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Abstract

This paper studies local properties of Voronoi diagrams of sets of disjoint compact convex
sites in R

3.
It is established that bisectors are C1 surfaces and trisectors are C1 curves, and that as a

point moves along a trisector its clearance sphere develops monotonically (Lemma 2.4). This
monotonicity property is useful in establishing the existence of Voronoi vertices bounding edges
in certain situations.1

The paper then considers the diagram for a set of disjoint spheres. Considerations about
general position are covered in detail. By letting the spheres grow from point sites till they reach
their true radius, it is shown that the Voronoi cell for the smallest site has complexity O(n),
assuming that the sites are of at most k distinct radii. It follows that the Voronoi diagram is
O(n2).

Although this is weaker than Aurenhammer’s result [1] establishing O(n2) complexity with
no restriction on radius, the techniques may be of value for studying more general Voronoi dia-
grams.

Finally, the paper shows that without the bound on the number of different radii, the cell
owned by a point site can have complexity Ω(n2).

1 Voronoi diagrams: differentiability properties
This paper considers the Voronoi diagrams of spherical sites in R

3. For a general survey of Voronoi
diagrams see [2].

The current state of knowledge about the complexity of Voronoi diagrams, in 3 dimensions, is
scanty.

∗e-mail: odunlain@maths.tcd.ie. Mathematics department website: http://www.maths.tcd.ie. Some of this work was
presented at the eighteenth European Conference on Computational Geometry, Bonn, Germany, April 2003.

1 Chee Yap [8] seems to have been first to exploit such monotonicity properties.
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It is known to be O(n2) for spheres, whether or not they are disjoint [1]. This bound is tight even
for point sites (which are discussed in this paper).

When the sites are straight lines, the complexity is known to be o(n2+ε) for all ε > 0, granted that
either the distance function is polyhedral, based on a fixed convex polyhedron [5], or the distance is
Euclidean but the lines are in O(1) different directions [7].

Andrew Farrell’s 1994 M.Sc. dissertation [6] considers convex sites in two dimensions and in-
cludes an implementation study in the case of circular sites in two dimensions.

Let S be a finite nonempty set of pairwise disjoint closed balls in R
3. Balls of radius 0, equivalent

to points, are allowed. If x is a point outside a closed ball B of radius r and centre c, let y be the
point where the line xc intersects the boundary of B. Then y is the closest point to x in B, and
|x − y| = |x − c| − r is the distance from x to B (|x − y| is the Euclidean distance from x to y).

The following result is valid for any closed and bounded site, not just spheres.

(1.1) Lemma (i) If B is a bounded, closed, convex, nonempty set in R
3 and x is any point in R

3 then
there is a unique point in B closest to x. (ii) The map taking x to the closest point in B is continuous.
(iii) If x /∈ B then the closest point is in the boundary ∂B of B.

Proof. Let F be the family of all closed balls C centred at x such that C ∩B 6= ∅. It is nonempty,
i.e., such balls exist, because B is nonempty. If C1, C2, . . . , Ck ∈ F , where without loss of generality
C1 has the smallest radius, then C1 = C1 ∩C2 ∩ . . .∩Ck, and C1 ∩B = (C1 ∩B)∩ (C2 ∩B)∩ . . .∩
(Ck ∩ B). The left-hand side is nonempty, so {B ∩ C : C ∈ F} is a set of closed subsets of B with
the finite intersection property, hence B ∩ ⋂

F 6= ∅, since B is compact.
The intersection

⋂

F is a closed ball C of radius r, say, where r may equal zero. C ∩ B is the
nonempty intersection mentioned, and r is the minimum radius of all balls in F . If C ∩ B contained
two points y1 and y2 then (since B ∩ C is convex) it would contain a point z = (y1 + y2)/2 strictly
closer to x. In this case the closed ball centred at x of radius |z − x| would intersect B and belong to
F , which is false since |z − x| < r. Hence C ∩ B = {y} for some point y. The point y is the unique
point in B closest to x, as asserted in (i).

If x ∈ B then r = 0 and y = x.
The line-segment xy cannot intersect B except at y, because any other intersection point z ∈

B ∩ xy would have |xz| < r. If x /∈ B then y is not interior to B, because otherwise xy would
intersect B in more than one point. Hence if x /∈ B then y ∈ ∂B, proving (iii).

For (ii), suppose that x1 and x2 are two points and y1 and y2 the points in B closest to each. We
need to show that as x2 tends to x1, y2 tends to y1. This follows from the stronger result: |y1y2| ≤
|x1x2|, which depends on the convexity of B.

If both points xi are in B then yi = xi and the result holds. If y1 = y2 then the result holds.
Otherwise suppose x1 /∈ B and y1 6= y2.

The plane through y1 perpendicular to x1y1 separates x1 from all of B. Therefore y2 is in the
plane or on the other side from x1, so the angle x1y1y2 is at least 90◦. Let Π1 be the plane through y1

perpendicular to y1y2. Then x1 is in the closed halfspace H1 bounded by Π1 and not containing y2.
The same holds even if x1 = y1.

By the same reasoning, x2 is in the closed halfspace H2 bounded by the plane Π2 through y2

perpendicular to y1y2 and not containing y1.
These planes are parallel and the line y1y2 is perpendicular to them: the distance |y1y2| is minimal

among all pairs z1, z2 of points, one in H1 and one in H2. In particular, |y1y2| ≤ |x1x2|. Q.E.D.
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Actually it is not necessary that B be bounded. Some closed ball K around x intersects B, K ∩B
is compact, and the finite intersection property still applies.

The balls in S are called (spherical) sites. Write
⋃

S for the union of the sites in S. Given any
point x in R

3\⋃

S, its clearance is the distance from x to the closest site in S, its clearance sphere
is the sphere with centre x whose radius is the clearance of x, and the Voronoi diagram Vor(S) of S
consists of all points in R

3\⋃

S whose clearance spheres touch more than one site.
The Voronoi diagram is a 2-dimensional complex with faces, edges, and vertices. The faces are

connected subsets of surfaces called bisectors.

(1.2) Definition Let B and B ′ be nonempty, disjoint, closed, bounded, convex sites (point sites are
allowed), Then the (B, B ′)-bisector is the Voronoi diagram of {B, B ′}, that is, the set of points
equidistant from B and B ′. If B′′ is a third site disjoint from B and B ′, then the (B, B′, B′′)-trisector
is the set of points equidistant from the three sites.

A face of Vor(S) is defined as follows. Let X be the set of points in the (B, B ′)-bisector which are
closer to B and B ′ than to any other site in S. Equivalently, the points in X have clearance spheres
touching B and B ′ and no other site. An open (B, B ′)-face is a connected component of X , and a
(B, B′)-face is the closure of an open face.

The definition of face is complicated because two (B, B ′)-faces can meet at a vertex. This is
impossible for point-sites, but is otherwise possible at pinch points (1.17).

(1.3) Lemma (Tangent plane principle.) Suppose x is a point on the (B1, B2)-bisector, and its
clearance sphere touches these sites at p1, p2, respectively. Then the (p1, p2)-bisector is a plane
tangent to the (B1, B2)-bisector at x.

