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ABSTRACT

Motivation: It is known that many evolutionary changes
of amino acid sequence in proteins are conservative: a
substitution of one amino acid by another residue has a far
greater chance of being accepted if the two residues have
similar properties. Yet it is difficult to identify the rel-
evant physicochemical properties when classifying amino
acids. In this paper we introduce a criterion and a method
for finding groups of amino acids, which determine simi-

larity from an evolutionary point of view.

Results: We present a criterion that assesses the
quality of an amino acid grouping. Our criterion is based
on the description of protein evolution by a Markov pro-
cess and the corresponding matrix of instantaneous re-
placement rates. It is inspired by the conductance, a
quantity introduced to reflect the strength of mixing in a
Markov process. Furthermore we introduce a method to
divide the 20 amino acid residues into subsets that achieve
good scores with our criterion. We show that the crite-
rion has the time invariance property that different time
distances of the same amino acid replacement rate matrix
lead to the same grouping; but different rate matrices lead

to different groupings. We present the groupings resulting

from two standard matrices used in sequence alignment

*Now at EMBL - EBI, Wellcome Trust Genome Campus, Cam-
bridge CB10 1SD, UK.

and phylogenetic tree estimation.

Availability: The C code for calculating the conduc-
tance measure and for finding amino acid groupings is
available at http://www.ebi.ac.uk/goldman-srv/AIS.

Contact: kosiol@ebi.ac.uk

INTRODUCTION

Proteins are made up of different amino acids, which are
denoted by 20 different letters of the alphabet. For par-
ticular tasks, however, it can be useful to simplify this
alphabet and group one or more letters together. For in-
stance we could split the 20 amino acids into two groups:
a hydrophilic and a hydrophobic set.

Groupings have been applied to various fields. Wang
and Wang [14] use sets of amino acids in protein design
and modeling. Brazma et al. [2] have pointed out that
the search for patterns occurring at an unexpected rate is
an established strategy for the identification of functional
constraints in protein sequences. Some amino acids can
often be replaced without any significant functional alter-
ation. A possible approach for seeking unusal degenerate
patterns could be to rewrite the sequence using a sim-
plified alphabet and search all the simplified sequences
for unexpected patterns. Along those lines Coghlan et
al. [4] use groupings of amino acids to develop filtering

algorithms for protein databases.



Several methods have been proposed to classify amino
acids. Grantham [9] introduces an amino acid distance
formula that considers the chemical composition of the
side chain, the polarity and the molecular volume to help
explain protein evolution. This approach has been ex-
tended by Xia and Li [17] in a study of the relevance
of 10 amino acid properties affecting protein evolution.
Grantham and Xia and Li present their results in the
form of distance matrices, whereas French and Robson
[7] arrange their results in two-dimensional diagrams us-
ing multidimensional scaling. Taylor [12] also adopts this
graphical approach and develops Venn diagrams of amino
acids sets. The unions and intersections of the Venn di-
agram allow determination of sets of amino acids that
might be conserved. The number of possible subsets is
large, however, and includes many that have little physi-
cal meaning. The interpretation of these Venn diagrams
requires detailed expert knowledge.

Accordingly, a recent approach from Cannata et al. [3]
is interesting since it automates the group finding process.
These authors propose a branch and bound analysis based
on amino acid replacement probability matrices, but their
method suffers from two problems. First, the approach
leads to different groupings for different time periods of
the same matrix (e.g., PAM120 and PAM250). Second,
the classification criterion used has no clear evolutionary
meaning.

