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A new approach to the problem of doubling [I] is presented with the Dirac-Kéahler (DK) theory as a starting
point and using Geometric Discretisation [2] providing us with a new way of extracting the Dirac field in the

discrete setting of a hyper-cubic complex.

1. Introduction

The theorem of Nielsen and Ninomiya [3] came
with a topological proof of the fact that under
reasonable assumptions, fermion doubling is un-
avoidable on the lattice. A key element of the
proof was the periodicity of the Brillouin zone
thus setting the approach in momentum space.

In other arguments [, [B] it was argued that
doubling is already present when one starts one
step back and consider the DK equation () and it
persists after reduction to the Dirac equation on
the lattice. The discretised field is then an inho-
mogeneous cochain taking value on points, edges
and so on and it is a 16D object in four dimen-
sions. The DK equation is also particularly well
suited for counting fields through its link with the
Laplacian and consequently with homology.

Accordingly, the method of Rabin provided us
with a position space doubling or “species dou-
bling” and the conceptual picture was new: the
failure in constructing well-defined discrete analo-
gies to the basic operands used in () was effec-
tively the way doubling survived. Specifically, the
Hodge star (%) which is the analogue of 75, and
the various properties relating it with the DK op-
erator did not hold simultaneously. The picture
is then: i) doubling has an algebraic formulation;
and ii) it might be addressed at the classical level,
that is at the level of the action.

Meanwhile Becher and Joos attempted to carry
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out a discrete version of the continuum reduction
of the DK equation via the introduction of projec-
tion operators and the extraction of the spinorial
algebra using representation theory and the Clif-
ford product as multiplication. In the continuum,
this leads to the Dirac equation provided one re-
stricts the field to the appropriate subspace D®);
reducing a 16D object to a four component spinor.
In fact one can relate DK fermions and staggered
fermions as in [0] for the free case. In matrix
form, the reduction is known as “thinning”.

A relation between field doubling and Geomet-
ric Discretisation has been shown in the context
of the (topological) abelian Chern-Simons theory
[7]. In the present work [IJ, the root discretisa-
tion scheme is provided with a Clifford product
and a new interpretation is given. We will intro-
duce our method in relation to the two already
discussed; first focusing on the algebraic proper-
ties and then on the reduction using the Clifford
product. The tight relation between the discrete
and the continuum theories plays a central role
and is described in the last part.

2. Fermions and Geometry
Let us start with the DK equation written de-

gree by degree as
(dq)(p—l) — 5(1)(p+1)) = —m®® (1)
Now, recall the algebraic properties of the co-
boundary (§) and the Hodge star:

§ = *dx, (2)
x> = Id. (3)



If these two identities were to hold simultaneously
in the discrete theory, one could extract a solution
of one of the equations in () (that is for given p)
describing a Dirac field; (@ Bl) being used to relate
various p-degree equations. However, as argued
by Rabin this is not possible.

The geometrical origin is that one is forced to
introduce (in our notation) a dual complex L to
the original hyper-cubic complex K by subdivid-
ing the latter leading to an additional complex
which is shifted by half a lattice spacing. In turn,
this gives us two discretised versions of the Hodge
star exchanging the respective space of cochains
(in n-dimensions):

+K L CP(K) — C"P(L) (4)
*F . CP(L) — C"P(K) (5)

and the induced translation element spoils the
identities. Another feature is the way one ex-
presses local chiral transformations in K:

S ) K o) (6)

and respectively in L. The identification of 5 on
a spinor field with * on a differential form is then
made. This gives a special meaning to @) as the
analogue of 72 = 1. Not having this property
then results in problems with chirality.

Now let us turn to the approach of Becher and
Joos where one needs a discrete Clifford product
(V), an example in the continuum is

dzt Vv dx¥ = g"" + dzt A dz”, (7)
and with the identification
Yu = dxt V (L), (8)

we immediately obtain the spinorial algebra (with
the Euclidean metric):

", 7"} = 29" 9)

The DK equation is found to be invariant un-
der an SU (4) symmetry by right V-multiplication
with a constant differential. Then we use projec-
tion operators P(®) to get a new field

o® = v pt (10)
which satisfies the Dirac equation expressed as

(dat v 0, +m)@®) = 0. (11)

The collection of operators P®) gives rise to the
so-called reduction group R. However, the dis-
cretised version of this group does not close due
to the appearance of translation elements which
prevent the reduction to the Dirac equation. In
contrast with the former case, they do not orig-
inate with the definition of the Hodge star ana-
logue but with the discrete wedge which is used
in the definition of the Clifford product.