Sketch proof. Let Πi be the plane through pi perpendicular to xpi, i = 1, 2. Then the (B1, B2)-
bisector is sandwiched between the (p1, Π2) bisector and the (p2, Π1)-bisector. These two surfaces
are paraboloids of revolution with a common tangent plane at x, and that tangent plane is the (p1, p2)-
bisector. Q.E.D.

(1.4) Corollary A bisector is continuously differentiable.

Proof. The (B1, B2)-bisector has a tangent plane at any point x. Also, this tangent plane is the
perpendicular bisector of points y1 and y2 on B1 and B2 respectively, closest to x. But these points
depend continuously on x (Lemma 1.1), and so does the tangent plane. Q.E.D.

This result cannot be strengthened: the second derivative need not exist. For example, if B1 =
(0, 0, 1/4) and B2 is the closed line-segment connecting (−1, 0,−1/4) to (1, 0,−1/4), and we con-
sider the cross-section where the (B1, B2)-bisector intersects the xz-plane, it is described by equa-
tions

z =

{

x2 if |z| ≤ 1

2|x| − 1 if |z| ≥ 1

The partial derivative ∂z/∂x exists and is continuous, as the above lemma predicts. Near x = 1,
∂2z/∂x2 approaches 2 from the left and 0 from the right, so it does not exist at x = 1. (In the case of
spherical sites the bisectors are hyperboloids of revolution, infinitely differentiable.)
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(1.5) Definition Let B be one of the sites in a set S of disjoint compact convex sites. The Voronoi
cell of B consists of all points x ∈ R

3\⋃

S which are as close, or closer, to B than to any other site
in S.

Strictly speaking, the site owning a cell is disjoint from that cell, but by abuse of notation the cell
may sometimes be considered to include the site itself.

As an example of this ambiguity, when sites all have the same radius then the cells are convex
polyhedra, which would be nonsensical if one insists that sites themselves are disjoint from the cells.

The Voronoi diagram is the union of boundaries of cells of all sites in S.

(1.6) Lemma If B and B ′ are spherical sites with radii r, r′ respectively, where r ≥ r′ ≥ 0, then the
bisector of B and B ′ is a plane if r = r′ and a (single sheet of a 2-sheeted) hyperboloid of revolution,
whose axis is the line joining their centres, if r > r′.

In either case, the bisector partitions R
3 into two regions, and that containing B ′ is convex.

Sketch proof. Let c and c′ be their respective centres. The bisector is

{x ∈ R
3\(B ∪ B′) : |x − c| − r = |x − c′| − r′}

or

{x ∈ R
3\(B ∪ B′) : |x − c| − |x − c′| = r − r′}.

This is a plane if r − r′ = 0 and one sheet of a 2-sheeted hyperboloid of revolution, axis as
stated, if r > r′. The observation about the convex region follows from the general shape of such
hyperboloids of revolution. See Figure 1.

Alternatively, the bisector is the same as that separating the point c′ from a sphere B ′′ of radius
r − r′, centre c. Let x be a point on the bisector, c′′ the point in B′′ closest to x: it is where the
boundary of B ′′ intersects the line-segment xc.

The tangent plane to the bisector at x is also the bisector separating c′′ from c′ (Lemma 1.3). Let
y be another point on the plane. It is equidistant from c′′ and c′, hence it is closer to B ′′ than to c′, or
to B than to B′. In other words, all points in the cell of B ′ in Vor(B, B′) are on the same side of this
plane. Hence the cell containing B ′ is convex.

Remark: the argument shows something slightly more general, that is, if the closest point to x
on B′ is an extreme point on B ′, then the (B, B′)-bisector is locally on one side of the tangent plane
at x, i.e., x is not a saddle-point on the bisector.

(1.7) Corollary Suppose that S is a set of disjoint spherical sites whose minimum radius is r1. Let
S ′ be the set of spherical sites obtained by replacing every site B in S by a site with same centre and
radius r − r1, where r is the radius of B.

Then Vor(S) = Vor(S ′), and the smallest sites in S ′ are point sites. (Proof: the clearance
function is increased by r1 uniformly.)

The complexity of the Voronoi diagram for point sites is known:

(1.8) Lemma If S is a set of n point sites, then Vor(S) has n cells and O(n2) faces, edges, and
vertices.
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Figure 1: The bisector is a hyperboloid of revolution.
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Figure 2: Sphere tangent to two lines at two given points.

Proof. Let p be any (point) site in S. For any other site p′, the bisector between p and p′ is a plane
perpendicular to the line pp′ and passing through (p + p′)/2.

The set of points x as close to p as to p′ is the closed half-space bounded by this plane and
containing p. In general, the Voronoi cell containing p is the intersection of n− 1 closed half-spaces;
hence it is a convex polyhedron with O(n) faces, edges, and vertices.

Since each cell has complexity O(n), Vor(S) has complexity O(n2). Q.E.D.

(1.9) More precisely, each cell of the Voronoi diagram is a convex polyhedron with at most 2n − 7
vertices [4].

(1.10) This bound is tight. The Voronoi diagram for n point sites in R
3 can have complexity Ω(n2).

To see this, let X he the x-axis and Y the line x = 0, z = 1,−∞ < y < ∞ parallel to and above
the y-axis. For any point p on X and q on Y there exists a sphere tangent to X at p and Y at q,
See Figure 2. It follows that if n/2 point sites are arranged on X and n/2 on Y , then for each pair
p, q of sites from these respective sets, there is a sphere, centre z, say, tangent to X at p and Y at q.
Then z ∈ Vor(S) belongs to the (p, q)-bisector, and the face separating p from q is nonempty. Hence
Vor(S) has Ω(n2) faces.

There follows a collection of facts about Voronoi diagrams which will be needed in this paper.
All of these facts apply to sets of disjoint convex compact sites, not just spherical sites.

(1.11) Lemma (Site reflection principle.) Let B1, B2 be disjoint convex compact sites. Suppose
that x is a point on the (B1, B2)-bisector, p1 is where the clearance sphere at x touches B1, and T
is the tangent plane to the bisector at x. Then the clearance sphere touches B2 at the perpendicular
reflection of p1 in T .

Proof. If p2 is the point of contact of the clearance sphere with B2, then we know that the plane
bisecting p1p2 is the tangent plane T (Lemma 1.3). Then p2 is the perpendicular reflection of p1 in
this plane. Q.E.D.
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(1.12) Corollary (Bisectors don’t touch.) Let B1, B2, B3 be disjoint convex compact sites. It is
impossible for a (B1, B2) and a (B1, B3)-bisector to touch.

Proof. Suppose they touched at a point x, equidistant from three closest points pi on the respective
sites Bi. From the tangent plane principle, the p1, p2-bisector and the p1, p3-bisector are tangent at x,
that is, they coincide, and from the site reflection principle, p2 = p3, which is impossible since the
sites are disjoint. Q.E.D.

