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Abstract We consider Prandtl’s boundary layer problem for incompressible laminar flow past
a three dimensional yawed wedge. When the Reynolds number is large the solution of this problem
has a parabolic boundary layer. We construct a direct numerical method for computing approxi-
mations to the solution of this problem using a compound piecewise-uniform mesh appropriately
fitted to the parabolic boundary layer. Using this numerical method we approximate the self–
similar solution of Prandtl’s problem in a finite rectangle excluding the leading edge of the wedge,
which is the source of an additional singularity caused by incompatibility of the problem data. By
means of extensive numerical experiments, for ranges of values of the Reynolds number, wedge
angle and number of mesh points, we verify that the constructed numerical method is Reynolds
and angle uniform, in the sense that the computed errors and orders of convergence for the velocity
components and their derivatives in the discrete maximum norm are Reynolds and angle uniform.
We use a special numerical method related to the Blasius technique to compute a semi–analytic
reference solution with required accuracy for use in the error analysis.

Keywords: Yawed wedge flow, Prandtl boundary layer, numerical method, Reynolds- and
angle- uniform.

1 Introduction

Incompressible laminar flow past a three dimensional semi-infinite yawed wedge W in the domain
D = R3\W is governed by the Navier-Stokes equations. Using Prandtl’s approach the vertical
momentum equation is omitted and the horizontal momentum equation is simplified, see [2].
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Figure 1: Flow past a wedge

The new momentum equation is parabolic and singularly perturbed, which means that the
highest order derivative is multiplied by a small singular perturbation parameter. In this case the
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parameter is the reciprocal of the Reynolds number. For convenience we use the notation ε = 1
Re

.
It is well known that for flow problems with large Reynolds numbers a boundary layer arises on
the surface of the wedge. Also, when classical numerical methods are applied to these problems
large errors occur, especially in approximations of the derivatives, which grow unboundedly as the
Reynolds number increases. For this reason robust layer-resolving numerical methods, in which
the error is independent of the singular perturbation parameter, are required. We want to solve
the Prandtl problem in a region including the parabolic boundary layer. Since the solution of the
problem has another singularity at the leading edge of the wedge, we take as the computational
domain the finite rectangle Ω = (.1, 1.1) × (0, 1) on the upper side of the wedge in the x, y plane,
which is sufficiently far from the leading edge (see fig. 2) that the leading edge singularity does not
cause problems for the numerical method. We denote the boundary of Ω by Γ = ΓL

⋃

ΓT

⋃

ΓB

⋃

ΓR

where ΓL, ΓT , ΓB and ΓR denote, respectively the left-hand, top, bottom and right-hand edges of
Ω. The Prandtl boundary layer problem in Ω is:
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Find uε = (uε, vε, wε) such that for all (x, y, z) ∈ Ω
uε satisfies the differential equations

− 1
Re

∂2uε

∂2y
+ uε

∂vε

∂x
+ vε

∂uε

∂y
= U dU

dx

− 1
Re

∂2wε

∂2y
+ uε

∂wε

∂x
+ vε

∂wε

∂y
= 0

∂uε

∂x
+ ∂vε

∂y
= 0

with boundary conditions
uε = 0, wε = 0 and vε = 0 on ΓB

uε = uP ΓL

⋃

ΓT

where U(x) = xm, m = β
2−β

and βπ is the angle of the wedge in radians.
Our goal is to construct an (Re, β)–uniform numerical method for solving (Pε), in the sense that
the method has error bounds, for the solution and its derivatives, independent of Re and β, for all
Re ∈ [1,∞) and all β ∈ [0, 1].