Our interest in groupings is motivated by the study of
Markov models for protein sequence evolution. A group-
ing of 20 amino acids is much more comprehensible than
the tabular representation of a rate matrix. We hope
to use groupings in further studies as a tool to analyse
and compare different models. It is therefore crucial that
the classification criterion is biologically meaningful. In
this paper we develop a criterion and grouping method
to identify sets of amino acids with a high probability of
change between elements of the set but small probabilities
of change between different sets. The method we use has

its origin in the convergence diagnosis of Markov chain

Monte Carlo (MCMC) [1]. In section 1 we give a gen-
eral introduction to the Markov models used to describe
amino acid evolution. In section 2 we introduce the con-
ductance, a measure for the grouping of amino acids into
non-empty sets, whose value will indicate the quality of
the division. Unfortunately the measure itself does not
suggest a method that would determine optimal group-
ings. In section 3 we explain the relationship between
the eigenvalues and eigenvectors and the structure of the
amino acid replacement matrix. Mathematically speak-
ing, we are looking for a structure of the Markov matrix
that is almost of block diagonal type. Markov matrices
that show an almost block diagonal structure also show
a low conductance value. The identification of the block
structure leads to an algorithm that produces groupings
for a given amino acid matrix. This algorithm is given
in section 4. We apply the conductance measure and the
grouping algorithm to standard amino acid replacement

matrices in section 5 and finally discuss our results in

section 6.

SYSTEM AND METHODS

1 Markov Processes and Amino

Acid Evolution

Proteins are sequences of amino acids. The Markov model
asserts that one protein sequence is derived from another
protein sequence by a series of independent mutations
each changing one amino acid in the first sequence to an-
other amino acid in the second during evolution. Thereby
we assume independence of evolution at different sites.
The continuous-time Markov process is a stochastic
model in which P;;(t) gives the probability that amino
acid 4 will change to amino acid j at any single site after
any time ¢ > 0. Since there are 20 amino acids, ¢ and j
take the values 1,2,...,20. We can write the P;;(t) as
a 20 x 20 matrix, which we denote by P(t). The matrix



P(t) is a Markov matrix, and so the rows sum to 1. It
can be represented as

(tQ)? N (tQ)?

P(t) =€ =T +1tQ + o 3

where the matrix () is known as the instantaneous rate
matrix and has its off-diagonal entries @);; equal to the
rates of replacement of ¢ by j. The diagonal entries @;;
are defined by the mathematical requirement that each
row sums to zero (see Lid and Goldman [10]).

Markov processes for amino acid sequence evolution
can have two important properties: connectedness and
reversibility. In a connected process there is a ¢t > 0 such

that
Pij(t) > 0 for all 4,5 € {1,2,...,20}.

Connected Markov processes have a unique equilibrium

distribution 7 such that 77Q = 0, or equivalently:
7l P(t) = nT for t > 0.

The vector 7 is also the limiting distribution when time

approaches infinity. Reversibility means that
7T,'Pij(t) = ijji(t) for all 4,j € {1, .. .,20} and t > 0.

A consequence of reversibility is that the process of se-
quence evolution is statistically indistinguishable from the

same process observed in reverse.

2 A Measure for Amino Acids
Sets

Our goal is to identify sets of amino acids with a high
probability of change amongst the elements of the set but
small probability of change between elements of differ-
ent sets. Our starting point is to consider amino acid
replacement matrices P(t), for example the PAM series
[5]. In order for groupings to be interpretable in terms of
the processes of evolutionary replacement of amino acids,

and not levels of divergence between protein sequences,

we expect that groupings should perform equally under

measures based on (e.g.) PAM120 or PAM250, and that
optimal groupings derived from these matrices should be
the same. The measure presented here has been inspired
by the conductance, a measure of the strength of mix-
ing of a Markov process that is used in the convergence
diagnosis of Markov chain Monte Carlo methods (see Sin-
clair [11]). Below, we redefine the conductance in terms
of the instantaneous rate matrix () instead of the Markov
matrix P(t) to fulfill the requirement for independence of

our measure and particular times ¢.

