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Abstract

In the quarter plane {(z,y): z, y > 0}, we consider the Dirichlet problem for a sin-
gularly perturbed elliptic convection-diffusion equation. The highest derivatives of the
equation and the first derivative along the y-axis contain respectively the parameters e;
and &9, which take arbitrary values from the half-open interval (0,1] and the segment
[—1,1]. For small values of the parameter £1, a boundary layer appears in a neighbour-
hood of the domain boundary. Depending on the ratio between the parameters 1 and
€9, this layer may be regular, parabolic or hyperbolic. Besides the boundary-layer scale
controlled by the perturbation parameters, one can observe a resolution scale, which is
specified by the ”width” of the domain on which the problem is to be solved on a com-
puter. It turns out that, for solutions of the boundary value problem and of a formal
difference scheme (i.e., a scheme on meshes with an infinite number of nodes) considered
on the bounded subdomains of interest (referred to as the resolution subdomains), the
domains of essential dependence, i.e., such domains outside which the finite variation of
the solution causes relatively small disturbances of the solution on the resolution subdo-
mains, are bounded uniformly with respect to the vector-parameter € = (1, ). Using
the conception of “region of essential solution dependence”, we design a constructive finite
difference scheme (i.e., a scheme on meshes with a finite number of nodes) that converges
g-uniformly on the bounded resolution subdomains.

1. Introduction

The direct use of discrete methods developed for solving boundary value problems in
bounded domains leads to a contradiction in the case of unbounded domains. In the case
of elliptic or parabolic equations on unbounded domains, for solutions considered at a point,
the domains of their dependence (on the problem data which determine the solution) are un-
bounded. To solve such problems numerically, discrete sets with an infinite number of mesh
points is required. However, the solution can be computed (even on “powerful” computers)
only on meshes with a finite number of nodes. Thus, the construction of effective numerical
methods for boundary value problems in unbounded domains seems to be a problem of extreme
importance at present. In the case of singularly perturbed problems the problem is compli-
cated by boundary and transition layers arising for small values of the perturbation parameters.

* This work has been supported by the Russian Foundation for Basic Research under grant No. 04-01-00578.



Difficulties appearing in the numerical solution of singularly perturbed equations in bounded
domains are well known (see, e.g., [1, 3, 4, 6, 10, 11, 14]).

For a number of problems in unbounded domains whose solutions are considered in some
bounded subdomains, it turns out that the domain of “essential” dependence of a solution
(i.e., such a domain outside which the finite variation of the solution causes relatively small
disturbances of the solution on the bounded subdomains of interest) is bounded (see, e.g., the
statement of Theorem 4.2 in Section 4 in the case of the boundary value problem (2.2), (2.1)
for a singularly perturbed elliptic equation). A similar effect of the boundedness of the domain
of essential solution dependence is also observed in the case of discrete problems on meshes
with an infinite number of nodes, which approximate boundary value problems in unbounded
domains (see the statements of Theorems 5.1 and 5.2 in the case of the difference scheme (3.2)
on meshes (3.1) and (3.4)). Motivated by the boundedness property of domains of essential
dependence of solutions to differential and discrete problems, interest arises in the development
of constructive numerical methods. Constructive methods are those that make use of meshes
with a finite number of nodes, which allows us to approximate solutions of the boundary value
problems on prescribed bounded domains. For singularly perturbed problems, there exists a
strong interest in constructive numerical methods whose solutions converge on the prescribed
subdomains uniformly with respect to the perturbation parameter, moreover, the size of these
subdomains is independent of the value of the parameter.

In the case of convection-diffusion equations with two perturbation parameters £; and &5
multiplying the diffusion and convection terms, the nature of arising boundary layers depends
on the relation between the parameters €1, 5. For problems of this type, special numerical
methods, with errors in solutions being independent of values of the vector-parameter € =
(€1, €2), are available only for problems in bounded domains and only for some particular sets
of the parameters ; and e5: &1 € (0,1] and g9 = 0, or |e3| = 1 (see, e.g., [4, 10, 11, 14]). Thus,
an important task is the development of numerical methods for problems in both bounded
and unbounded domains that approximate solutions with errors independent of the vector-
parameter £ for any relations between ¢; and &5 (i.e., methods convergent Z-uniformly).

In the present paper we consider discrete approximations of the Dirichlet problem for a
singularly perturbed elliptic equation in an unbounded domain, i.e., in the first quarter plane.
The differential equation is of convection-diffusion type. The highest derivatives of the equation
and the first derivative along the vertical axis contain respectively the parameters £; and e
taking arbitrary values from the half-open interval (0,1] and the segment [—1, 1]. Depending
on the parameter ey, the vertical component of the flow velocity may be both positive (for
g9 < 0) and negative (for 5 > 0), or equal to zero (for 5 = 0); the horizontal component is
strongly negative. For ¢y — 0 a boundary layer appears in a neighbourhood of the domain
boundary (or of its part); the layer is regular in a neighbourhood of the vertical boundary. In
a neighbourhood of the horizontal boundary, the type of the layer is defined by the parameter
g9 and can be regular, parabolic or hyperbolic; no boundary layer arises for e, < —m < 0 (see,
e.g., Remark 4 to Theorem 7.1 in Section 7).

Let us mention some singularities of the problem being investigated in the paper. Errors
in solutions of the difference scheme on a mesh with an infinite number of its nodes (formal
difference scheme) essentially depend on the values of £, and 5 (see estimates (3.5), (3.7) for the
difference scheme (3.2), (3.4) in Section 3). The domains of essential dependence for solutions
of the boundary value problem under consideration and of the formal difference scheme are
bounded (see the definition of the domain of essential dependence in Sections 4 and 5). This
property of the domains of essential dependence makes it possible to develop constructive
difference schemes that are convergent on the prescribed subdomains, whose sizes can grow



with increasing the number of mesh points (see, for example, estimate (6.15) in Section 6).
When there are no restrictions imposed on the distribution of mesh points, the error in the
numerical solution (on the prescribed subdomain) depends on the value of the component-
parameters 1, €2 and, in general, grows (up to a full loss of accuracy) for €1, e — 0 (see, e.g.,
estimates (6.3), (6.5), (6.6) in Section 6).

When constructing g-uniformly convergent constructive schemes, we use piecewise uniform
meshes condensing in the boundary layer region; the rule of mesh refinement is different in a
neighbourhood of the vertical and horizontal boundaries and is determined by both parameters
1 and &9 (see scheme (6.2), (6.12), which converges Z-uniformly).