2 Blasius similarity solution

Using the similarity transformation (see, for example, Reference [4])

η = y

√

(m + 1.0)Re

2xU

the velocity components of the Blasius’ solution uB of (Pε) are given in terms of f and g by

uB(x, y) = Uf
′

(η), vB(x, y) = −
√

(m+1)εU
2x

(f + m−1
m+1ηf

′

(η)), wB(x, y) = g(η)
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and their scaled derivatives by similar expressions, for example

∂uB

∂y
= U

√

(m + 1.0)Re

2xU
f

′′

(η)

where f and g are the solutions of the coupled non–linear problem

(PB)
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Find f ∈ C3([0,∞)) such that for all η ∈ [0,∞)

f
′′′

(η) + f(η)f
′′

(η) + β(1 − f
′2(η)) = 0

g
′′

(η) + f(η)g
′

(η) = 0

f(0) = g(0) = 0, f
′

(0) = 0, limη→∞ f
′

(η) = 1 limη→∞ g(η) = 1.

To find the components uB, vB and wB of uB, and their derivatives, on the finite domain Ω for all
Re ∈ [1,∞), we need to solve (PB) numerically for f and g and their derivatives on the semi-infinite
domain [0,∞). Then we apply post-processing to determine numerical approximations to uε. An
analogous process is described in detail in [5] for flow past a two dimensional wedge.
Here, we make use of the Blasius similarity solution of Prandtl’s problem in two ways. First, we
use it to provide the required artificial boundary conditions on the boundary of Ω in the direct
numerical method for Prandtl’s problem discussed in the next section. Secondly, we use it as
a reference solution for the unknown exact solution in the expression for the error. Since the
Blasius solution is known to converge (Re, β)–uniformly to the solution of Prandtl’s problem, we
can compute (Re, β)–uniform error bounds. For this purpose we use the Blasius solution for (PB)
when N=8192, namely U8192

B , which provides the required accuracy for the velocity components
U8192

B , V 8192
B , W 8192

B , their derivatives DxV 8192
B , DyV

8192
B , DxW 8192

B and their scaled derivatives√
εDyU

8192
B ,

√
εDyW

8192
B .

3 Direct Numerical method for Prandtl’s Problem

The aim of this section is to construct a direct numerical method to solve the Prandtl problem (Pε)

for all Re ∈ [1,∞) and all β ∈ [0, 1]. We require a piecewise uniform fitted mesh ΩN
ε in the rectangle

Ω, where N=(Nx, Ny). We define the mesh as the tensor product ΩN
ε = ΩNx

u ×Ω
Ny
ε , where the one–

dimensional mesh in the x direction is the uniform mesh ΩNx
u = {xi : xi = 0.1 + iN−1

x , 0 ≤ i ≤ Nx}
and the mesh in the y-direction is the piecewise–uniform fitted mesh

ΩNy
ε = {yj : yj = σj

2

Ny
, 0 ≤ j ≤ Ny

2
; yj = σ + (1 − σ)(j − Ny

2
)

2

Ny
,
Ny

2
≤ j ≤ Ny}.

It is important to note that the transition point σ is chosen so that there is a fine mesh in the
boundary layer whenever it is required. The appropriate choice in this case is

σ = min{1

2
,
√

εlnNy}.
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The factor
√

ε may be motivated from a priori estimates of the derivatives of the solution uε or
from asymptotic analysis. For simplicity we take Nx = Ny = N .
The problem (Pε) is discretized by the following non-linear upwind finite difference method on the
piecewise uniform fitted mesh ΩN

ε

(PN
ε )
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

Find Uε = (Uε, Vε, Wε) such that for all mesh points (xi, yj) ∈ ΩN
ε

Uε satisfies the finite mesh difference equations

−εδ2
yUε(xi, yj) + UεD

−
x Uε(xi, yj) + VεD

u
yUε(xi, yj) = U dU

dx

−εδ2
yWε(xi, yj) + UεD

−
x Wε(xi, yj) + VεD

u
yWε(xi, yj) = 0

D−
x Uε(xi, yj)D

−
y Vε(xi, yj) = 0

with boundary conditions
Uε = 0, Wε = 0 and Vε = 0 on ΓB

Uε = UB and Wε = WB ΓL

⋃

ΓT

where D−
x , D+

x and D−
y , D+

y are the standard first–order backward, respectively forward, finite
difference operators in the x and y directions and, for any continuous function Vε on the domain
ΩN