The lattice origin of this is the role given to a
base point in the definition of the discrete wedge.
That is, although the objects are hyper-cubic of
any dimensions, the operation of wedging is done
at a specific point referred to as a base point.

For example, consider the edge [01] obtained
from the vertices [0] and [1] respectively at = 0
and x = h, then assuming that the base point is
set at the vertex [1] for the edge [01], one has to
translate the base point from [1] to [0],

oAl = (o] (12)
0] AT_4[01] = [01] (13)

This definition is at the origin of the translation
elements which plagues the closure of the reduc-
tion group in contradiction with the continuum.

From both cases, it appears clearly that the
choice of discrete operators is problematic. Let
us now move to the new proposal.

3. The reduction with GD

In our approach, we map cochains to differen-
tial forms in a well-defined way using the Whit-
ney map (W). This morphism has the crucial
property that it preserves the differential com-
plex namely the relation (de Rham) between the
behaviour under d in the continuum and that un-
der the boundary 0 on the chain complex. The
map W is then built in the definition of the dis-
crete analogies of the map (A, d, x) and for the
present purpose, the construction is such that the
crucial properties (@ Bl) hold. This resolves the
first issue.

The geometric interpretation is as follows: con-
sider the [01] edge again in a square lattice. Then,
in the (z,y)-plane of the page,

W([01]) = (1 — y)dx (14)



The edge is at y = 0 and the image of the edge
has support on the entire square. Next, we define
the discrete wedge on the complex K by

o Ny = AR (W (o) A\WE () (15)

where the de Rham map A¥ plays the role of
integration. In the example we take o = [01] and
1 = [1]. To return to the question of support, we
see that because Whitney elements (of the form
W (o)) have support on the square, no base point
is required in order to wedge them.

The discrete wedge (AX) is then used in the
definition of the Clifford product. It is worth not-
ing that (AX) is only associative up to a factor.
This does not affect the derivation of a discrete
analogue of (@) but when considering the SU(4)
invariance of the discrete DK equation, one avoids
“moving the brackets” to establish the discrete in-
variance [I]. In [5] one use a special case where
cochains of specific degrees are considered.

In summary, the discrete theory spans a space
of functions which gives the desired support and
yet the theory is local, since a field such as ([
has non-zero value solely in each and every square
cell having [01] as a boundary component.

Again, we are using a doubling of spaces,
namely K and L. While because of the issue of
support, the x has no shift and (up to signs)

Koal = 1db, 5K = 0K = xLdlaK, (16)

s = TdE, 6 = 9F = KK dK &L, (17)
We then have the usual relations in K say,

{5, D} = (" = %)+ (d" - o") " (18)

0 (19)

involving the two spaces K and L. This brings us

to the action functional, it is based on the natural
inner product (used to define the x):

<o,n>= /M WEB(Ba) NWEB(Bn™), (20)

where B is the finer complex which is the union of
K and L. Hence, given the field in the sublattice
K, it has a representative in L given by x%®X
which is itself the image of a field in K, we then
have an action for K-fields:

Sk =< (i)K,(dK—5K+m)(I)K> (21)

The pairing between the two spaces K and L
is interpreted as an inner product and does not
amount to a coupling of independent K and L
fields. In turn we define a direct sum of inde-
pendent actions Sk and Sp. Then, the parti-
tion function splits into two components, one for
C(K)-fields and the other for C'(L)-fields. So, the
use of the inner product 0) is the more natural
way of defining the action functional which also
has the virtue of avoiding the introduction of base
points.

Finally a comment about gauging. By retain-
ing inhomogeneous cochains, one has to be careful
when gauging. This step when completed should
shed some light on the applications of the new
technique. General features are, i) the choice of
minimal coupling in the adjoint representation
and ii) the insertion of a parallel transport op-
erator U in the action on the left of the DK op-
erator and does not conflict with the reduction.
In the square lattice under consideration, obvious
discrete symmetries of the action are present.

4. Conclusion

By working in the DK picture and using the
cochain space in a way that relates closely to the
continuum fermion theory, one avoids the “lat-
tice” hypothesis of the Nielsen-Ninomiya theorem
where the fermions are defined at vertices. This
new technique describes a finite theory and care-
ful analysis of the gauging remains to be done.
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