Let () define a Markov process that is connected and
reversible with equilibrium distribution 7, and is nor-
malized so that the mean rate of replacement at equi-
librium is 1. (The mean rate of replacement is given by
i i m;Qq;. Dividing @ by this mean rate of replace-
ment provides a matrix with a mean rate of unity, so that
evolutionary distances ¢ are measured in units of expected

numbers of changes per site [10].)

Now consider an amino acid sequence of N sites. The
expected number of changes of ¢ to j per unit time is
Nm;Qij, or m;Q;; per site. Similar analysis can be carried
out for sets of amino acids. Let Ay,..., Ax be K proper
subsets of the amino acids A = {1,...,20}, where 4; N
Ay =0fork,l=1,...,K and |J,, Ay, = A. If 7; is the ith
component of the equilibrium distribution =, we expect

to observe

miQij

N-o >
€A, JEA;
changes per unit time from subset Ay, to subset A; in the

whole sequence, or

Fr =

>

€A, JEA;

miQij

changes per site. The quantity Fj,; is called the flow from
Aj to A

When the Markov process is close to equilibrium, the
frequencies of the amino acids remain more or less the

same. The frequency of amino acids of subset Ay, called



the capacity of Ay, is then

The ratio

Py

&, = L
W=

is called the conductance [1]. This is the expected number
of changes from Aj to A; per site per unit time when

commencing at subset Ay.

Using the above definition we can define a new matrix

b = (Pp)k,1=1,...,K"

<I>11 (1)12 (I>1K

By Pao Pk
d =

<I>K1 CI)KQ c:DKK

where the diagonal entries ®; are given by the mathe-
matical requirement that each row sums to zero. The ma-
trix @ is itself an instantaneous rate matrix. If we have
‘perfect’ subsets, no changes between the subsets can be
observed and Fj; = 0 for all k,1, k # l. Subsequently &

would be a null matrix. The expression

<P=ZZ‘I)M

k 1%k

measures the difference between ® and the null matrix.
We therefore use ¢ as our measure of the quality of the
partition of the set A of 20 amino acids into K groups

A, Ax.

FEzxample 1
To set ideas, we consider a simple illustrative system of

7 amino acids with rate matrix ) having the following

block diagonal form:

=35 .35 0 0 0 0 0

35 =35 0 0 0 0 0

0 0 -21 21 0 0 0
0 0 21 =21 0 0 0
0 0 0 0 -7 35 .35
0 0 0 0 35 =7 .35
0 0 0 0 35 35 =7

The block diagonal structure of the rate matrix sug-
gests the partition into A; = {1,2}, A2 = {3} and
As = {4,5,6,7}. Since this Markov process is reversible,

the flow from set A; to A; is same as the flow from set

A; toset Ag:
Fpa,4, = Fia=F =0
FA1—)A3 = F13=F31:0
FA2—)A3 = F23:F23:0‘

The equilibrium distribution in this example is not
unique, since the corresponding Markov process is not
connected. The rates ®y;, however, are independent of
any choice of equilibrium distribution. Since the Fj; are

all zero, we get

Dy D12 Py 0 00
Dy Pop P3| T |0 0 O
B3 D3 P33 0 00

for any equilibrium distribution. Finally, the conductance

measure is given by

<P=ZZ‘I>M =0.

k 1£k
As Ezample 1 shows, however, choosing a partition
into sets is often not obvious. One may wish to consider

all possible partitions. The total number of partitions



of a set of n elements into non-empty subsets is the nth
Bell number, B, [15]. The Bell numbers are given by the
recurrence

" /n

Bni = iz:; (JB@

where By is defined to equal 1.
Ezxample 2
To determine the number of possible partitions of the
set of four letters {ATGC}, the fourth Bell number is

computed as follows:

0
5= (o=

1 1
By, = (O>Bo+<1)31=2

2 2 2
B; = <O)Bo+<l)31+ 2)32

I
[y
+
[\
+
[\
I
(%21
TN TN\

1+3+6+5=15

The 15 possible partitions into non-empty subsets are

farcey,  {ATHGCY,  {AHTCHGY,
{AHTGC}Y  {ACHGT}Y  {THAGHCY,
{ATGHC}Y  {AGHTC}L  {GHATHCY,
{AGOHT}, {AHGTHC}Y  {GHACHTY,
{ATCHGY, {AHGOHT}, {AHGHCOHTY}.