About the contents. Problem formulation, the aim of research and a priori estimates are
given in Sections 2 and 7. Formal difference schemes are investigated in Section 3. Domains
of essential dependence for solutions of the boundary value problem and the formal difference
scheme are studied in Sections 4 and 5, respectively. In Section 6 we develop constructive
difference schemes that converge (in particular, Z-uniformly) on prescribed (bounded) domains
whose sizes are allowed to grow as the number of mesh points increases.

Note that the construction of Z-uniformly convergent schemes for the boundary value prob-
lem under study was not previously considered even for the case of a bounded domain. The
technique given in the paper can be applied to the development of parameter-uniform numerical
methods, capable of actual computation, for other types of singularly perturbed problems in
unbounded domains.

2. Problem Formulation. The aim of the research
2.1. In the quarter plane D, where
D=DuTl, D={x: x,€ (0,0c), s=1,2}, (2.1)
we consider the Dirichlet problem for the singularly perturbed equation®
Lioyu(z) = f(z), €D, u(z)=¢p(x), vl (2.2)
Here o 5 5
L=¢g s;;zs(x)a—xg + bl(x)a—xl + &9 bg(x)a—@ — c(z),

the functions a,(z), b,(7), c(z), f(z) are assumed to be sufficiently smooth on D, s = 1,2, the
function ¢(z) is sufficiently smooth on the sides I';, j = 1,2 and continuous on I'; I' = I} U Iy;
I, = T, the side I} is orthogonal to the axis x;, s = 1,2. We assume that the following
conditions are satisfied: 2

ag < ag(w) < a®, by < bs(z) <V, g < e(x) < ag, by, co > 0;

\f(x)| <M, z€D; |px)|<M, zel. (2.3)

The parameters €; and &9, i.e., the components of the vector-parameter g, take arbitrary values
in the half-open interval (0,1] and the segment [—1, 1] respectively.

! Throughout the paper, the notation Lk (M(jky, Gh(j.x)) means that this operator (constant, grid) is
introduced in formula (j.k).

2 Here and below M, M; (or m) denote sufficiently large (small) positive constants independent of the
vector-parameter £ and the parameters of difference schemes.



By the solution of the boundary value problem, we mean its classical solution, i.e., a function
u € C%(D) N C(D) that is bounded on D and satisfies the differential equation on D and the
boundary condition on I'. For simplicity, we suppose that the compatibility conditions ensuring
the required smoothness of the solution for each fixed value of the vector-parameter £ are fulfilled
on the set I'“= Iy NI, of “corner points”.

When the parameter ¢; tends to zero, boundary layers arise in a neighborhood of the
boundary I (or its part). The nature of these layers and their properties in a neighborhood of
the sets Iy, I, I'® are determined by the vector-parameter Z (see considerations in Section 7).
The presence of parabolic boundary layers in problem (2.2), (2.1) does not allow us to construct
g-uniformly (i.e., uniformly with respect to 1 and &5) convergent numerical methods based on
the fitted operator approach, and so we need a technique based on condensing meshes (see the
description of the approaches to the construction of the special schemes in bounded domains
for e =0 or |eg| & 1in [1, 3, 6, 10, 14]).

Problems of this type appear in the modelling of a heat transfer process for fluid flow over
surfaces in the case of boundary layers controlled by blowing some fluid in or suction of some
fluid out of a layer (see, e.g., [13], Chap. 14). In these problems the parameter ¢; is determined
by the relation e; = Re™! or e; = Pe™!, where Re and Pe are the Reynolds and Peclet numbers,
and the parameter €5 determines the intensity of “blowing/suction” on the streamlined surface.

2.2. Unlike problems in bounded domains (for singularly perturbed or regular equations),
the construction of numerical methods in the case of unbounded domains is essentially compli-
cated. The approximation of solutions of such problems on the domain of definition, as rule,
requires to use disrete sets with an infinite number of mesh points (see Remark 5 to Theorem
7.1 in Section 7).

Thus, in the case of problems in unbounded domains it seems appropriate to use the fol-
lowing approach for the development of constructive numerical methods. Suppose that we are
interested in finding a solution of problem (2.2), (2.1) on some prescribed bounded set D’ cD.

Let the set D' be a rectangle defined by its lower left and upper right vertices d' = (dj, dy)
and d? = (d2, d3), where d' is an arbitrary point of D:

(d, d?), D°=D°ur". (2.4)

Thus, we have D' = [d}, d2] x [d}, d2], d® = d'+d°, d°= (d°, dY); generally speaking, the
value d?, that is, the size of D° along the z,-axis, may depend on the parameter z; let d) =
max[d), dY]. Tt is required to construct a numerical method which allows us to approximate

the solution of problem (2.2), (2.1) on the set D°. The accuracy of the discrete solution on

D’ (just as the values d?, s = 1,2) can depend on the parameter € and the values of N; and
N,, which define the number of mesh points used (in xz; and z5). It is desirable that the values

d? are allowed to grow as N; and N, increase. When constructing an g-uniformly convergent
method, we require that the size of the set D’ and the accuracy of the discrete solution (on

50) be independent of the parameter Z and be defined only by the values of N; and Ns.
Our aim is to construct Z-uniformly convergent formal and constructive schemes for the
boundary value problem (2.2) by using standard finite difference approximations. In the case

of constructive difference schemes we are interested in finding the solution of problem (2.2),

(2.1) on the bounded set E(OM).



3. Formal difference schemes

In the case of problem (2.2), (2.1) we consider formal difference schemes, viz. schemes on
meshes with an infinite number of nodes.
3.1. On the set (2.1), we introduce the grid

D, =w x @}, (3.1)

where w; is a mesh on the semiaxis x;, > 0 with arbitrarily distributed mesh points. Let
Rt = gt — 2t 2l 2t € W, hy, = max; b, h = max, h*. Denote by N,, + 1 the minimum
number of nodes in the mesh @? on a unit interval. Suppose that the condition h < MN_! is
fulfilled, where N, = min[NV,, N,s].

To solve problem (2.2), (2.1) we use the difference scheme

Az(z) = f(x), z€ D}, z2(z)=¢(x), ze€lj. (3.2)

Here Df =DND,, I}=1IND,;

Az(z) = {51 Z as(7)0zszs + b1(2) 001 + €5 b2 (T) 0o + €5 ba(2) 0z — c(x)}z(x), x € Dy;
s=1,2
dzszs2(x) and 0,52(2),0z52(x) are the second and first (forward and backward) difference deriva-
tives on non-uniform grids, for example, 6 z(z) = 2(hi' + h’i)_1 (621 — 057 ) 2(2),
x = (21,22) € Dy g5 =27 (ea+ |eal), &3 =27 (g2 — [ea)-
Scheme (3.2), (3.1) is -uniformly monotone [12].