ε , the upwind finite difference operator Du
y is defined by

Vε(xi, yj)D
u
yUε(xi, yj) =

{

Vε(xi, yj)D
−
y Uε(xi, yj) if Vε(xi, yj) ≥ 0

Vε(xi, yj)D
+
y Uε(xi, yj) if Vε(xi, yj) < 0

and δ2
y is the standard second order centered finite difference operator in the y direction. Changes

between forward and backward differences are required because at angles β > 0.1, Vε is initially
negative and then becomes positive. Note that, without these changes, the tridiagonal system is
no longer diagonally dominant and the continuation algorithm fails to converge.
Since (PN

ε ) is a non–linear finite difference method an iterative method is required for its solution.
This is obtained by replacing the system of non–linear equations by the following sequence of
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systems of linear equations

(AN

ε )
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With the boundary condition UM
ε = U8192

B on ΓL, for each i, 1 ≤ i ≤ N,

use the initial guess U0
ε|Xi

= U
Mi−1

ε |Xi−1
and for m = 1, . . . , Mi solve the following

two point boundary value problem for Um
ε (xi, yj)

−εδ2
yU

m
ε (xi, yj) + Um−1

ε D−
x Um

ε (xi, yj) + V m−1
ε Du

yUm
ε (xi, yj) = U dU

dx
1 ≤ j ≤ N − 1

with the boundary conditions Um
ε = UB on ΓB ∪ ΓT, and the initial guess for V 0

ε |X1
= 0.

Also solve the initial value problem for V m
ε (xi, yj)

D−
x Um

ε (xi, yj) + D−
y V m

ε (xi, yj) = 0

with initial condition V m
ε = 0 on ΓB.

Continue to iterate between the equations for Um
ε until m = Mi, where Mi is such that

max(|UMi
ε − UMi−1

ε |Xi
, 1

V ∗ |V Mi
ε − V Mi−1

ε |Xi
) ≤ tol.

Finally, solve the two point boundary value problem for Wε(xi, yj)

−εδ2
yWε(xi, yj) + UMi

ε D−
x Wε(xi, yj) + V Mi

ε Du
yWε(xi, yj) = 0, 1 ≤ j ≤ N − 1

with the boundary conditions Wε = WB on ΓB ∪ ΓT.

For notational simplicity, we suppress explicit mention of the iteration superscript Mi, and hence-
forth we write simply Uε for the solution generated by (AN

ε ). We take tol = 10−6 in the compu-
tations. We note that there are no known theoretical results concerning the convergence of the
solutions Uε of (PN

ε ) to the solution uε of (Pε) and no theoretical estimate for the pointwise error
(Uε − uε)(xi, yj). It is for this reason that in the error analysis of the next section, we are forced
to use controllable experimental techniques, which are adapted to the problem under consideration
and are of crucial value to our understanding of these computational problems.

4 Error Analysis

In this section, we compute Reynolds–uniform maximum pointwise errors in the approximations
generated by the direct numerical method described in the previous section. For the sake of brevity,
we discuss the approximate errors and rates of convergence in the scaled velocity components
and their discrete first order x- and y- derivatives for only one value of the wedge angle, namely
β = 0.7.These show that the method is Re-uniform for β = 0.7. Further computations, not reported
here, show that it is (Re, β)-uniform for all Re ∈ [1,∞), β ∈ [0, 1]. The appropriate scaling factor
for the vertical velocity is V ∗ = maxΩN

ε
V 8192

B .

We compare the approximations generated by the direct numerical method (AN
ε ) of the previous

section with the corresponding values of U 8192
B . We use the following definitions for the errors

EN
ε (Uε) = ||Uε − UB

8192||
Ω

N

ε

, EN
ε ( 1

V ∗ Vε) = 1
V ∗ ||Vε − VB

8192||
Ω

N

ε
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EN

ε (Wε) = ||Wε − WB
8192||

Ω
N

ε

.