Corollary 1.4 considers differentiability in the geometric sense of possessing a well-defined tan-
gent plane. More formally we define differentiability in terms of the Fréchet derivative:

(1.13) Definition Let a function f : R
n → R

m be defined in a neighbourhood of x. If there exists a
linear map A : R

n → R
m such that for any ‘small’ displacement ∆x

f(x + ∆x) = f(x) + A∆x + o(|∆x|)
then A is unique and is called the (Fréchet) derivative of f at x and f is said to be differentiable at x.

(1.14) Lemma Let B be a nonempty compact convex site. Then the map d : R
3\B → R; x 7→ |x−y|

where y is the closest point to x in B, is a C1 map (continuously differentiable).

Proof. Fix x, thus also fixing y, and write d for |x − y|. Let ~N = (x − y)/|x − y|. Then
~N · (x − y) = d. For small ∆x, the distance from x + ∆x to the plane through y perpendicular to
x − y is ~N · (x − y) + ~N · ∆x = d + ~N · ∆x. Since this plane separates x from B, if ∆x is small
then the distance from x + ∆x from this plane is a lower bound on its distance from B. The distance
|x + ∆x − y| is an upper bound on this distance (since y ∈ B). Note

|x + ∆x − y|2 = |x − y|2 + 2(x − y) · ∆x + |∆x|2 = d2 + 2d ~N · ∆x + |∆x|2,
since x − y = d ~N . Squaring the lower bound, we get

d2 + 2d ~N · ∆x + ( ~N · ∆x)2.

Ignoring the term ( ~N · ∆x)2, we get the inequalities

d2 + 2d ~N · ∆x ≤ (d(x + ∆x))2 ≤ d2 + 2d ~N · ∆x + |∆x|2.
Take square roots: then

d(x + ∆x) = d(x) + ~N · ∆x + o(|∆x|).
In other words, the function d(x) is differentiable with derivative ~N = (x − y)/|x − y|. Since

y, the point in B closest to x, depends continuously on x, (Lemma 1.1), the derivative is continuous:
the function x 7→ d(x) is C1. Q.E.D.

The following corollary essentially repeats Corollary 1.4.

(1.15) Corollary Let B1, B2 be disjoint compact convex sites. The (B1, B2)-bisector is a C1 surface
except perhaps at the midpoint of the line joining a closest pair of points on B1 and B2.
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Proof. Let f(x) = |x − y1| − |x − y2| where yi are the points closest to x on Bi. This function is
differentiable with derivative N1 − N2, where Ni = (x − yi)/|x − yi| are unit normals. Suppose the
derivative vanishes. Then x − y1 = x − y2, so x = (y1 + y2)/2.

For i = 1, 2, consider the plane through yi perpendicular to xyi; let Hi be the halfspace bounded
by this plane, not containing x. The bounding planes are parallel and |y1 − y2| is minimal for all
pairs of points, one in H1 and the other in H2. Since Bi ⊆ Hi, y1, y2 are a closest pair of points from
B1, B2 respectively and x is their midpoint.

Otherwise, the derivative is nonzero and the surfaces is a C1 surface locally, by the Implicit
Function Theorem [10]. Q.E.D.

(1.16) Corollary Let B1, B2, B3 be disjoint compact convex sites. (i) For any point x on the (B1, B2, B3)-
trisector, the trisector is tangent to the (y1, y2, y3)-trisector, where each yi is the point on Bi closest
to x. (ii) The (B1, B2, B3)-trisector is a C1 curve.

Proof. (i) By Lemma 1.3, the trisector is tangent to the (y1, y2)-, (y2, y3)-, and (y1, y3)-bisector
planes. The points yj are not collinear (since they are all equidistant from x), so these three planes
intersect in a line, the (y1, y2, y3)-trisector, which is tangent to the trisector.

(ii) Consider the function f(x) = (|x− y2|− |x− y1|, |x− y3|− |x− y1|), where yi are the points
in Bi closest to x. The trisector is f−1(0, 0).

The derivative of f (multiplied by |x−yi|, the same for each i) is (y1−y2, y1−y3). This derivative
is singular only when the two components are proportional, i.e., y1 − y2 = α(y1 − y3) for some α,
and this happens only when y1, y2, y3 are collinear, which is impossible. Hence x is a regular point
for f and by the Implicit Function Theorem [10] the trisector is a C1 curve near x. Q.E.D.

A Voronoi vertex is incident to four or more cells (or has four or more sites closest to it). A
degenerate case is that of a pinch point:

(1.17) Definition Let S be a set of disjoint compact convex sites. A pinch point in Vor(S) is a vertex
where two edges meet with a common tangent.

(1.18) Lemma Let S be a set of disjoint compact convex sites, and let v be a vertex of Vor(S). Then
v is a pinch-point if and only if among the four or more sites closest to v there are four, Bi (1 ≤ i ≤ 4,
say), such that the four points pi closest to v on Bi are coplanar.

Consequently, either v is a pinch-point with respect to four closest sites Bi, and all four of the
trisectors involving three of these sites meet tangentially, or v is not a pinch-point and all trisectors
involving three of the sites closest to v meet transversally.

Proof. Let pi be the point closest to v on Bi (i = 1, . . . , 4). For any three distinct i, j, k, the
(pi, pj, pk)-trisector in Vor(p1, p2, p3, p4) is tangent to the (Bi, Bj, Bk)-trisector at v (Corollary 1.16
(i)). If the four points are not coplanar then there are four trisectors meeting transversally. If the
four points are coplanar (hence concyclic) then all four of the trisectors (with three closest sites Bi)
meeting at v have the same tangent.

Thus if there exist four closest sites Bi such that the closest points pi are coplanar, v is a pinch-
point, and the four trisectors indicated have a common tangent at v, and if v is a pinch-point then
these sites Bi exist. If v is not a pinch-point then the trisectors determined by all possible sets of three
sites closest to v meet transversally at v. Q.E.D.
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(1.19) Lemma (Multi-directional principle.) Let S be a set of disjoint compact convex sites and v
a vertex in Vor(S), not a pinch-point. Then there exists no plane Π through v with the property that
all edges incident to v meet v from the same side of Π.

Proof. Let {Bi : 1 ≤ i ≤ k} be the sites and pi the points on Bi closest to v; k ≥ 4 and by the
previous lemma no four points pi are coplanar. They are all on the boundary of a sphere centred at v.
Let P = {p1, p2, . . .}.

We begin by considering Vor(P ). The Voronoi diagram consists of infinite Voronoi edges all
meeting at the same vertex v.

Let C be the convex hull of P . Since no four points in P are coplanar, C has nonempty interior
(and all faces are triangular). The plane Π can be assumed horizontal, and it is enough to show
that Vor(P ) contains at least one edge directed upwards. If pi, pj, pk are corners of a face of C
then Vor(P ) contains a (pi, pj, pk)-edge, which is directed away from v along the outward normal to
that face. Therefore it is enough to show that there exists a face whose outward normal is directed
upwards.