Cannata et al. [3] have pointed out that for 20 amino
acids there exist 51,724,158,235,372 (roughly 51 x 10'2)
possible partitions. Furthermore, they list how these par-
titions are distributed among the partitions into partic-
ular numbers (K = 1,...,20) of sets. For example, un-
der the restriction only to admit partitions into exactly 8
sets, as many as 15 x 10'2 partitions still have to be con-
sidered. This means that exhaustive enumeration of the
groupings and calculation of the conductance measure to
find the optimal grouping of 20 amino acids is out of the

question. In the next two sections we describe a heuristic

algorithm that seeks optimal or near optimal groupings of
amino acids. One advantage of our algorithm is that the
computational cost of searching for a high quality parti-
tion of the 20 amino acids into K subsets is independent
of the value of K and the algorithm can easily be run for
all non-trivial values of K (2,...,19) given any matrix Q.
Once partitions of amino acids have been determined al-
gorithmically one may calculate the conductance measure

o in order to exhibit the quality of the groupings.

3 Block Structure of Matrices

FEzxample 1 has indicated that blocks within matrices can
act as ‘traps’ for the flow between the sets and that choos-
ing a partition accordingly results in a low conductance
score . In this section we will state results that link
certain properties of the eigenvalues and eigenvectors of
an amino acid replacement matrix to a block diagonal or
perturbed block diagonal structure of the matrix. The
main idea is to identify an almost block diagonal struc-
ture of the replacement matrix in order to find good can-
didates with low conductance score ¢ among all possi-
ble partitions. The eigenvectors are especially suitable to
identify time-independent groupings, since the eigenval-
ues for different time distances t of the probability matrix
P(t) = e!? are different, but the eigenvectors remain the
same.

Suppose the eigenvalues \; of P(t), where 1 < ¢ < 20,

are ordered according to
Al = [Az| = -+ > | Azl

By the Frobenius-Perron theorem all eigenvalues are real
and are contained in [—1,1]. Since P(t) is reversible it
is known that for every right eigenvector there is a cor-
responding left eigenvector that corresponds to the same
eigenvalue. The greatest eigenvalue A; is unity and is
called the Perron root. The right eigenvector correspond-
ing to A1 is e = (1,...,1)?. The corresponding left eigen-

vector m = (m1,...,720) T represents the equilibrium dis-



tribution under the assumption that it is normalized so

that 77e = 1. In matrix notation we have:

7TP(t)==n"T and P(t)e=e fort>0.

The above results are true for a general Markov ma-
trix. We will now focus on matrices where we can decom-
pose the 20 amino acids into invariant subsets Aq,... Ag
of amino acids. This means that whenever the Markov
process is in one of the invariant sets, e.g. A;, it will re-
main in A; thereafter. If we use an appropriate ordering
of the amino acid residues the amino acid replacement

matrix P(t) appears in block diagonal form

Dy 0 - 0
0 Doy 0
B =
0 0 Dixk

where each block Dy, (kK = 1,...,K) is a Markov
matrix, reversible with respect to some corresponding
equilibrium subdistribution. Again, due the Perron—
Frobenius theorem, each block possesses a unique right
eigenvector e, = (1,...,1)T of length dim(Dy;,) corre-

sponding to its Perron root A, = 1.

In terms of the total amino acid replacement matrix
P(t), the eigenvalue A\ = 1 is K-fold and the K corre-
sponding right eigenvectors can be written as linear com-
binations of the K vectors of the form

0,...,0,er,0,...,0", k=1,... K,
As a consequence, right eigenvectors corresponding to

A = 1 are constant on each invariant set of states.