ε\N 32 64 128 256 512
2−0 5.16e-04 2.90e-04 1.56e-04 8.50e-05 4.65e-05
2−2 3.19e-03 1.69e-03 8.73e-04 4.43e-04 2.22e-04
2−4 6.84e-03 3.52e-03 1.78e-03 8.94e-04 4.44e-04
2−6 8.97e-03 4.68e-03 2.35e-03 1.17e-03 5.81e-04
2−8 9.33e-03 4.90e-03 2.54e-03 1.31e-03 6.66e-04
. . . . . .
2−20 9.22e-03 4.90e-03 2.54e-03 1.31e-03 6.66e-04

Table 1: Computed maximum pointwise error EN
ε (Uε) where Uε is generated by (AN

ε ) for various
values of ε, N and β = 0.7

ε\N 32 64 128 256 512
2−0 8.72e-02 4.54e-02 2.41e-02 1.29e-02 7.10e-03
2−2 5.13e-02 2.65e-02 1.36e-02 7.02e-03 3.71e-03
2−4 3.47e-02 1.77e-02 8.99e-03 4.60e-03 2.38e-03
2−6 2.82e-02 1.51e-02 7.69e-03 3.91e-03 2.00e-03
2−8 2.17e-02 1.14e-02 6.04e-03 3.19e-03 1.68e-03
2−10 1.88e-02 9.64e-03 5.00e-03 2.58e-03 1.34e-03
2−12 1.73e-02 8.81e-03 4.50e-03 2.30e-03 1.17e-03
2−14 1.67e-02 8.40e-03 4.26e-03 2.16e-03 1.09e-03
2−16 1.63e-02 8.19e-03 4.14e-03 2.09e-03 1.05e-03
2−18 1.61e-02 8.09e-03 4.08e-03 2.05e-03 1.03e-03
2−20 1.61e-02 8.04e-03 4.05e-03 2.03e-03 1.02e-03

Table 2: Computed maximum pointwise error EN
ε ( 1

V ∗ Vε) where Vε is generated by (AN
ε ) for various

values of ε, N and β = 0.7

ε\N 32 64 128 256 512
2−0 3.00e-03 1.65e-03 8.91e-04 4.79e-04 2.62e-04
2−2 8.07e-03 4.28e-03 2.26e-03 1.21e-03 6.78e-04
2−4 8.33e-03 4.44e-03 2.34e-03 1.25e-03 7.01e-04
2−6 9.82e-03 5.72e-03 3.04e-03 1.61e-03 8.76e-04
2−8 9.82e-03 5.82e-03 3.34e-03 1.90e-03 1.09e-03
. . . . . .
2−20 9.82e-03 5.82e-03 3.34e-03 1.90e-03 1.09e-03

Table 3: Computed maximum pointwise error EN
ε (Wε) where Wε is generated by (AN

ε ) for various
values of ε, N and β = 0.7

The numerical results in Tables 1, 2 and 3, respectively, indicate that the method is Re-uniform
for the scaled velocity components Uε,

1
V ∗ Vε and Wε.
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Figure 2: Graphs of UN
ε , 1

V ∗ Vε and Wε for ε = 2−8, N=32 and β = 0.7.

In Figure 2 we see that the computed scaled velocity components have no non-physical oscilla-
tions. The boundary layer on the surface of the wedge is apparent for both velocity components
Uε and Wε.
We define the computed local order of convergence pN

ε,comp for the velocity component UN
ε and the

Re–uniform order pN
comp by

pN
ε,comp = log2

||UN
ε −U8192

B
||
ΩN

ε

||U2N
ε −U8192

B
||
Ω2N

ε

pN
comp = log2

maxε ||UN
ε −U8192

B
||
ΩN

ε

maxε ||U2N
ε −U8192

B
||
Ω2N

ε

with analogous expressions for the velocity components V N
ε and WN

ε . In Tables 4-6 we give the
numerical results for these computed Re–uniform orders of convergence. We see that for all N

the order of convergence for the approximations to the scaled velocity components in each case is
at least 0.76. This indicates that for the velocity components the method is Re-uniform for β = 0.7.