Taking into account the estimates of Theorem 7.1 (see Section 7) and the maximum prin-
ciple, we find the estimate

lu(z) — 2(z)| < Me;2 N, zeD,. (3.3)
In the case of a uniform mesh
Dy, (3.4)
we obtain the estimate
lu(z) — 2(z)] < M (e, + N;Y)TINSL 2 €Dy, (3.5)

Definition. Let a discrete function z(z), z € D,, i.e., the solution of some difference
scheme, satisfy the estimate

lu(z) — 2(z)| < M pu(N7' e1), z€D,.
We say that this estimate is unimprovable with respect to N, and &, if the estimate
u(z) = 2(2)] < M po(N, %5 €1), @ € D,

1

is, in general, false in that case when po(N,';e1) = o(u(N, 1;¢1)) at least for some values of

N, and &; such that N, > M, ¢, € (0,1].

Considering solutions of model problems, we justify that estimate (3.5) is unimprovable
with respect to N, and £;. The condition



N7t =o(e) (3.6)
is necessary and sufficient for the convergence (for N, — oo, &; € (0,1]) of solutions of the
difference scheme (3.2), (3.4).

Under the condition —1 < gy < —5}/2 we have the estimate
lu(z) — 2(z)| < M Z e, +NO)INGY, zeD,. (3.7)
s=1,2
Theorem 3.1. For the difference scheme (3.2), (3.4), condition (3.6) is necessary for the
convergence of discrete solutions to the solution of the boundary value problem (2.2), (2.1) and is

also a sufficient condition if a priori estimate (7.3) holds, where K = 3. The discrete solutions
satisfy estimates (3.3), (3.5), (3.7); estimate (3.5) is unimprovable with respect to N, and €.

3.2. To construct z-uniformly convergent schemes, we use meshes condensing in a neigh-
bourhood of the boundary layers. The rule of mesh refinement is controlled by the nature of
the arising boundary layers.

On the set D we introduce the mesh
D, =D, =% x 7, (3.8)

S *S(as) is a piecewise uniform mesh on the semiaxis x; > 0, s = 1,2. The stepsizes

where ;> =w
of the mesh w*® are constant on the intervals [0, o,] and [0, oc) and are equal to RV = 20,N_!
and th) = 2(1 — 0,)N_;!, respectively. The value o, is chosen to satisfy the condition
o1 =01(¢1, Ny1) =min[27', My, InN,y], where M, = m;(17.14),
The magnitude of o5 depends on the values of €1, £9 and N,s so that oy = 0y(e1, €9, Nio):
min [27!, M, e1/? In N,o] for |eo| < M%e 2,
09 = 03(€1,62, Na2) = min[271, Mze £ InN,o] for &y > M° 1/2,
min [271, M, |82| In N*Q] for &9 < — MO 1/2.
Here M° is an arbitrary constant, M, = m;(17.15), Ma(r1s) = Ma(M®), My = m;(lmg), M, =
m;(17.22)’ Ma(r.22) = Ma(M?).

Applying the technique from [10, 14] and taking into account a-priori estimates for the
solutions of problem (2.2), (2.1), we find the estimate

lu(z) — 2(x)| £ M N,;' min[e; !, In Nyy] + (3.9)
min [g, Y2 In N,o] for |eo] < MYe 2,
+M N3' ¢ mine;'es, InN,y]  for ey > MO 1/2,
min[|es] !, InNy] for ey < —M°e?, 2 €D’
The following g-uniform estimate also holds:
lu(z) — 2(z)] < MN,*InN,, z€D, . (3.10)
Estimates (3.9) and (3.10) are unimprovable with respect to N,;, N.o, €1, €9 and N,, respectively.

Theorem 3.2. Let the components of the solution of the boundary value problem (2.2), (2.1)
from representations (7.5), (7.10) and (7.5), (7.24) satisfy the a-priori estimates of Theorem 7.1,
where K = 3. Then the solution of the difference scheme (3.2), (3.8) converges to the solution of
the boundary value problem (2.2), (2.1) E-uniformly. For the discrete solutions estimates (3.9)
and (3.10) hold, which are unimprovable with respect to N1, N.a, €1, €2 and N, respectively.



4. Domain of dependence for solutions of problem
(2.2), (2.1)

In this section we consider how the finite variation of the data of problem (2.2), (2.1) on D,

but however far from its subset EO, influences the solution of the problem on this set D’
4.1. Suppose that we are interested in finding the solution of problem (2.2), (2.1) on the

set 5(02.4) in D. Let the set 5(02.4) belong to the rectangle DY ¢ D defined by the vertices d'

D =D"d",d?) =Dyy(d",d?), D =Dp0urh. (4.1a)
Here d ' =d' —n', d2=d>+n% di= dlygys M’ (771,772) the values (n1,77) = 7;) and
(13, 7m5) = T() determine a neighbourhood of the set D" in the z,— and zo-directions. So, the
set D contains the set D° with its M0y, M) }—neighbourhood, Ny = (e, Mey2)s i =1, 2:

P _ploHo. =

0]

Let ul(2), z € D! , be the solution of the problem

Lul(z) = f(x), =€ DU, (4.2a)
u(z) = o(x), 2N, (4.2b)
ul(z) =0, ze o\ r. (4.2¢)

Using the majorant function technique, we obtain the following estimate for the solution of
problem (4.2), (4.1):

[u(z) — u(x)| < [ 1) + exp(=mynayz) + Ba(nan)| + (4.3)
exp(—mJ 51 (2)2) for |es] < My 6}/2
+M ¢ exp(—m3e; ! ne)p) for &9 > M, 6}/2,
exp(—mj eyt |ea| ney) for ex < —M, er?, ze D°.