Ezxample 3
To obtain a block diagonal probability matrix we calcu-

late B = P(t) = e, where @ is the block diagonal rate

matrix of Example 1 and ¢t = 1:

75025 0 0 0 0 0

2% 0 0 0 0 0

49 51 0 0 O

0 0 0 0 .22 .22 .56
The eigenvalues of P(1) are

)\1:1 )\2:1 /\3:1
A =05 A5=034 X =034 X\ =0.02.

The right eigenvectors corresponding to A = 1 are

n= (11 1 1 1 1 1)

= (0 0 1 1 -1 -1 -1)
z3= (1 1 -1 -1 -1 -1 -=1)
2 X — 2 T — 2 X3 —
1 1 1
0 OI 0
1 -1 1
P s 4 s s 7 Y123 4 s 61 C1 23 45 61
State i State i State i
(a) (b) (c)

Figure 1: The eigenvectors z1,z2,z3 of Example 3, cor-

responding to A = 1.

Figure 1 shows the eigenvectors z;, x2 and z3 cor-
responding to A = 1 as function of the seven states s;,
i€ {1,...,7}. A constant level can be observed for each
of the invariant sets {1,2} {3,4} and {5,6,7}. Moreover,
the same pattern can be observed if we restrict our in-
vestigation to the sign structure oy, i € {1,...,7}, of the

states instead of the actual values. For example, the sign



of state 1 is positive for eigenvectors x; and x3 and is zero
for eigenvector 2. Thus the sign structure o; for state 1
can be written (+,0,+). Analogously, we determine the

sign structure of all states:

o1 =(+,0,+) o2 =(+,0,+)

o3 =(+,+,—) 04=(+,+,-)

o5 =(+,— =) 06=(+—,~)
o7 = (+—-)

The sign structure is the same for states of the same in-
variant set {1,2}, {3,4} or {5,6,7}.

Stated more formally, and reverting to consideration
of 20-state (amino acid) matrices, if we associate with

every state its particular sign structure

s; > (sign(z1)s, .- ., sign(zk);) 1=1,...,20

then the following statements hold:

e invariant sets are collections of states with common

sign structure

o different invariant sets exhibit different sign struc-

tures.

A proof is given in Deuflhard et al. [6]. This indicates
that the set of K right eigenvectors of the amino acid
replacement matrix can be used to identify K invariant

sets of amino acid residues via the sign structure.

4 Perturbation Theory

The standard amino acid replacement matrices like PAM
[5] and WAG [16] do not exhibit block diagonal struc-
ture. As mentioned in the introduction most amino acid
replacement matrices are connected. This means that for
any time ¢ > 0 all the entries of the probability matrix
are non-zero. Therefore it is impossible to identify perfect
invariant sets. However, it is still possible to identify al-
most invariant sets of amino acids via the sign structures

o; as the following example illustrates:

FEzxample 4
We add a perbutation matrix E to the block diagonal

matrix B of Example 3:
P:=08B+ 0.2F

where the perturbation matrix E is given below:

.01 .09 .10 .25 .08 .30 .17
.09 10 .25 .08 .30 .17 .01
10 .25 .08 .30 .17 .01 .09
25 .08 .30 .17 .01 .09 .10

.08 .30 .17 .01 .09 .10 .25

B30 .17 .01 .09 .10 .25 .08

A7 .01 .09 .10 .25 .08 .30

The eigenvalues of P are now calculated as

M=1 X =085 X\;=0.76
A =041 X5 =031 X\g=024 X\ =—002 .