ε\N 32 64 128 256
2−0 0.83 0.89 0.88 0.87
2−2 0.91 0.96 0.98 0.99
2−4 0.96 0.98 1.00 1.01
2−6 0.94 0.99 1.00 1.01
2−8 0.93 0.95 0.96 0.97
2−10 0.92 0.95 0.96 0.97
. . . . .
2−20 0.91 0.95 0.96 0.97

pN
comp 0.92 0.95 0.96 0.97

Table 4: Computed orders of convergence pN
ε,comp, pN

comp for Uε − U8192
B where Uε is generated by

(AN
ε ) for various values of ε, N and β = 0.7
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ε\N 32 64 128 256
2−0 0.94 0.92 0.90 0.87
2−2 0.96 0.96 0.95 0.92
2−4 0.97 0.97 0.97 0.95
2−6 0.90 0.98 0.98 0.97
2−8 0.93 0.92 0.92 0.92
2−10 0.96 0.95 0.95 0.95
2−12 0.98 0.97 0.97 0.97
2−14 0.99 0.98 0.98 0.98
2−16 0.99 0.99 0.99 0.99
2−18 1.00 0.99 0.99 0.99
2−20 1.00 0.99 0.99 0.99

pN
comp 0.94 0.92 0.90 0.87

Table 5: Computed orders of convergence pN
ε,comp, pN

comp for 1
V ∗ (Vε − V 8192

B ) where Vε is generated

by (AN
ε ) for various values of ε, N and β = 0.7

ε\N 32 64 128 256
2−0 0.86 0.89 0.89 0.87
2−2 0.91 0.92 0.90 0.84
2−4 0.91 0.92 0.90 0.84
2−6 0.78 0.91 0.91 0.88
2−8 0.76 0.80 0.81 0.80
. . . . .
2−20 0.76 0.80 0.81 0.80

pN
comp 0.76 0.80 0.81 0.80

Table 6: Computed orders of convergence pN
ε,comp, pN

comp for Wε −W 8192
B where Wε is generated by

(AN
ε ) for various values of ε, N and β = 0.7

The graphs in Figure 3 show where the error in the scaled velocity components is largest. For
the x–direction and z–direction velocity components this is at points in the boundary layer on the
surface of the wedge and for the y–direction component it is at points farthest from the surface of
the wedge on the side of the domain closest to the leading edge.
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Figure 3: Graphs of Uε − U8192
B , 1

V ∗ (Vε − V 8192
B ) and Wε −W 8192

B , for ε = 2−8, N=32 and β = 0.7.

In Tables 7-11 we display the computed maximum pointwise errors of the approximations to the
scaled first order derivatives of the velocity components. Since DyV = −DxU it is only necessary
to show the errors for one of these. We see that the behaviour is Re-uniform.
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In Tables 12-16 we display the computed orders of convergence for the approximations of the
first-order derivatives to the scaled velocity components

√
εD−

y Uε, D−
y Vε,

√
εD−

y Wε,
1

V ∗ D−
x Vε and

D−
x Wε obtained, respectively, from the corresponding Tables 7-11. We see that for each value of N

the orders of convergence stabilize as ε → 0 for β = 0.7. In additional computations, not reported
here, similar behavior is observed for all β ∈ [0, 1].

ε\N 32 64 128 256 512
2−0 9.07e-03 4.69e-03 2.50e-03 1.41e-03 8.60e-04
2−2 1.78e-02 9.05e-03 4.67e-03 2.48e-03 1.39e-03
2−4 3.34e-02 1.69e-02 8.59e-03 4.44e-03 2.37e-03
2−6 5.84e-02 3.43e-02 1.73e-02 8.82e-03 4.56e-03
2−8 5.82e-02 3.56e-02 2.11e-02 1.23e-02 7.08e-03
. . . . . .
2−20 5.83e-02 3.56e-02 2.11e-02 1.23e-02 7.08e-03