Let Π′ be the highest horizontal plane which intersects the convex hull. If it contains more than
two corners, it intersects a face; let p be interior to the face. If it contains two corners, it intersects an
edge; let p be interior to the edge. Otherwise let p be the unique corner of the hull in Π′. All the faces
not meeting p are at positive distance from p. Let r be the minimum of these distances and let B be
the open ball, centred at p, of radius r. Then all faces of the hull which intersect B are incident to p.
Let the outward normals to these faces be ~Ni, 1 ≤ i ≤ `. The faces satisfy equations ~Ni · ~px = 0. A
point x in B is in the convex hull if and only if ~Ni · ~px ≤ 0 for all i, 1 ≤ i ≤ `. Choose a point x
directly above p in B. It is above Π′, therefore not in the convex hull, so ~Ni · ~px > 0 for some i, and
that outward normal ~Ni is directed upwards.

Since the edges of Vor(P ) are the tangents to those edges meeting v in Vor(S) (Corollary 1.16
(i)), the edges incident to v cannot all be incident from the same side of Π. Q.E.D.

2 Voronoi diagrams: monotonicity properties
In this section, we include some results about the way a clearance sphere develops as its centre moves
along a certain curve. These results hold for disjoint convex sites, not just spheres. The simplest is as
follows

(2.1) Lemma Suppose x is a point in the cell owned by a compact convex site B in the Voronoi
diagram. Let y be the point closest to x in B. Then every point on the line between x and y is interior
to the cell. Consequently the cell is star-shaped relative to B.

Proof. Let S be the clearance sphere around x, with centre x and radius |yx|. Let z be a point
(strictly) between x and y on the line xy.

For any point w, suppose that |wz| ≤ |yz|. Then |wx| ≤ |wz| + |zx| ≤ |yz| + |zx| = |yx|, i.e.,
|wx| ≤ |yx| with equality only if z is on the line-segment wx — ensuring |wx| = |wz|+ |zx| — and
|wz| = |yz|.

Suppose that |wx| = |yx|, so z is on the line-segment wx. Since x 6= z we can write
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w = x +
|wx|
|xz| (xz) and y = x +

|yx|
|xz|(xz),

so w = y.
Thus the sphere T with centre z, radius yz, is inside S, strictly so except at y. Therefore it meets

no site except at y. Since y ∈ B, y is closest to z in B and the sphere T is the clearance sphere for z,
so z is strictly closer to B than to any other site, i.e., interior to the cell owned by B. Q.E.D.

Lemma 2.4 is a more elaborate form of the same idea. The following lemma supports it.

(2.2) Lemma Let C be a circle around the origin in the yz plane, of radius R. For any point (x, 0, 0)
let Bx be the closed ball with centre (x, 0, 0) and radius

√
x2 + R2. The boundary of its intersection

with the yz-plane is the circle C. Then as x increases, that part of Bx to the right of the yz-plane
is monotonically increasing, and that part to the left is monotonically decreasing, with respect to set
inclusion.

Proof. Let (x, 0, 0) and (x′, 0, 0) be nearby points on the x-axis, and consider the rightmost point
in Bx, (x+

√
x2 + R2, 0, 0). Call this point p. It is on the positive x-axis, whether or not x is positive.

Suppose x < x′: claim p is interior to Bx′ . In other words,

(x +
√

x2 + R2 − x′)2 < x′2 + R2.

Expanding, we need to show

x2 + x2 + R2 + x′2 + 2x
√

x2 + R2 − 2xx′ − 2x′
√

x2 + R2 < x′2 + R2,

which is equivalent to

2x2 − 2xx′ + 2x
√

x2 + R2 − 2x′
√

x2 + R2 < 0

i.e.,

2(x − x′)(
√

x2 + R2 + x) < 0.

The first factor is negative and the second positive, whether or not x is positive, so the result is
true. Q.E.D.

(2.3) Corollary Let L be a line and p a point, and Π the plane through p perpendicular to L. Suppose
that L is parametrised in the form a+ t ~N where a ∈ L∩Π. If t is positive (negative) say that a+ t ~N
is in front of (respectively, behind) Π. Let Bt be the ball with centre a + t ~N and touching p.

Then as t increases, that part of Bt in front of Π is expanding, and that part behind is contracting.

Proof. Without loss of generality L is the x-axis, ~N is in the positive x-direction, and p is in the
yz-plane. If p 6= 0 then the result is a direct consequence of Lemma 2.2. Things are very slightly
different if p = O, but the argument is essentially to be found in Lemma 2.1. Q.E.D.

9



(2.4) Lemma (trisector monotonicity principle.) Given three compact convex sites Bi, the clear-
ance sphere touching these three sites evolves as follows, as its centre x moves along the (B1, B2, B3)-
trisector.

Let Π be the plane passing through the three points where the sphere touches the sites. It separates
the clearance sphere into a front and rear part, and as x moves along the trisector, the front part
expands and the rear part contracts.

Proof. We may assume that Π is the yz-plane and the forward direction is in the direction of
increasing x. Let S be the sphere around x touching the three sites. Let x + ∆x be a nearby point
on the trisector, where ∆x is small. Let S ′ be the clearance sphere around x + ∆x. It intersects Π
(the yz-plane) but does not contain any point pi in its interior, so the circle S ′ ∩ Π is inside the circle
S ∩ Π (possibly not strictly).

Since the sphere S contains no points from any Bi in its interior, but S ′ touches these sites, S ′ is
partly but not entirely inside S, and S ∩ S ′ 6= ∅. S and S ′ have different centres, so S ∩ S ′ is either a
single point or a circle. It cannot be a single point (where S ′ would touch S from the inside) since S ′

touches three different sites, so S ∩ S ′ is a circle C.
Without loss of generality ∆x > 0. By the above lemma, to the right of the plane through C, S is

inside S ′, and to its left, S ′ is inside S. Therefore S ′ touches the three sites to the right of this plane.
Let Π′ be the plane containing these contact points. Since S ′ intersects the yz-plane inside S, C is to
the right of the yz-plane, i.e., to the right of Π. In other words, C is between the two planes Π and Π′,
so that part of S to the right of Π′ is inside S ′ and that part of S ′ to the left of Π is inside S. Q.E.D.

(2.5) Remark about Voronoi vertices. The above monotonicity principle says something about
how Voronoi edges meet Voronoi vertices. As a point moves along a trisector, consider how the
clearance sphere intersects a fourth site. It ‘meets’ the site at the front and ‘leaves’ the site at the
rear. This might lead one to suppose that the site could induce at most two Voronoi vertices on the
trisector. That supposition is, however, false, as the following example shows.

Let C be the unit circle, centre O, in the xy-plane. If there is a point-site B0 located at the origin,
then the clearance spheres centred in C and touching the origin sweep out a torus-like solid T . We
can easily place spherical sites B1 and B2, centred on the z-axis, so they intersect T tangentially in
horizontal circles. Then C is the B0, B1, B2-trisector.

One can find a horizontal disc D which intersects the solid T along its boundary, and does not
intersect the other three sites Bi.