The eigenvalue spectrum of the perturbed block diag-
onal amino acid replacement matrix can then be divided
into three parts: the Perron root A; = 1, a cluster of two
eigenvalues As = 0.85, A3 = 0.76 close to one, and the
remaining part of the spectrum, which is bounded away
from 1. The right eigenvectors xi,x2,z3 corresponding

to A =1, 0.85, 0.76 are:

1, 1, 1, 1, 1, 1, 1)
(-0.02, 001, 161, 166, —1.05, —1.09, —1.12)
(1.50, 1.61, —0.61, —0.63, —0.59, —0.50, —0.78)

Figure 2 shows that for the perturbed block diagonal
Markov matrix, nearly constant level patterns can be ob-
served on the three almost invariant sets {1, 2}, {3,4} and
{5,6,7}. In order to have an automated procedure for de-
termining the sign structure, we need to define a threshold
value 6 that will separate components with clear sign in-

formation from those that might have been perturbed to



" " "3 —
1 1 1
0 0 0

2 2 2
1 2 3 4 5 6 7 12 3 4 5 6 7 1 2 3 4 5 6 7
State i State i State i

(2) (b) ()

Figure 2: The eigenvectors z, x4, z3 of Ezample 4, cor-

responding to A = 1,0.85,0.76, as functions of the states.

such an extent that the sign information has been lost. El-
ements xy, (s) of z, satisfying |z (s)| > 6 are taken to have
clear sign information, o4(k) = + or —, whereas o5(k) = 0
if |z (s)| < 6. For example, by choosing § = 0.25 in the
above example, we ensure that all states {1,...,7} still
have clear defined sign structure and that at least one
of the eigenvectors, apart from z;, has a sufficiently large
component |z(s)| > 6. In this example, the small compo-
nents of the eigenvectors z3(1) = —0.02 and z»(2) = 0.01

are neglected and we obtain the following sign structure:

o1 =(+,0,+) o2 =(+,0,+)

o3 =(+,+,—) 04=(++,-)

o5 = (+,—-) 06=(+—,~)
o7 = (+—-)

This sign structure is identical to the sign structure of the
unperturbed Markov matrix, leading to the same group-
ing of the states {1,2}, {3,4} or {5,6,7}. FEzample /
indicates that the sign structure of eigenvectors corre-
sponding to eigenvalues in the cluster around the Perron
root A; can be used to identify sets of amino acids that
are almost invariant. An exact formulation and proof of
the behaviour of the eigenvectors under the influence of

perturbation is given in Deuflhard et al. [6].

ALGORITHM

This section transforms the results of sections 3 and 4

above to an algorithm that has three steps:

1. Find states with stable sign structure.
2. Define equivalence classes.

3. Sort states to seek almost invariant sets.

Step 1: Find states with stable sign structure

We start from the heuristic that the sign of an eigenvec-
tor component is “more likely” to remain stable under
perturbation, the “larger” this component is. In order to
make the positive and negative parts of the eigenvectors
comparable in size, we scale them as follows:

For k =1,...,K, we split z; = 2} + 7}, component-

where z{(s) =

wise, max(0,zx(s)) and z,(s) =
min(0, zx(s)), and we set &, = 2} /|2 [loo + 2, /|17, oo
(where [|v]|oo is the maximum norm of vector v, defined
as max; |v(i)])-

By means of a heuristic threshold value 0 < § < 1,
which is common for all eigenvectors, we then select those

states that exhibit a “stable” sign structure according to

max

S={s€{1,...,N}:k:1mK

|Z(s)[ > 6}

Only those states in S can be assigned to groups us-
ing the following procedure; states s € S are unclassifable.
Step 1 is a check that all of the states (i.e., amino acids)
have at least one of the eigenvectors xg, £ > 1, with a
“significantly” large component z(s). For the amino acid
replacement matrices studied we have chosen § = 0.5. In
the case of the occurrence of unclassifiable states our al-
gorithm aborts. However, one could then lower the value
of & at the expense of a higher risk of a false assignment
This case never arose in our

of the states into subsets.

examples.