Table 7: Computed maximum pointwise error EN
ε (

√
εD−

y Uε) where Uε is generated by (AN
ε ) for

various values of ε, N and β = 0.7

ε\N 32 64 128 256 512
2−0 8.36e-02 4.78e-02 2.57e-02 1.32e-02 6.67e-03
2−2 9.02e-02 5.10e-02 2.72e-02 1.41e-02 7.16e-03
2−4 8.75e-02 4.87e-02 2.61e-02 1.35e-02 6.89e-03
2−6 1.48e-01 8.75e-02 4.48e-02 2.32e-02 1.24e-02
2−8 1.48e-01 9.08e-02 5.40e-02 3.16e-02 1.85e-02
. . . . . .
2−20 1.48e-01 9.08e-02 5.40e-02 3.16e-02 1.85e-02

Table 8: Computed maximum pointwise error EN
ε (D−

y Vε) where Vε is generated by (AN
ε ) for various

values of ε, N and β = 0.7

ε\N 32 64 128 256 512
2−0 1.02e-02 5.24e-03 2.76e-03 1.55e-03 9.39e-04
2−2 2.07e-02 1.05e-02 5.38e-03 2.82e-03 1.59e-03
2−4 4.11e-02 2.07e-02 1.05e-02 5.38e-03 2.82e-03
2−6 6.98e-02 4.11e-02 2.07e-02 1.05e-02 5.38e-03
2−8 6.98e-02 4.27e-02 2.51e-02 1.44e-02 8.23e-03
. . . . . .
2−20 6.98e-02 4.27e-02 2.51e-02 1.44e-02 8.23e-03

Table 9: Computed maximum pointwise error EN
ε (

√
εD−

y Wε) where Wε is generated by (AN
ε ) for

various values of ε, N and β = 0.7
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ε\N 32 64 128 256 512
2−0 9.10e-01 5.26e-01 3.07e-01 2.63e-01 3.35e-01
2−2 4.81e-01 2.73e-01 1.82e-01 1.47e-01 9.22e-02
2−4 4.22e-01 2.78e-01 2.01e-01 1.60e-01 1.22e-01
2−6 3.83e-01 2.68e-01 2.09e-01 1.72e-01 1.39e-01
2−8 3.49e-01 2.24e-01 1.69e-01 1.40e-01 1.21e-01
2−10 3.33e-01 2.03e-01 1.38e-01 1.02e-01 7.77e-02
2−12 3.26e-01 1.92e-01 1.23e-01 8.34e-02 5.68e-02
2−14 3.22e-01 1.87e-01 1.15e-01 7.42e-02 4.65e-02
2−16 3.20e-01 1.84e-01 1.12e-01 6.97e-02 4.14e-02
2−18 3.20e-01 1.83e-01 1.10e-01 6.74e-02 3.89e-02
2−20 3.19e-01 1.82e-01 1.09e-01 6.62e-02 3.76e-02

Table 10: Computed maximum pointwise error EN
ε (D−

x Vε) where Vε is generated by (AN
ε ) for

various values of ε, N and β = 0.7

ε\N 32 64 128 256 512
2−0 5.35e-02 3.03e-02 1.63e-02 8.22e-03 4.19e-03
2−2 3.03e-02 1.63e-02 8.34e-03 4.07e-03 1.91e-03
2−4 3.56e-02 2.02e-02 1.06e-02 5.30e-03 2.50e-03
2−6 3.60e-02 2.10e-02 1.14e-02 5.77e-03 2.76e-03
2−8 3.60e-02 2.12e-02 1.17e-02 6.17e-03 3.09e-03
. . . . . .
2−20 3.60e-02 2.12e-02 1.17e-02 6.17e-03 3.09e-03