Let B3 be a horizontal plane figure bounded by a regular k-sided horizontal polygon whose sides
intersect the interior of D and whose corners are outside D (and intersect the solid T ). Then as a
point x moves around the circle C, its clearance sphere alternately intersects and does not intersect
B3 in 2k phases. These phases switch at (B0, B1, B2, B3)-vertices, so there are 2k such vertices. See
Figure 3.

As a last variant of Lemma 2.4, for simplicity concerned only with spherical sites, we have

(2.6) Lemma Suppose p is a point site and B2 a spherical site with centre c2 and positive radius.
Let t 7→ f(t) be a differentiable curve on the (p, B2)-bisector which is transverse to the contours of
constant clearance: equivalently, df/dt is never perpendicular to pc2. Let Bt be the ball with centre
f(t) touching p and B2, and let Πt be the plane through p perpendicular to df/dt.

Then Πt contains the point where Bt touches B2 and as t increases that part of Bt in front of Πt

is expanding and that part behind is contracting.

10



B

B

B

T
C

1

3

2

Figure 3: Four sites with 2k Voronoi vertices. (Site B0 is at the origin.)

Proof. Much the same as Lemma 2.4.

3 General position
Much of the paper up till now has been concerned with sets of disjoint compact convex sites. This
section (but not the next) is mostly concerned with sets S of n disjoint spherical sites in R

3.
It can be assumed that S is in general position, as specified below. First, a result about trisec-

tors.

(3.1) Lemma The trisector separating three spherical sites is a conic section, possibly a straight
line.

Proof. The trisector is where two bisectors intersect, or the cells owned by three sites. Without
loss of generality, one of the sites is a point-site at the origin, radius zero, and the other two have
centres c1, c2 respectively and radii r1, r2, respectively, possibly zero.

Points x on the trisector satisfy two equations

|x| = |x − c1| − r1 and |x| = |x − c2| − r2.

Therefore

|x|2 + 2r1|x| + r2

1 = |x|2 − 2cT
1 x + cT

1 c1, so cT
1 c1 − r2

1 − 2cT
1 x = 2r1|x|,

with a similar equation holding for the second bisector. If r1 = 0 and r2 = 0 then the trisector is a
straight line. Otherwise, multiply the first equation by r2 and the second by r1 and subtract.

(r2c
T
1 − r1c

T
2 )x = r2c

T
1 c1/2 − r2r

2

1/2 − r1c
T
2 c2/2 + r1r

2

2/2 (3.2)

Suppose r2c
T
1 − r1c

T
2 is the zero vector but at least one radius, r1 say, is nonzero. Then c2 =

(r2/r1)c1, and the cone T with vertex at O and tangent to B2 is also tangent to B1. Without loss of
generality c1 is between O and c2. Suppose y is a point on the (B0, B2)-bisector; let C be the ball
centred at y and touching B0 and B2. Suppose it touches B2 at z. The line-segment yz is entirely
within the cone T and only meets the boundary at O, so it must intersect the interior of B1, and the
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interior of the clearance sphere around y must also intersect the interior of B1. Therefore y cannot be
on the trisector: the trisector is empty.

We conclude that r2c1−r1c2 6= O and the equation 3.2 defines a plane which contains the trisector.
Since the trisector is then the intersection of a plane with either another plane or a quadric surface, it
is a conic section. Q.E.D.

(3.3) Lemma In the above lemma, if B2 and B3 have the same radius, then the trisector is in the
bisector of their centres.

Proof. If r2 = r3 = 0 then the (B2, B3)-bisector is the bisector of their centres. Otherwise
equation 3.2 implies

(c1 − c2)
T x = (c1 − c2)

T (c1 + c2)/2.

This is again the equation of the plane bisecting the centres. Q.E.D.

(3.4) Lemma Suppose that a (B0, B1, B2) and a (B0, B1, B3)-trisector have more than two points
in common. Then the four sites have coplanar centres.

Proof. Without loss of generality B0 is a point site located at the origin. Let T1 and T2 be the
(B0, B1, B2)- and (B0, B1, B3)-trisectors. If all the sites are point sites then T1 and T2 are straight
lines which intersect in more than one point, hence coincide. Since these lines are perpendicular to the
planes containing c0, c1, c2 and c0, c1, c3 respectively, the four point sites are coplanar and concyclic.

Suppose that one of the trisectors is a straight line. Since T1 and T2 intersect in more than two
points, the other cannot be a non-linear conic section, so they are coincident straight lines, all four
sites have the same radius, zero, and they are concyclic and coplanar point-sites.

Otherwise suppose r1 > 0. T1 and T2 are in planes normal to the directions

r1c2 − r2c1 and r1c3 − r3c1

respectively (Equation 3.2), and these planes contain at least three non-collinear points in common,
so they coincide and the normal directions are proportional. Since r1 6= 0 it follows that

c2 = αc1 + βc3 (3.5)

for some α and β, so c0, c1, c2, c3 are coplanar (c0 is the origin). Q.E.D.

(3.6) Definition If an edge e is incident to four or more cells in Vor(S) (in its interior) it is called
degenerate. A vertex is degenerate if it is a pinch-point or is incident to five or more cells in Vor(S).

A set S of sites is in general position if Vor(S) has no degenerate vertices and no four sites have
coplanar centres.

(By Lemma 3.4 it has no degenerate edges either.)

We shall argue that if S = {(c1, r1), . . . , (cn, rn)} specified by centres and radii, then the centres
can be encoded in R

3n, and if the centres are allowed to vary, then the degenerate placements satisfy
polynomial equations and the set of nondegenerate placements is dense. Equivalently, the set of
degenerate placements contains no open set. The following lemma is a direct corollary of Lemma 1
in [9], but we include a short proof:
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(3.7) Theorem (polynomials are nonzero on a dense set). Let p(x1, . . . , xN) be a nonzero polyno-
mial defining a function from R

N to R. Then the set {x ∈ R
N : p(x) = 0} has empty interior and its

complement is open.

Proof. The complement is open because the polynomial function is continuous.
If the set had nonempty interior it would contain a product of nonempty open intervals

∏N

1
(aj, bj).

We argue by induction on N . When N = 1, if p vanishes on a nonempty open interval, then it
vanishes everywhere.

For the inductive step, suppose p(x1, . . . , xN+1) =
∑

pr(x1, . . . , xN )xr
N+1 vanishes on a product

of open intervals
∏N+1

1
(aj, bj). For any (x1, . . . , xN ) ∈ ∏N

1
(aj, bj), the polynomial p(x1, . . . , xN+1) =

∑

prx
r
N+1, a polynomial in one variable xN+1, vanishes on (aN+1, bN+1), so all the pr must vanish.

So for each r, pr(x1, . . . , xN ) vanishes on
∏N

1
(aj, bj). By induction all the polynomials pr vanish

identically, so p vanishes identically. Q.E.D.