Step 2: Define sign equivalence classes

Based on the sign structures of the states in S, we proceed
to define K equivalence classes with respect to sign struc-
tures. As already indicated the underlying idea is that
only “significantly” large entries in the scaled vectors Zy
are permitted to contribute to a sign structure o, gy for
a state s with respect to some heuristic threshold value 6

(with 0 < 8 < 1) by virtue of

O(s,0) — (017 R UK)
sign(Zy(s)) if |Zx(s)| > 6,
with o(k) = | |
0 otherwise.

Two sign structures are defined to be equivalent if, and
only if, their pointwise multiplication yields only non-
negative entries. Sign structures of states that are not

equivalent are said to be inequivalent.

Step 3: Sort states to seek almost invariant sets

In step 2 we have assigned a sign structure to all stable
states. It is now necessary to sort the states with respect
to their sign structure, compute the number of invariant
sets and finally determine the invariant sets. Various
methods can be applied to this challenge, and we have
decided to transform the problem to a graph colouring
problem. Therefore we construct a graph where every
stable state is represented by a vertex and in which
inequivalent states are connected by edges. Colouring
this graph determines K colour sets Si,...,Sk and we
assign each of the states in S to one sign structure class.
The colouring of graphs is a standard problem. An
introduction to graph coloring and code that performs

this task can be found at Michael Trick’s webpage [13].

By combining the three steps above we arrive at the
following procedure to compute a partition into a partic-

ular number K of almost invariant sets:

Specify desired number of sets K
Read in the K eigenvectors with largest eigenvalues
Step 1: Find states with stable sign structure:

Set 0~ =0and 8t =1

Step 2: Set § = 9_§9+ (bisection search to find 4
giving required number of subsets)
Determine the sign structures o, gy with respect to 6
Step 3: Calculate invariant sets and the number
of invariant sets, K(). Then:

if (K(8) = K) write out invariant sets

else if (K(f) > K) 6 = § and goto Step2

else ~ = 6§ and goto Step2

IMPLEMENTATION

The above algorithm has been implemented in a C-
program called Almost Invariant Sets (AIS). We now ap-
ply our code to standard amino acid replacement matri-
ces as they are widely used in practice. We start with the
PAMI matrix [5]. The eigenvalues of the PAM1 matrix

are given in the Figure 3.

"ei‘gehv‘alu‘es" S
0.995 o 7

0.99 - o6 ]

Eigenvalue A _i

0.985 - > 7

0.98 - M

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01234567 8 91011121314151617181920
Statei

0.975

Figure 3: Eigenvalues of the PAM1 matrix

The spectrum of the PAM1 matrix (Fig. 3) does not



exhibit a clearly identifiable cluster around the Perron
Rather all 20 eigenvalues of the PAM1

root Ay = 1.
matrix are close to 1. We decided firstly to calculate a

grouping into four amino acid sets since we could compare

ARNDQEGHI KMPSTVCLFYwW

S<TrO0<—H0TZA-"IOMOOZD >

this grouping to a grouping according to physicochemical

properties of the amino acids [7], [12], illustrated in Fig-

ure 4.
(a) Hidden Block Struc- (b) Sorted PAM matrix.

ture of the PAM matrix.

Figure 5: Application of the AIS algorithm to PAM

both:
PATS algorithm = 0.937 < Pphysicochem = 1.814

and thus the grouping that was found by the algo-

rithm outperforms the grouping suggested by physical

Figure 4: Representation of the PAM matrix. This pro-
and chemical properties of the amino acids

jection of the matrix by multidimensional scaling is an
Moving on from the division into four subsets, the best

idealization adapted from Robson and French [7] by Tay-

Amino acids that are close together exchange
partitions between 1 and 20 subsets have been calculated

lor [12].

frequently. The diagram divides the 20 amino acids into
and are given in Figure 6.

(AGSPDEQNHRKTMILFYVCW)
[AGSPDEQNHRKTMILFYVC)W
(AGSPDEQNHRKTMILFYV]OW)

(AGSPDEQNHRKTMIVJLFY
(AGSPDEQNHRKT)(MIVL
EVE W)

four sets of equal size.