Table 11: Computed maximum pointwise error EN
ε (D−

x Wε) in the subdomain Ω
N
ε

⋂

[0.2, 1.1]× [0, 1]
where Wε is generated by (AN

ε ) for various values of ε, N and β = 0.7

ε\N 32 64 128 256
2−0 0.95 0.91 0.83 0.71
2−2 0.98 0.95 0.91 0.84
2−4 0.98 0.97 0.95 0.91
2−6 0.77 0.98 0.97 0.95
2−8 0.71 0.75 0.78 0.80
. . . . .
2−20 0.71 0.75 0.78 0.80

pN
comp 0.71 0.75 0.78 0.80

Table 12: Computed orders of convergence pN
ε,comp, pN

comp for
√

ε(D−
y Uε − DyU

8192
B ) where Uε is

generated by (AN
ε ) for various values of ε, N and β = 0.7
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ε\N 32 64 128 256
2−0 0.81 0.90 0.95 0.99
2−2 0.82 0.90 0.95 0.98
2−4 0.84 0.90 0.95 0.97
2−6 0.76 0.96 0.95 0.91
2−8 0.71 0.75 0.77 0.78
. . . . .
2−20 0.71 0.75 0.77 0.78

pN
comp 0.71 0.75 0.77 0.78

Table 13: Computed orders of convergence pN
ε,comp, pN

comp for (D−
y Vε −DyV

8192
B ) where Vε is gener-

ated by (AN
ε ) for various values of ε, N and β = 0.7

ε\N 32 64 128 256
2−0 0.96 0.93 0.83 0.72
2−2 0.98 0.96 0.93 0.83
2−4 0.99 0.98 0.96 0.93
2−6 0.76 0.99 0.98 0.96
2−8 0.71 0.77 0.80 0.81
. . . . .
2−20 0.71 0.77 0.80 0.81

pN
comp 0.71 0.77 0.80 0.81

Table 14: Computed orders of convergence pN
ε,comp, pN

comp for (D−
y Wε − DyW

8192
B ) where Wε is

generated by (AN
ε ) for various values of ε, N and β = 0.7

ε\N 32 64 128 256
2−2 0.82 0.58 0.31 0.67
2−4 0.60 0.47 0.32 0.39
2−6 0.51 0.36 0.28 0.31
2−8 0.64 0.41 0.27 0.22
2−10 0.72 0.55 0.44 0.39
2−12 0.76 0.64 0.56 0.55
2−14 0.79 0.70 0.64 0.67
2−16 0.80 0.72 0.68 0.75
2−18 0.80 0.74 0.71 0.79
2−20 0.81 0.74 0.72 0.82

pN
comp 0.79 0.41 0.28 0.31

Table 15: Computed orders of convergence pN
ε,comp, pN

comp for 1
V ∗ (D−

x Vε − DxV 8192
B ) where Vε is

generated by (AN
ε ) for various values of ε, N and β = 0.7
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ε\N 32 64 128 256
2−0 0.82 0.90 0.98 0.97
2−2 0.89 0.97 1.03 1.10
2−4 0.82 0.92 1.01 1.09
2−6 0.77 0.89 0.98 1.06
2−8 0.76 0.86 0.93 1.00
. . . . .
2−20 0.76 0.86 0.93 1.00

pN
comp 0.82 0.90 0.98 0.97

Table 16: Computed orders of convergence pN
ε,comp, pN

comp for (D−
x Wε−DxW 8192

B ) in the subdomain

Ω
N
ε

⋂

[0.2, 1.1] × [0, 1] where Wε is generated by (AN
ε ) for various values of ε, N and β = 0.7

5 Conclusion

We considered Prandtl’s boundary layer equations for incompressible laminar flow past a three
dimensional yawed wedge with angle βπ, β ∈ [0, 1]. When the Reynolds number is large the
solution of this problem has a parabolic boundary layer. We constructed a direct numerical method
for computing approximations to the solution of this problem using a piecewise uniform fitted mesh
technique appropriate to the parabolic boundary layer. We used the method to approximate the
self–similar solution of Prandtl’s problem in a finite rectangle excluding the leading edge of the
wedge for various values of Re and β. We constructed and applied a special numerical method,
related to the Blasius technique, to compute reference solutions to the problem. These were used to
obtain approximate boundary conditions on the artificial boundaries of the computational domain
and in the error analysis of the velocity components and their derivatives. Extensive numerical
experiments indicated that the constructed direct numerical method is (Re, β)–uniform.
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