(3.8) Given a set S of sites such that Vor(S) has degeneracies, we wish to perturb the centres but not
the radii of the sites to produce a related set of sites in general position. For this reason we imagine
the sets of sites being parametrised by the positions xi of their centres, but leaving their radii fixed: a
list of positions corresponds to a point in R

3n where n = |S|. Let xi = (xi1, xi2, xi3), so the positions
correspond to x11, x12, . . . , xn3 ∈ R

3n.
The argument will be that degeneracies imply polynomial relationships among the 3n real vari-

ables xi` parametrising S. Mostly this will involve showing that a vertex closest to four given spheri-
cal sites satisfies some other polynomial equation, and invoking the following lemma.

(3.9) Lemma Let B1, B2, B3, B4 be a set of sites whose centres xi are allowed to vary, and let v be a
vertex equidistant from these four sites; more generally suppose that we are given equations for two
planes and one bisector whose intersection contains a given point v and possibly one more point.

For any trivariate polynomial p, there is another polynomial q in the xj`, whose coefficients may
depend on the radii of these sites, such that q(x11, . . .) = 0 if and only if a point v equidistant from
the sites Bi satisfies p(v) = 0.

Proof. The vertex v can be characterised as one of the (one or two) solutions to certain equations

~N1 · v = a1, ~N2 · v = a2, b(v) = 0

where the first two equations define planes whose normals ~Ni are given by Equation 3.2, linear in the
xj`, and ai are polynomials in the xj` — both involving the radii ri also; and b is a linear or quadratic
polynomial, with coefficients polynomials in the xj` and the radii, defining a bisector.

If b is linear, then we have three linearly independent equations, from which v can be expressed
in terms of determinants according to Cramer’s rule:

v = (∆1/∆, ∆2/∆, ∆3/∆).

If p has degree k then ∆kp(v) is a polynomial in the ∆i and ∆: let q(xj`) = ∆kp(v), as required.
Otherwise b is a nonlinear, quadratic polynomial. The normals ~N1 and ~N2 are linearly indepen-

dent, so if we set ~N3 = ~N1 × ~N2 then ~N1, ~N2, ~N3 are linearly independent and we can calculate a
unique point w such that
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~Ni · w = ai (i = 1, 2) and ~N3 · w = 0.

The coordinates of w are rational functions given by Cramer’s Rule. The line L can be parametrised.

L = {w + t ~N3 : t ∈ R}.
Find where L intersects the bisector b(x) = 0 by substituting w + t ~N3 into b, getting a quadratic

equation

g(t) = 0.

The solutions have the form a ± b
√

D, were a, b, and D are rational functions of the coefficients,
and we get

v = w + (a ± b
√

D) ~N3

Substitute this into the polynomial p:

p(w + (a ± b
√

D) ~N3) = 0

This polynomial can be written in the form c ± d
√

D,
Multiply both together

p(w + (a + b
√

D) ~N3)p(w + (a − b
√

D) ~N3) = 0

c2 − d2D = 0.

This last is a polynomial in rational functions of determinants, so if multiplied by a suitable power
of the denominators it takes the form q(xj`) = 0, as required. Q.E.D.

A related result is the following:

(3.10) Lemma Suppose that L is a line and B a bisector, specified by two linear and one quadratic
polynomial equations as in the above lemma. Then there is a polynomial which vanishes if the line
meets the bisector tangentially.

Proof. According to the arguments of the above lemma, the points where the line intersects the
bisector are of the form

w + (a ± b
√

D) ~N3.

If the intersection is tangential, the discriminant D is zero:

D = 0.

D is a rational function of the xj` (and the radii). If we multiply by a common denominator we
obtain a polynomial equation p(x11, . . .) = 0. Q.E.D.
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(3.11) Lemma If S is a set of disjoint spherical sites not in general position, then there are place-
ments arbitrarily close to S which are in general position.

Proof. We consider every configuration as a point in R
3n, specifying the centres of the sites,

whose radii are left fixed. We express each degeneracy by one or more equations p(x) = 0. Since
a finite list pr(x) of polynomials vanish at x if and only if

∑

r(pr(x))2 vanishes at x, the number of
equations is irrelevant. It follows (Lemma 3.7) that every neighbourhood of a degenerate configura-
tion contains a nondegenerate configuration.

If four centres xi are coplanar then

det(c2 − c1, c3 − c1, c4 − c1) = 0,

where det is the 3×3 determinant, a polynomial in the coordinates xj`, which include the coordinates
of the centres ci.

We can assume that no four centres are coplanar.
Suppose that a vertex v is closest to five sites B0, . . . , B4. Then v is closest to the first four sites,

and also in the (B0, B4)-bisector, so by the above lemma a polynomial equation holds.
If v is a pinch-point, where a (B0, B1, B2) and a (B0, B1, B3)-trisector meet tangentially, then at

most one of these trisectors is a straight line, because the site centres are not coplanar. Without loss of
generality the (B0, B1, B3)-trisector is not a straight line, B0 is a point-site located at the origin, B3

has positive radius, and the trisector is the intersection of tbe (B0, B3)-bisector with a unique plane
Π,

Suppose L is a line tangent to the (B0, B1, B3)-trisector at the point v. This trisector is the
intersection of the plane Π with the (B0, B3)-bisector. The tangent line L is the intersection of Π
with the tangent plane to this bisector at v. Hence L is contained in the tangent plane: in other words,
L is tangent to the (B0, B3)-bisector.

If the (B0, B1, B2)-trisector is a straight line then as argued above it is tangent to the (B0, B3)-
bisector and the parameters xj` satisfy a polynomial equation (Lemma 3.10).

Otherwise the (B0, B1, B2)-trisector is contained in a unique plane Π′ which intersects Π in a line
L (otherwise the four centres are coplanar), which is tangent to the (B0, B3)-bisector, and again the
parameters xj` satisfy a polynomial equation. Q.E.D.

We have not discussed how selecting a configuration S ′ in general position near S affects the
complexity of its Voronoi diagram. We should expect that Vor(S ′) should have at least as many faces
as Vor(S). Then upper bounds on the complexity of Vor(S ′) would imply the same for Vor(S).

This is not necessarily so when Vor(S) contains pinch-points; removal of pinch-points may de-
crease the number of faces. The question will be reviewed in Section 9.

4 Descriptive complexity of diagrams
This section applies to sets of disjoint convex sites, not necessarily spherical. The basis of our O(n2)
upper bound for the descriptive complexity of Vor(S) is the following lemma.

(4.1) Lemma Let C be a collection of sets of disjoint spherical sites with the property that for any
S ∈ C, if |S| > 1 then any site can be removed from S to produce another member of C.

Suppose M(n) denotes the maximum complexity of all diagrams Vor(S), S ∈ C, |S| = n.
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Figure 4: An unbounded cell might have high complexity.

Then M(n) is O(n2) if and only if for every S ∈ C, Vor(S) contains a cell of complexity O(|S|).

Proof. Only if: suppose M(n) is O(n2). Let S be a member of C, |S| = n. Its complexity is at
most M(n). Its Voronoi diagram has n cells, so the average complexity of cells is at most M(n)/n
which is O(n). But the average cell complexity bounds the minimum cell complexity.