Here

exp(—mier nan), TN I #0,

Prln) = { 0, rnn =g

( —-1/2

exp(—mbe] "“ne))  for |82|<M081/2,

Balnia) = 3 exp(—me;? eamayn) for g9 > My 51/ ,
2(N2)1) =
exp(—mj|ea| ' ny1)  for ey < =M el?, Tin, £0,

0, rlnrn =4,

\

My is an arbitrary constant, mj is an arbitrary number from the interval (0,m}°), mi® =
min {2min'/*[ay ! () ¢(2)], 27" minfby ' (x) e(2)]}, m} = miray, my = m2(7.15)(M0)a mj =
D D

Ma(7.19), M3 = Ma(7.92)(Mp). Estimate (4.3) (up to constant factors multiplying 7, i, s = 1, 2)
is unimprovable with respect to the values of 7, 7 and €.
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Theorem 4.1. For n;), — oo, i,5 = 1,2, such that D (50; (1) ﬁ(g)) C D, the solution
of the boundary value problem (4.2), (4.1) converges, on EO, to the solution of the boundary

value problem (2.2), (2.1) E-uniformly. On the set D", estimate (4.3) holds for the solution of
problem (4.2), (4.1).

Remark 1. If the function ul%(z), z € D"

z € 'Y\ I', instead of condition (4.2b), then ul%(z) = upg901)(2), z € E[U]; here g 9.0.1y(2),
x € D, is the solution of problem (2.2), (2.1). Thus, the solution of problem (4.2), (4.1) is the
solution of the perturbed problem generated by a perturbation of “the data” of problem (2.2),
(2.1), namely by a finite change in its solution (the function w2..1)(x)) outside the set

, satisfies the condition ul(2) = w@.9.0.1)(),

DY = plol {E[‘” N F} . (4.4)

It follows from estimate (4.3) that the perturbations of the solution caused by the above per-
turbation of the data are small on the set D’ when the distance R® between the sets D° and
D\ DETA) is sufficiently large. The perturbation of the solution (the function u!%(z) — u(z))
decreases exponentially on the set D’ as R® increases. Thus, although the domain of depen-

dence for the solution of problem (2.2), (2.1) on the set D" is the whole set D, it turns out
however that the domain of “essential” dependence (when the perturbations of the solution are

“essentially” different from zero) for the solution on the set D" is bounded.

4.2. Let us estimate a neighbourhood of the domain of “essential” dependence for the

solution of problem (2.2), (2.1) considered on the set D",
First, we give a definition for the domain of essential dependence (or, shortly, the domain

of dependence) of the solution of problem (2.2), (2.1) on the set D",

Definition. Let D" be a subset of D which contains the set D . We denote by u”(z),
2 € D" the solution of the perturbed problem
LuM(z) = f(z), zeD" (45)
uMz) = ex), xel NI, v (z)=0, x€IT"\TI. '

When the data of problem (2.2), (2.1) are disturbed, the solution of the perturbed problem is
supposed to be zero on a part of the boundary I'* \ I". Given a set D’ and a sufficiently small
number 3 > 0, if there exists a set D’ such that the function u” (), x € D", considered on the

set 50 satisfies the estimate
—0
lu(z) —u"(z)] <M B, xz€D,

we say that the set D" is the domain of dependence of the solution of problem (2.2), (2.1) on
the set D* with the perturbation threshold  (or, in short, D" is the domain of dependence for
the set D" with threshold 3); thus,
D" =D"D",p). (4.6)
By n;). i = 1,2, we denote the vector-parameters 7; (see (4.1)) such that the set 55].1) is
the domain of dependence D" (EO, B):

=0} . - —A 50 _ =—Jo]A
D(4.1)(77(1‘) O L,2)=D (D", B) = D(4.7)- (4.7)



By virtue of estimate (4.3), we can estimate the values 77, 7 = 1,2 (i.e., we can choose the
*

parameters 77, 75 so that the following estimates hold):
N < min [M ey Ing ', dj] < Mye, Inpt, (4.8)
77?1)2 < MP g,
[ min[M]e V2 gt di] < Mje 1/2 In 37! ro|eg] < M051/2,
min[M2ee, 1 In 371, d}] < M2e91n B~ for ey > Moy,

| min[M3|e,|In B, dY] < MBei|eo| 'In Bt for ey < —Mpey'%;

IN

N1

Lel/2 1 g1 for |es| < Myel?,
MggQ In g for &5 > Moel?,
| MZeq|eo| TInp~t for &9 < Mgel/Q,

where M| = (m}(4 3))_1 M? = (m§(4 3))_1; M; = (m2(4 3))_1 M; = (m§(4 3))_1 M3 =
(m§(4.3))*1. The components 7, 4,5 = 1,2, are highly weakly depending on 3 and grow-
ing for § — 0. From the ummprovablhty of estimate (4.3) it follows that estimates (4.8) for the

=
[\')*

S
(3]
IA
N

component- parameters n , defining the “sizes” of the set DY 4 7 \ DY, i.e., the neighbourhood
of the set D" from the domaln of dependence, are unimprovable with respect to € and In 3.
Theorem 4.2. For the boundary value problem (2.2), (2.1), the parameters n(y, and

which define the sizes of the neighbourhood of the set D’ from the domain of dependence D£4]_7)
with the perturbation threshold [3, are Z-uniformly bounded for fized values of [ and grow without
bound for 5 — 0. The parameters 772‘1‘)5 satisfy estimate (4.8), which is unimprovable with respect

to the values of € and In 371

Remark 2. The estimate of the parameters 772})3 essentially depends on the vector-
parameter €. It is convenient to consider domains of dependence such that the “sizes” of

the set ﬁ?jﬂ% \ DY are controlled only by a single parameter. We denote by n* the parame-

ter 1 such that the set EETJ) under the condition 7¢)s4.1) = 1, 4,5 = 1,2, is the domain of

dependence D" (D ,ﬁ)
_[0] * *
D(4.1)(77(z‘)s =n", i,s=1,2) = ( ) 5) (77 )- (4.9)
For the parameter 772*4.9) we obtain the Z-uniform estimate
n*<MInpg, (4.10)
where M = max (M, M), M = M4 ): M = Mg(4.8); the estimate is unimprovable with

respect to lnﬁ 1

5. The domain of dependence for solutions of the formal
difference scheme

Just as in the case of the differential problem (2.2), (2.1), it is of interest to consider domains
of solution dependence in the case of the formal difference schemes introduced in Section 3.
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5.1. Consider the discrete problem (3.2), (3.1). First, we introduce a definition for the
domain of (essential) dependence.

