on I's UT'T U T'L.

For notational simplicity, we suppress explicit mention of the iteration superscript M;, and
henceforth we write simply U,,7T. for the solution generated by (AN). We take tol = 1076
in the computations. We note that there are no known theoretical results concerning the
convergence of the solutions U, and 7. of (PN) to the solutions u. and t. of (P.) and no
theoretical estimate for the pointwise errors (U, — u.)(x;,y;) and (T2 — t.)(x;,y;). It is for
this reason that in the error analysis of the next section, we are forced to use controllable
experimental techniques, which are adapted to the problem under consideration and are of
crucial value to our understanding of these computational problems.

4 Error Analysis

In this section, we compute (Re, Pr, #)-uniform approximate maximum norm errors in the
approximations generated by the direct numerical method described in the previous section.
For the sake of brevity, we discuss here the approximate error in only the discrete temperature
component and for only one value of the wedge angle and the Prandtl number, namely 5 = 0.5
and Pr = 9000.
We compare the approximations generated by the direct numerical method (AZY) of the
previous section with the corresponding values of T5'%?. We use the following definition for
the errors
ENT) = |IT. = Ts" [l

In Table 1 we display the computed maximum pointwise errors of the approximations to
the temperature components. From these numerical experiments it follows that the method
is Re-uniform for # = 0.5 and Pr = 9000. Further computations, not reported here, show
that the method is (Re, P, 3)—uniform for all scaled velocity components, their first order



derivatives, and the temperature component for Re € [1,00), Pr € [1,10000] and £ € [0,0.5].
We define the computed local order of convergence p,,,,, for the temperature component
TY and the e—uniform order pé\gmp by

N o ITY =T lloy N lo max. ||T.Y T3] o v
Pz comp = 1092 2N =5 [ 2n Deomp = 1092 ax TN =T oan

In Table 2 we display the computed orders of convergence for the approximations of
the temperature component 7. obtained from the corresponding Table 1. We see that for
each value of N, the orders of convergence stabilize as ¢ — 0 for # = 0.5 and Pr = 9000.
In additional computations, not reported here, similar behaviour is observed for all scaled
velocity components, their first order derivatives and the temperature component for all
B € 0,0.5] and Pr € [1,10000].

e\N 32 64 128 256 512
270 | 2.65e-02 7.43e-03 5.53e-03 5.25e-03 5.11e-03
272 | 5.85e-02 2.21e-02 8.97e-03 5.39e-03 5.13e-03
—4 1 9.21e-02 6.24e-02 3.10e-02 1.22e-02 5.72e-03
1.47e-01 1.31e-01 8.18¢-02 3.82e-02 1.38e-02
1.47e-01 1.35e-01 1.01e-01 6.00e-02 2.81e-02

—6
-8

N DN DO

2720 | 1.47e-01 1.35e-01 1.01e-01 6.00e-02 2.81e-02
EN 1 1.47e-01 1.35e-01 1.0le-01 6.00e-02 2.81e-02

Table 1: Computed maximum pointwise error EN(T.) where T, is generated by (AY) for
various values of ¢, N, = 0.5 and Pr = 9000

e\N | 32 64 128 256
0183 043 0.07 0.04
2 1141 1.30 0.73 0.07
~4 1056 1.01 1.34 1.10
6
8

0.17 0.68 1.10 1.47
0.13 0.42 0.75 1.09
-0 10.13 042 0.75 1.09

2-20 10.13 042 0.75 1.09
N 0.13 0.42 0.75 1.09

Table 2: Computed orders of convergence pgcomp, pé\gmp for \/e(T. — T§9?) where T, is
generated by (AY) for 8 = 0.5, Pr = 9000 and various values of ¢, N.



5 Conclusion

We considered Prandtl’s boundary layer equations for incompressible laminar flow past a
wedge with angle g7, B € [0,0.5] with heat transfer. When the Reynolds number and
Prandtl number are large the solution of this problem has two parabolic boundary layers.
We constructed a direct numerical method for computing approximations to the solution of
this problem using a compound piecewise uniform fitted mesh technique appropriate to the
parabolic boundary layers. We used the method to approximate the self—similar solution of
Prandtl’s problem in a finite rectangle excluding the leading edge of the wedge for various
values of Re, Pr and (3. We constructed and applied a special numerical method, related to
the Blasius technique, to compute reference solutions to the problem. These were used to
obtain approximate boundary conditions on the artificial boundaries of the computational
domain and in the error analysis of the velocity components, their derivatives and the tem-
perature component. Extensive numerical experiments indicated that the constructed direct
numerical method is (Re, Pr, #)—uniform.
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