If: suppose that a constant K exists such that whenever S ∈ C and |S| = n then Vor(S) contains
a cell of complexity ≤ Kn. Given S, containing two or more sites, let S ′ = S\{B} where B is a
site whose cell has complexity ≤ Kn in Vor(S). The complexity of Vor(S) is bounded by that of
Vor(S ′) plus that of the cell owned by B in Vor(S). This yields a recurrence for M(n);

M(n) ≤ M(n − 1) + Kn.

Also, M(1) = 0 < K, so M(n) < Kn(n + 1)/2 is O(n2). Q.E.D.

(4.2) Bounded Voronoi diagrams. Choose a large solid cube K which contains in its interior all
the sites in S and all the vertices and bounded edges, faces, and cells, of Vor(S), and let the cells,
faces, and edges be intersected with this cube K. The resulting structure we call the bounded Voronoi
diagram. Clearly its complexity is at least that of the unbounded Voronoi diagram. Bounding the
Voronoi diagam simplifies Lemma 4.4 below, which would encounter difficulties with unbounded
cells, whose 1-point compactifications could be of high genus.

For example, Figure 4 shows a cell generally in the shape of a cross whose four arms are supposed
to go to infinity. It has been truncated, so there are four holes, but these holes and the edges and
vertices bounding them should actually be at infinity. Four infinite edges (marked heavy) divide the
cell boundary into two faces, and we could generalise the figure to a k-armed figure with k edges
two faces, and no vertices. In any case the number of faces is always 2 and cannot bound the cell
complexity.

We have not investigated whether such cells actually could arise in Voronoi diagrams of convex
sites.

On the other hand, the truncated cell boundary has six faces, twelve edges, and eight vertices,
satisfying Euler’s formula.

The difficulty about unbounded cells does not arise with convex cells, for a rather trivial reason:

(4.3) Lemma Having chosen a large solid cube K whose interior contains all sites, vertices, and
bounded edges, faces, and cells of Vor(S), if a cell C is convex, then C ∩ K has at most six faces on
∂K, all of them simply connected.
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Proof. For each of the six faces F of ∂K, F ∩ C is convex, hence simply connected. Q.E.D.

(4.4) Lemma If C is a cell of the bounded Voronoi diagram, whose boundary has O(n) faces, then
its complexity is O(n).

Proof. This should result from general planarity considerations, which say that a planar graph
with m faces has O(m) edges and vertices. We need to be slightly more careful because edges can
be isolated, homeomorphic to circles, with no incident vertices. Let there be v vertices, e edges, and
f faces (f = n). An edge might be incident to no vertex: in this case, since the cell is bounded, the
edge is homeomorphic to a circle. There are unique faces meeting the circle from inside and outside
respectively. Deleting the edge merges these faces. Thus if there are c ‘circular’ edges then deleting
them reduces by c the number of faces.

Apart from isolated circular edges there may exist loops, that is, edges e with both ends incident
to the same vertex v. Given a loop e, there is a face f meeting e from the inside. Choose two interior
points u and w on e, and connect them by a new edge e′ entirely within the face f (except at the
endpoints). This splits the face into two, and replaces the single edge e by four edges, uv, vw, and
two connecting uw. There are two new vertices. This operation increases the number of faces, edges,
and vertices by 1, 3, and 2 respectively. Perform it as often as necessary to ensure that all vertices
meet at least 3 different edges.

Let f0, e0, v0 be the original number of faces, edges, and vertice; f1, e1, v1 the numbers after
removing isolated (circular) edges; v1 = v0 and f1 − f0 = e1 − e0. Let f2, e2, and v2 be the numbers
after dealing with those vertices incident to one edge and one loop. Then

e2 − e1 = 3(f2 − f1), and v2 − v1 = 2(f2 − f1).

For any point x in the cell, if y is the closest point to x on the site owning the cell, then the line-
segment xy is in the cell, so the cell is star-shaped relative to that site, hence contractible. It is also
bounded, so its boundary is homeomorphic to a sphere. Euler’s formula says

v2 − e2 + f2 = 2

so v2 = e2 − f2 + 2.
Every vertex is incident to at least three edges and every edge is incident to at exactly two vertices,

following the alterations. The sum of the vertex degrees is twice the number of edges, and all vertex
degrees are at least three. Hence

v2 ≤
2

3
e2.

Therefore e2 − f2 + 2 ≤ 2

3
e2, so e2 ≤ 3f2 − 6. Since e1 − e2 = 3(f1 − f2), e1 ≤ 3f1 − 6. Since

e0 − e1 = f0 − f1, e0 ≤ f0 + 2f1 − 6 ≤ 3f0 − 6 since f1 ≤ f0. Therefore e0 is O(n).
The sum of all vertex degrees is at most twice the number of edges, so v0 ≤ 2e0 is O(n) also.

Q.E.D.

(4.5) Corollary Let C be a cell of Vor(S) with O(n) faces. If C is convex, then it has complexity
O(n).
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Figure 5: Lower-dimensional version of S(r).

Proof. In the bounded Voronoi diagram enclosed by a solid cube K, C ∩K has at most six more
faces than C has (Lemma 4.3). Therefore C ∩ K has O(n) faces and complexity O(n) by the above
lemma. Since the complexity of C ∩ K is at least that of C, the result follows. Q.E.D.

5 Inflating sites and fully general position
We are given a set S of n disjoint spherical sites. We begin with a set of point sites located at the
centres of the sites in S, and call this set S(0). We imagine the sites being ‘inflated’ to their correct
size: an increasing parameter r is given, and S(r) is the set of sites with their radius bounded by r.
As r increases, the sites inflate until all have reached their correct radius. We study how the Voronoi
diagram evolves.

(5.1) Definition Let S be a set of n disjoint spherical sites. For any r ≥ 0, if B is a site in S of
radius R, then the truncated site B(r) is the closed ball with the same centre as B and with radius
min(r, R).

The r-bounded version S(r) of S is the set of n sites

{B(r) : B ∈ S}.
A site B is stable in S(r) if its radius is ≤ r, otherwise it is expanding.

(5.2) The parametrised set S(r) can be viewed as a subset of R
4, adding the parameter r in an extra

dimension. If we consider the analogous situation with circular sites in two dimensions, a site of
radius ri sweeps out the union of a solid cone and a solid cylinder, meeting at height ri. See Figure 5.

(5.3) Fully general position. The sets S(r) of sites is not always in general position, even when S
is. However, S is said to be in fully general position if

(i) S is in general position (3.6).

(ii) For each radius ri, S(ri) is in general position.

(iii) If a vertex in Vor(S(r)) has 5 closest sites, then not all of them are stable and not all of them
are expanding.

(iv) For no r does Vor(S(r)) contain a vertex closest to more than 5 sites.

(v) For no r does S(r) contain a point which is simultaneously a pinch-point and a 5-site vertex.
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(vi) For no five sites Bi, 1 ≤ i ≤ 5, does the trisector separating the first three sites lie in the plane
bisecting c4c5, the centres of the last two sites, or meet this plane tangentially.

(vii) For no five sites Bi, 1 ≤ i ≤ 5, does the line L equidistant from c3, c4, c5 meet the (B1, B2)-
bisector at the point closest to c1 on L.