Definition. Suppose that we are interested in the solution of the discrete problem on the
set 5(02_4) under a specific perturbation of the data in problem (3.2), (3.1). Let

D,=D"nD, (5.1a)
be a set containing E}? =D'n Dy; D" +D. We denote by 2(z), z € E,/l\ the solution of the
perturbed problem

AMz) = f(x), =€ Dp,

(5.1b)
M) =), zelPNI, 2Mz)=0, ze€I}\T;

assume that the boundary I'* passes through the nodes of the mesh ﬁ;. Under the condition
D" = D the discrete problem is not perturbed. Given a set D’ and a value B (B > 0is
sufficiently small), if there exists a set E;: such that the function 2" (z), = € E,/l\, considered on
the set D' satisfies the estimate |z(z) — 2" (x)| < M B, z € E,?, we say that the set E;: is the
domain of (essential) dependence of the solution to problem (3.2), (3.1) on the set E,? with the

perturbation threshold /3, (or, in short, 52 is the domain of dependence for the set D’ with
threshold 3); thus,

D, = D), (D", §). (5.2)

For the discrete problems the domain of dependence for the set D’ is generally no smaller
than that for the differential problem.
We denote by nZ‘i’)‘, i = 1,2 the vector-parameters 7)) such that the set

Al _ ol = ol
D)," = DyyyNDy =D, (77(1)7 77(2)) (5.3)
is the domain of dependence E2 (EO, B) of the discrete problem
—0] “h —A ,—0 —OIA -
Dh(5.3) (77(1‘) = 77(1',)la i=1,2)=D,(D", B) = Dh(5.4) (77(1',)la i=1,2). (5.4)
By n*", we denote the parameter n such that the set
—=10] _ . —x —=[0]
D(4.1) (77(1)5 =10 1s= 1, 2) N Dh = Dh (77) (55)
is the domain of dependence of the discrete problem
—J0] " —A /—0 —=[0]A %
Dh(5.5) (77 =1 h) =D, (D ) ﬁ) = Dh(5.6) (77 h) . (5.6)

The domain of dependence EET./;) for the differential problem (2.2), (2.1) is the domain of
dependence for the discrete problem (3.2) in the case of mesh (3.4) provided that

el N, ' =0(8), (5.7)
and in the case of mesh (3.8) under the condition
N 'InN, = O(B). (5.8)
Thus, the parameters 772‘5, i = 1,2, in the case of mesh (3.4) (mesh (3.8)) under condition (5.7)
(condition (5.8)) satisfy the (unimprovable) estimate (4.8), where g, is nz‘i’;s.
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Theorem 5.1. In the case of the difference scheme (3.2) on mesh (3.4) (mesh (3.8)) under

condition (5.7) (condition (5.8) ), the parameters nz*lh) and 772‘2}‘) defining the domain of dependence

5E?g$4) of the discrete solution are Z-uniformly bounded for fized values of 5 and grow without

bound for  — 0. The parameters 772‘1.})15 satisfy estimate (4.8), where Niys 15 na.’)ls, which is

unimprovable with respect to the values of € and Inf37!.

5.2. Note that the domain of dependence E@Lg) for the differential problem is the domain
of dependence for the discrete problem (3.2) on meshes (3.1), (3.4) and (3.8) for any  and N,:

—A —A —=* N 0 =10]A * *
D), = D(4.9) ND, =D, (D ) 5) = Dh(5.6) (77 M= 77(4.9))- (5-9)

For the parameter 77?5{1.6)’ in the case of meshes (3.1), (3.4) and (3.8) we have the (unimprovable)
estimate

"< Mg, M= Myi. (5.10)

We denote by N/, +1 the number of nodes in the mesh along the z,-axis on the set ﬁg)(]é\_ﬁ),

s=1,2.
In the case of meshes (3.4) and (3.8), the following estimate holds for the values N/} and
Ny

N, < M (d)+Inp") Ny, s=1,2, (5.11)
where d¥ = d(oz »- But if the threshold 3 satisfies the condition

mN, ' < B < MN,*, (5.12a)

*

then the following estimate is valid:

N/, < M (d)+InN,,) N,;, s=12. (5.12b)

Thus, in the case of the finite set D’ the number of mesh points along the zs-axis on the set
E% ¢) grows linearly, up to an logarithmic factor, as N, increases.

Theorem 5.2. In the case of the difference scheme (3.2) on meshes (3.1), (3.4) and (3.8),
the domains of dependence E&.g) and ﬁg)(]é\_ﬁ) of the solutions of the boundary value problem
(2.2), (2.1) and of the difference scheme (3.2) obey the relation (5.9); the parameter 772‘5?.6)
satisfies the (unimprovable) estimate (5.10). For the values N.,, s = 1,2, which define the
number of mesh points on the set bgg), estimates (5.11) and (5.12) hold in the case of meshes

(3.4), (3.8).

6. Constructive difference schemes

In view of the fact that the sizes of the domain of dependence for solutions of the formal
discrete problem (3.2), (3.8) depends weakly on the value S (in the case of the finite set

EO), the number of mesh points on the domain of dependence grows as [ — 0 at the rate
O(N,i N, In” 371) (see estimate (5.11)). This nature of the dependence on 3 allows us to
construct sufficiently effective schemes.
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6.1. Suppose that it is required to develop a constructive scheme which approximates the
solution of problem (2.2), (2.1) on the set ﬁ(om). For the set D~ we construct the domain of

dependence
—A  =A N
D" = Dyq(n), (6.1a)

where n* = M4.10) In Bt and 8 > 0 is a sufficiently small number chosen below. On the set
5?6.1), we introduce the mesh with an arbitrary distribution of its nodes:

Eh = E2 =W X Wa, (61b)

N, + 1 is the number of nodes in the mesh @W;, s = 1,2; let N = min[Ny, N3]. The condition
hy < M(d? + n*)]\gl is assumed to be satisfied, where h; is the maximal stepsize of the mesh
ws. On the mesh Dy, we build the scheme

Az(z) = f(z), x€ Dy,

Z(l') = QO(],‘), T € Fh N F, Z(:E) = 0’ T € Fh \ I (62)

For the difference scheme (6.2), (6.1) we obtain the estimate
u(z) — 2(2)| < M[e72(dJ + B~ N~ + 8], z € Dy,

where D, = D' N Dy; d° = dogs.4)-
In order to complete the determination of the constructive difference scheme we should
choose the parameter . It is convenient to choose the parameter 3 satisfying the condition

f=N"1 (6.1c)

in this case n* = M.10)In N. The constructive difference scheme (6.2), (6.1), i.e., the scheme
with the finite number of mesh points, has been thus constructed.

6.2. For the solutions of the difference scheme (6.2), (6.1) we obtain the estimate
lu(z) — 2(z)] < Me;2(dd+InN)N, z€D,. (6.3)

On the mesh
Dy, (6.4)

which is uniform with respect to both variables, w, = w!, s = 1,2, we come to the estimate
lu(z) — 2(z)] < M(e; + (d0+ I N)N ") Y(d) +InN)N", z€D,; (6.5)

this estimate is unimprovable with respect to N, d? and &;.