The algorithm identified four blocks for the PAM ma-
trix, as shown in Figure 5a. After reordering of the amino
acids the inferred almost block diagonal structure of the

PAM matrix is clearly visible. We read out the grouping

from the ordered PAM matrix (Fig. 5b) as follows

{A,R,N,D,Q,E, G, H, I, K, M, P, S, T}

{C} { F AW}

Our algorithm divides the residues into four sets of un-
equal size. There is little overlap of the grouping accord-
ing to the physicochemical properties and the grouping
according to our algorithm. However leucine, phenylala-

nine and tyrosine { L F Y } are direct neighbours in Fig-

ure 4 and cysteine { C } and Tryptophan { W } are known
to show unique behaviour. To compare these groupings
quantitatively we calculate the conductance measure for

AGsP)DEQNHRKT|MIDEY)V W)
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Figure 6: The 20 best groupings according to the PAM

matrix.
Figure 7 shows how the conductance measure ¢ in-

creases with the number of sets. The conductance mea-
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sure grows moderately for a grouping into n=1-4 sets.
The growth then changes to a rapid rise for divisions into
n=5-15 groups, slows down for n=16-17 groups and fi-
nally grows rapidly again for n=18-20. Overall the con-
ductance measure increases strictly monotonically and no

local extrema or plateaus can be observed.

T T T T T T T
' conductance’
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8 91011121314151617181920
Number of Subsets

| N B
1234567

Figure 7: The Conductance measure for 20 best groupings

according to the PAM matrix.

We have also applied the AIS algorithm to the WAG
matrix of Whelan and Goldman [16]. In Figure 8 we
present the partitions of between 1-20 subsets found by

the AIS algorithm.
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Figure 8: The 20 best groupings according to the WAG

matrix.
The 20 best groupings of the PAM and the WAG ma-

11

trix are clearly distinguishable. For example, the most
conserved group of WAG is { LM F Y } (along with its
subgroups { LM F } and { L M }). In contrast, the set
{CS YV} (and { CV}) is the most stable among the
groupings of the PAM matrix. Generally in the case of
the PAM matrix new sets evolve by splitting up the pre-
vious sets. Among the groupings according to the WAG
matrix swaps between sets can frequently be observed in

addition to simple splits.

DISCUSSION

The conductance measure and the grouping algorithm
have been proven useful in finding sets of amino acids.
However the criterion and the method only enable us to
find the best grouping for a particular given number of
subsets. No decision on the best number of subsets can

be made, since neither the clustering of the eigenvalues

around the Perron root A\; 1 nor the graph of con-
ductance measure as function of the number of subsets
allow us to choose in a sensible way. To make progress
here it might be necessary to modify the definition of the
conductance measure.

The groupings found for a particular number of sub-
sets are also reasonable from a biochemical point of view
as the comparison with the grouping of Taylor [12] into
four subsets shows. The advantage of our approach is that
the algorithm automates the process of finding groupings
and that the conductance allows a quantitative assess-
ment of the partition in a biologically meaningful way.
The grouping algorithm identifies sets of amino acids with
a high probability of mutation between amino acids of the
same set but small probabilities of change between differ-
ent sets. The conductance measure quantifies the evolu-
tionary changes between subsets that are of most interest.
Furthermore, if the analysis is based on the normalized
rate matrix of a Markov model, it is possible to directly

compare the results of different models.

The analysis of the WAG matrix and the PAM ma-



trix indicates that different amino acid replacement ma-
trices lead like fingerprints to different groupings. In fu-
ture studies we will therefore use the groupings and their
score according conductance measure as a tool to analyse
and compare various Markov models of protein sequence
evolution. We will also apply our method to larger 61 x 61

rate matrices of codon models (see, e.g., [8], [18]).
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