Under the condition —1 < gy < —5}/2 we obtain the estimate

u(@) — 2(2)] < MY (g5 + (d +In N)N; 1) 7Y(dS + I N)N; !, = € D, (6.6)

s=1,2

In the case of meshes (6.1) and (6.4), when the following condition holds:
A
DeynNI'#0, (6.7)
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we have the estimate

u(z) — 2(2)| < M Y N7Y(d?+1nD,), z €D, (6.8)

s=1,2

i.e., scheme (6.2) on meshes (6.1) and (6.4) converges on E,? g-uniformly.

We now present a mesh condensing in the boundary layer for which scheme (6.2) converges
on the set D" g-uniformly if condition (6.7) is violated.

Let the following condition be valid:

Dy NIy =0, Dy NIs=0. (6.9a)

In this case we apply the mesh
Dy, =@ x@,. (6.9b)
Here @2 = w?(0,), s = 1,2 is a piecewise uniform mesh on the segment [0, d,], where d;, =

ds(N)=d*+n*=d>+ MInN, d* = d%u), N = Ny Os is a parameter depending on Z and
N,. The stepsizes of the mesh @ are constant on the segments [0, 0,] and [0y, d,] and equal
to h) = 20,N;! and hY = 2(d, — o, ) N !, respectively. The value o, is chosen to satisfy the
condition

o1 =o1(e1, Ny) =min 271, My e, In Ny,

where M, = ml(7 14)- The value oy is defined by the relation

min 271, Mo £/? InNo]  for |eo] < MOel/?,

09 = 0'2(51, €9, NQ) = min [271, M3 8182_1 lIlNQ] for Eg > MO 1/2,
min [271, M, |82| In NQ] for &9 < — MO 1/2,

where M° and M;, i = 2,3, 4, are constants from (3.8).
In the case of the condition

5?6.1) NI = ®7 ﬁg\ﬁ_l) NI, 7£ 0 (6.9(})

we use the mesh B
D), =T} x @Y, (6.9d)
where @} = wf(ﬁlgb), @ is a uniform mesh on [0, d,]. But if the following condition is satisfied:
E(Ae'.l) niy#0, E(Am) NIy =0, (6.9¢)

then we apply the mesh B
Dy =@ x @y, (6.9f)

where w5 = w2(6 gp)- Thus, the mesh Dh( 9), which we use in the case of the condition

Dy NI =0, (6.10)

has been constructed.
In the case of condition (6.10), the solution of the difference scheme (6.2) on mesh (6.9)

converges on the set ﬁo g-uniformly with the following error estimate:

u(z) — 2(2)| < M Y N7Y(d°+1uN,), z €D, (6.11)

s=1,2

The estimate (6.11) is unimprovable with respect to the values of Ny, Ny, d and d.

13



Theorem 6.1. Let the condition of Theorem 3.1 be fulfilled. Then the solution of the
difference scheme (6.2) on meshes (6.1) and (6.4) (on mesh (6.9) in the case of condition

(6.10)) converges on the set 5,? to the solution of the boundary value problem (2.2), (2.1) for
fized values of the parameter € (-uniformly). In the case of meshes (6.1), (6.4), the discrete

solutions on the set ﬁ}? satisfy estimates (6.3), (6.5) and, under condition (6.7), estimate (6.8);
in the case of mesh (6.9), under condition (6.10) estimate (6.11) holds.

6.3. Finally, we give a difference scheme which converges on D’ g-uniformly irrespective of
the disposition of the set D’ on D.

Given a set ﬁo, we construct the set ﬁ?ﬁll). On this set, in the case of condition (6.7) we
construct the mesh

Dy, = Dy 6.4, (6.12a)

and in the case of condition (6.10) we construct the mesh
Dy, = Dps.9).- (6.12b)
The difference scheme (6.2), (6.12), for fixed values of d?(2.4), converges on D’ g-uniformly:

u(z) — 2(2)| < M Y N;Y(d°+nN,), z €D, (6.13)

s=1,2
In the case of the condition
dY, dy = O(In N) (6.14a)
we have the estimate
lu(z) — 2(z)] < MN"InN, z€D,. (6.14Db)
According to (6.13), scheme (6.2), (6.12) converges g-uniformly under the condition
d?, d3 = o(N). (6.15)

Theorem 6.2. Let the condition of Theorem 3.2 be satisfied. Then the solution of the
difference scheme (6.2), (6.12) converges on the set D° to the solution of the boundary value
problem (2.2), (2.1) Z-uniformly; the scheme converges under condition (6.15). The discrete

solutions satisfy estimates (6.13) and (6.14); estimate (6.13) is unimprovable with respect to the
values of Ny, No, dY and d2.

Appendices

7. A-priori estimates

7.1. In this section we give estimates of the solution and its derivatives used in the construc-
tions; the technique from [5, 7, 8, 14, 15] is used to derive the estimates. Using the comparison
theorems, we find that

lu(z)] < M, z € D. (7.1)
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In the case of the condition
ue C"D), 1>K, ac(0,1) (7.2)

the derivatives of solutions satisfy the estimate

ak

—— (@) <Me*, xzeD, k<K, (7.3)
0xy' 0xs’

where the value K can be chosen sufficiently large depending on the smoothness of the problem
data and suitable compatibility conditions on the set I'* (see [9, 17]).

Let us present estimates obtained from asymptotic representations.

7.2. When analyzing solutions of the boundary value problem (2.2), (2.1), it is convenient
to decompose the range of change of the vector-parameter € into subdomains. Let the following
condition be satisfied for the components £; and &5 :

les] < Myey?, e =o0(1), (7.4)

where M, is an arbitrary number.
7.2.1. We represent the solution of the problem as a sum of functions

u(z) =U(zx)+V(z), z€D, (7.5)

where U(x) and V(z) are the regular and singular parts of the solution. The function U(z),
x € D, is the restriction to D of the function U°(z), z € D°, where DY is the whole plane. The
function U%(z) is the bounded solution of the problem (a problem without boundary conditions)

L°U°(z) = f%z), z€ D" (7.6)

Here L° and f°(x) are smooth extensions of the operator L2y and the function f(z) that
preserve properties (2.3). For simplicity, we consider that the function f%(z) vanishes outside
some neighbourhood of the set D. The function V(x) is the solution of the problem

L(Q_Q) V({L‘) = 0, T € D,
Viz) = ¢(@)-Ux)=pv(z), zel.

We represent the function U(x) as a sum of functions
Zslka +op(z) = U™(x) + vp(z), =€ D,
where n > 0, correspondingly to the representation of the function U°(z)

Ze'{Uk ) +oi(z), x€ DO

The functions U} (x), i.e., components in the expansion of the regular part of the solution to

the problem, are the solutions of the following problems on DY = E(O)(l(o)) for 1(©)

LiUs(z) = {b?(x)a%1 +eng(x>a% —~ co(x)} US(z) = f%z), € DO,  (7.7a)
Ugx) = ¢°x), zerl" (7.7b)
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82
LU () :-flgjﬁmy—vﬁgw,xep@, (7.8a)

Udz) = 0, 2eI'9 k>o0. (7.8b)

Here D© = DO (/) is the half-plane z; < 1@, 7® = DO\ DO, Oz), z € DO, is a
sufficiently smooth function satisfying the condition ¢°(z) = ¢(z), € I' when g5 < 0. In
the case of the condition 5 > 0 it will be convenient to take the set E(O) as the set D and
to find the components Up(z) by considering only equations (7.7a) and (7.8a), i.e., to solve
problems defined by differential equations without boundary conditions. For sufficiently large
n (for n > K — 1), we obtain the following estimate for the function U(x):

ak

k1o, ke
O0xy' 0xs

U(x)‘ <M, €D, k<K. (7.9)

7.2.2. The function V(z) has the representation
V() = Viy(2) + Vigy(2) + Vg (), € D. (7.10)

Here V(1) (), Vi2)(z) and Vi19)(z) are the regular, parabolic and corner elliptic boundary layers,
respectively. The functions V(y)(z) and Vig) (), z € D, are the restrictions on D of the functions
Viy(@), x € Dgyy and Vg (2), @ € D; Dyj) is a half-plane (containing D), which has the set
I'; as a common part of the boundary with D, I; = I'NI{;, j = 1,2. The functions V((]].)(:E),
T € E(j), are the solutions of the problems

LVS(z) =0, =€ Dy Vi(z)=ey(z), vely, j=12 (7.11)

the functions V((]])(:E) decrease exponentially away from the boundary I7;). Here o(;)(z), z € I,
are sufficiently smooth functions satisfying the condition ¢ (z) = pv(z), z € I3, j=1,2.
The function Viy)() is the solution of the problem

L‘/(lg)(iE) = 0, T € D, Vv(lg) (l‘) = QOV(LE) — ‘/(1) (l‘) — ‘/(2)(1'), xel. (712)

The main terms in the expansions of the functions V) (z), = € Dqy and V{}, (), z € D),
are the solutions of the following boundary value problems for the ordinary differential and
parabolic equations:

d? d

LoV (@) = {51@1($)d—ﬁ + bl(x)d—x1 - C(iﬂ)} Vi (e) =0, x € Dy,
7.13

VO () = o (@), =€ Ly (7.13)

(1)1 Ym\r), I (1)

LoV, (@) = {eran(e) L + b () 2 + eabale) 2 — o) VYD (@) =0, a€ D

3V(2)1\) = | €102\ 022 1z 01, €202( O @ eu\r) =Y, T (2)
(7.13b)

Von (@) = g (x), € I;

the functions V(‘;.)l(x) decrease exponentially away from I;), j = 1,2.
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For the functions V{;)(z), z € D, we obtain the estimates

ak

_ —k1 -1
o amgﬂf(l)(af) < Me ™ exp(—mae; a1), (7.14)
aikv ()| < Me? ex (—m e % ), €D, k<K (7.15a)
921 9k (2) > 1 1% 281 2), , KRS K .
1 0%y
where m; is an arbitrary number in the interval (0,m{), i = 1,2, m? = min[a; " (2)b;(z)],
D

my = my(My(7.4)) = min{2*1M1_(;4) mﬁin[b;l(z) c(x)], 2*1/2mﬁinl/2 [ay ' () c(2)]}.

Assuming that the following condition holds:
ue C"D), l=K+4, ac(0,1). (7.16)
we find the estimate of the function Vjy9)(z)

ak

— Vi (z)| < 7.15b
axlflaxé” (12)() - ( )

< ]\/[51_1“_1”/2 min [exp(—m; £, 11), exp(—my 51_1/2 1y)], €D, k<K,
where My = TNj(7.14) 5 1= ]_, 2.

7.3. Let the following condition be satisfied for the components €, and &5 :
g2 > muel?, & = o(1), (7.17)

where m; is an arbitrary number.

The components in representations (7.5), (7.10) are the solutions of problems (7.6), (7.11),
(7.12). In the case of condition (7.17), the component V(9 (z) in (7.10) is the regular boundary
layer. The main term in the expansion of the function V(g) (z), x € D), can be found from the
solution of the boundary value problem for the ordinary differential equation

d? d
LiVioy () = {51@2(@(1—:6% + 5252($)d—z2 - C(fﬂ)} Von(x) =0, z € D,
Vo () = (@), = € Iy, (7.18)

The components U(z) and V{;)(x) satisfy estimates (7.9) and (7.14). For the components
Vio)(w) and Vi19)(x) (in the case of condition (7.16)) we have the estimates

ak

0" 9k Vi) (z)‘ < M(e2e7 )" exp(—masosy ' wa), (7.19a)
1 0%y

ak
S ok Vg (z)] < MeT ek minfexp(—myer ay), exp(—maeqe] '15)],

1 0%y

r€eD, k<K, (7.19b)

where mq = my (.10, M2 is an arbitrary number from (0,m3), m$ = min [a, ' (z)bs(z)].
D
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7.4. But if the following condition is satisfied:
g9 < —mgeiﬂ, £1, |ea] = 0o(1), (7.20)

then the component Viy)(z) (in (7.10)) is the hyperbolic boundary layer. The main term in the
expansion of the function V(g) (z), x € D), is the solution of the (initial value) problem for the
hyperbolic equation

0 0
L5V(g)1(55) = {bl(x)a—xl + 521)2(15)8—332 - c(x)} V(%)l(:c) =0, =€ Dy,

Viyi(2) = p)(2), = € Ty, (7.21)

For the components V{9)(x) and V{;2)(z) we obtain the estimates

ak

Vi (2)] < Mleo| "2 exp(—maoles| 'z ; 7992

9 oats ' ()| < Mleal 7 explmmoles| ) (7.220)
ak

Sk gk V12| < Mei"eo| ™ minfexp(—mie™"z1), exp(—molea| )], (7.22b)
1 2

reD, k<K,
where my = myz.14), Mo is an arbitrary number in the interval (0, m3), m) = min{2*1/2m2(7_19)
mﬁin[GEI(m)C(x)]l/Qa 27! mﬁin[bEI(ff)C(fﬂ)]} = my(ma(7.19))-

7.5. In the case of the condition
g1 = 0(].), 9 S —1my (723)

the function U(x) in (7.5) is the restriction to D of the function Uy (), & € D(y), which is the
solution of the boundary value problem on the half-plane D,

LUs(z) = [f%z), z€ D),
Up(z) = ¢°(x), z¢€ ),

where L° = L{; o1, f(2) = f( 6 (), ¢*(2), 2 € I12), is a smooth extension of the function ¢(x)
from FQ to F(Q).
The function V(x) from (7.5) has the representation

V(z) =Viy(z), =€ D, (7.24)

where V{y)(z) is the regular boundary layer in a neighbourhood of the set I';; no boundary layer
arises in a neighbourhood of the set I5. The function V{;)(x) is the solution of the problem

LV(l)(x) = 0, z €D,
Vay(r) = (@) = U(z), zelh,
Vin(z) = 0, x €T,

For the components U(x) and V(y)(z) in representations (7.5) and (7.24), estimates (7.9)
and (7.14) hold; estimate (7.14) occurs under condition (7.16).
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Theorem 7.1. Let azbs,c,f € CY(D), s = 1,2, ¢ € C(I'), p € CH(I}), j = 1,2, 1 >
3K —4, K >3, a € (0,1). Then, under the condition (7.2), the function u(x), i.e., the solution
of problem (2.2), (2.1), satisfy estimates (7.1), (7.3). For the components U(x) and Vi1y(x) in
representations (7.5), (7.10) (in representations (7.5), (7.24) ) under the condition e, = o(1) and
either 9 > 0 or |ea3] = 0(1), €2 < 0 (under condition (7.23)), estimates (7.9) and (7.14) hold.
For the components Vig)(x), Viag)(x) in the representation (7.10), estimates (7.15), (7.19) and
(7.22) are satisfied in the case of conditions (7.4), (7.17) and (7.20), respectively. FEstimates
(7.15b), (7.19b), (7.22b) for the component V(1.9 (x) and estimate (7.14) for the component
Viy(x) from (7.24) are valid under the additional condition (7.16).

Remark 3. The estimates for the components in representation (7.10) can be written in
the compact form

ok oF B B
Oz™ Ok U(x)‘ <M, ‘&Eklaz 2 Viy(e)| < M e, " exp(—my et ay),
1 0%y 1 0%y
ok f
—V x‘<M)\’QeX —ma AL ay),
025 Dk 2)(@)] < p(—my 2)
ak
Vi ()] < M A min [exp(—my &7 ), exp(—ma A1)
Oxy' 0y

zeD, k<K.

Here \ = Mgy, €3), A=¢; (g1 +mWe2)7V2 for &9 >0, A= (g1 + MW 2)'/2 for e, < 0,

mM) = 47V inf [ay ' (2) b3(z) ¢ ()], MOV = 47" sup[ay ' (z) b3(z) ¢ ()], m; is an arbitrary
D D
number from (0, m?), i = 1,2, m? = inf [a; ' (x) by (z)], m$ = inf [a;1/2(:v) c'?(z)].
D D

Remark 4. The type of a boundary layer arising in a neighbourhood of the boundary I

depends on the relation between the parameters ; and e,5. This layer is regular (for al? «
p p 1 2 Y 8 1

es < 1), parabolic (for |es] = O(e1/?)) or hyperbolic (for 5 < 0, e//* < |es| < 1), or no
layer appears (for 9 < 0, |e3| &~ 1). The main terms of asymptotic expansions for the singular
component in a neighbourhood of the boundary I are the solutions of problems (7.13b), (7.18)
and (7.21). In a neighbourhood of the set I, but outside the nearest neighbourhood of I"°, the
layer is regular (defined only by the parameter 1), and in a neighbourhood of the set I'® the
layer is elliptic (for e = o(1) and either e5 > 0 or €5 < 0, |e2| = 0(1)), or the strong layer does
not appear (for ey = o(1), g9 < 0, |&3| & 1; the arising weak layer does not contain the first
components of the expansion).

Remark 5. Let & be a set of solutions to the boundary value problem (2.2), (2.1), which
are defined by the admissible class of the problem data, i.e., by the functions f(z), z € D and
o(x), z € I'. Let the e-net (see, e.g., [2]) be generated by a set of interpolants constructed on
triangulations based on discrete sets ("meshes”) on D. In that case when the elements of I
are approximated in the maximum norm, the e-entropy H.(U) (see [2]) of the set U is infinite.

8. Generalizations and remarks

8.1. In that case when condition (7.16) is violated and/or the smoothness of the data is not
sufficiently high (for example, if as, bs, ¢, f € C*(D), ¢ € C***C(I3), ¢ € C(I'), a € (0,1),
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s,j =1,2), the technique from [14, 16] allows us to establish the Z-uniform convergence of the
formal difference scheme (3.2), (3.8) at the rate O(N~"), where the convergence order v = v(«)
is, in general, small. The use of the property that the domains of dependence of solutions for
the differential problem (2.2), (2.1) and the discrete problem (3.2), (3.1) are bounded allows us

to establish the Z-uniform convergence on D" of solutions of the difference scheme (6.2), (6.12)
at the rate O(N~" In N).

8.2. In that case when the condition ¢(x) > ¢y > 0, z € D is violated, the domain of essential
dependence of the solution of the boundary value problem (and the discrete problem) is not in
general bounded if the e-entropy H.(U) of the set U is infinite. For such problems the technique
considered here for the design of constructive difference schemes is directly inapplicable. But if
the right hand-side of the equation and the boundary function decrease for 1 — oo in the case
of the condition ¢(z) = 0, x € D (the e-entropy H.(U) of the set U remains generally infinite),
the technique developed in the paper makes it possible to construct Z-uniformly convergent
constructive difference schemes.

8.3. The exposed technique allows us to establish the property of the e-uniform boundedness
for domains of essential dependence of solutions to differential and formal difference problems
also for other types of singularly perturbed problems on unbounded domains. Having this
property and the sufficiently weak dependence of the sizes of such domains on the value 3, one
can develop constructive numerical methods that converge e-uniformly.
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