(viii) If x is a pinch-point with respect to a point-site p and sites B2, B3(r), B4(r) in Vor(S(r)) then
the tangent T common to the edges is not parallel to the axis pc2 of the (p, B2)-bisector.

(ix) For no three sites B1, B2, B3 is the centre c1 equidistant from the centres c2 and c3.

As in the section on general position, a set of n spherical sites, whose radii are fixed, can be
represented by a point in R

3n encoding the position of their centres.

(5.4) Definition Let f be a feature (face,edge,vertex) of Vor(S(r)). Its type is SaEb where a and b
are the numbers of stable and expanding sites closest to f .

(5.5) Lemma Given a set S of sites not in fully general position, every neighbourhood of S in R
3n

contains configurations in fully general position.

Proof. As in (Lemma 3.11), it is enough to show that nontrivial polynomial equations cover all
configurations which violate any of the requirements for fully general position.

Let ri be the set of radii of sites in S; without loss of generality the smallest radius is zero.
The requirement that S and all the sets S(ri) of sites are in general position is met by excluding

configurations satisfying a polynomial equation (Lemma 3.11). This covers requirements (i) and (ii).
Let v be a vertex in S(r) with 5 or more closest sites. If 5 sites are stable (case SSSSS) then v is

closest to these sites in Vor(S), which is false. If 5 sites are expanding (case EEEEE), for any radius
ri ≤ r among the sites in S, the 5 sites would be closest to v in Vor(S(ri)), which is also false. Thus
requirement (iii) is met whenever the first two are met.

(iv) We consider the possibility that S(r) contain vertices with 6 closest sites. As before, it is suffi-
cient to show that when such vertices exist, the site centres satisfy polynomial equations independent
of r. Cases SEEEEE and SSSSSE are excluded by (iii).

If four sites are expanding (case SSEEEE) then v is equidistant from their centres and

v = (∆1/∆, ∆1/∆, ∆3/∆)

where ∆ and ∆i are polynomials in the centres xi, independent of r, and v is on the bisector of two
stable sites; hence we can deduce

∆ × b′(∆1, ∆2, ∆3) = 0 (5.6)

where b′ is a polynomial with coefficients independent of r.
Suppose that four sites are stable and two are expanding (case SSSSEE). The one or two vertices

closest to the four sites can be characterised by a bisector B and two planes P1 and P2, so B∩P1∩P2

contains one or two points including v. The bisector of the two expanding sites is another plane P3.
B, P1, P2, and P3 are all definable by equations independent of r.

Either P1 ∩ P2 ∩ P3 is a line, and the normals are linearly dependent, or P1 ∩ P2 ∩ P3 = {v}, and
v can be substituted into the equation for B, yielding another polynomial equation like (5.6).
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The final possibility is that three sites are stable and three are expanding (case SSSEEE). The
trisector of the stable sites is an intersection B ∩P1 where B is a bisector and P1 a plane independent
of r. The trisector of the expanding sites is an intersection P2 ∩ P3 of planes definable by equations
independent of r. Again either the three planes intersect in a line or they intersect at v alone, which
also belongs to the bisector B, and again we derive a polynomial equation like (5.6).

Thus whenever there exists an r such that Vor(S(r)) has vertices with six or more closest sites,
the site centres satisfy polynomial equations whose coefficients are independent of r. Thus every
configuration violating requirement (iv) satisfies a nontrivial polynomial equation.

(v) We need to show that a polynomial equation covers the situation where five sites Bi(r) (0 ≤
i ≤ 4) are closest to the same vertex v, which is also a pinch-point with respect to four of them.

When there is a pinch-point, there is a point v on a trisector whose tangent at v is perpendicular to
all vectors ~pipj where pj are the points of contact with the clearance sphere at v (Lemma 1.18). Pinch
points do not occur when r is one of the radii ri, nor do four stable sites admit a pinch-point, since S
is in general position, nor do four expanding sites, since their centres would be coplanar. Therefore
we can choose pi on a stable site and pj on an expanding site. There are several cases depending on
the type of the pinch-point (number of expanding sites involved).

Let B0, B1, B2, B3, B4 be the sites, arranged in ascending order of their (true) radii.
In each case, we shall express v as one of the one or two points of intersection of a bisector with

a line or a trisector with a plane, as required for Lemma 3.9, and furnish a displacement vector ~N
parallel to the trisector tangent at v, and two contact points pi, pj where pj is on an expanding site.
All data except pj will be independent of r.

~N · ~pipj = 0, ∴ ~N · ~vpj = ~N · ~vpi.

Write ~vpi as | ~vpi| ~vci/| ~vci|, similarly for ~vpj . But | ~vpi| = | ~vpj|, so if we clear the denominators
we get

| ~vci| ~N · ~vci = | ~vcj| ~N · ~vcj.

This equation is independent of r, and if we square both sides we have a nonzero polynomial
equation satisfied by v, and can apply Lemma 3.9.

In each case, therefore, we need only furnish equations for v and a vector ~N parallel to a trisector
tangent at v. If the trisector is a straight line then it is the trisector of three site centres ci, cj, ck and
we can take ~N = ~cicj × ~cick. Otherwise it is a conic section, a transverse intersection of a plane with
a quadric bisector, and we can write ~N = ~N ′ × ∇b(v), where ~N ′ is normal to the plane and b is a
quadratic polynomial whose zeroes form the bisector; ∇b(v) is its gradient, which is normal to the
tangent plane at v.

We distinguish the type of the vertex from the type of the pinch-point. For example, a pinch-point
coinciding with a type SSSSE vertex must be of type SSSE since there are no SSSS pinch-points.

Case (v.a): SSSSE, with B4 expanding, SSSE pinch-point. In this case v is closest to four stable
sites (B0, B1, B2, B3), which furnishes equations for v independent of r. Suppose that B1, B2, B3, B4

define the pinch-point. All four of the trisectors for these sites have the same tangent at v (Lemma
1.18), so the (B1, B2, B3)-trisector defines ~N . Otherwise the pinch-point is defined by B0, B2, B3, B4,
but the argument is the same.

Case (v.b): SSSEE (B3, B4 expanding), SSSE or SSEE pinch-point. In this case v is in the
intersection of the (B0, B1, B2)-edge with the plane bisecting c3c4, furnishing equations for v inde-
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pendent of r. If the pinch-point is SSSE then the first three sites furnish a trisector whose tangent
defines ~N . Otherwise the pinch-point is of type SSEE. The two edges meeting the point are of type
SEE: (B0, B1, B3)- and (B0, B1, B4). By Lemma 3.3 these trisectors are contained in the c3c4 bisec-
tor plane, call it E, so their tangent is in E. They are also in the (B0, B1)-bisector, call it B, so their
tangent is in the tangent plane at v to B. Thus the tangent is tangent to E ∩ B. Both E and B are
independent of r, and ~N can be defined using them.

Case (v.c): three expanding sites, B2, B3, B4 (case SSEEE). In this case v is in the intersection
of the (c2, c3, c4)-trisector with the (B0, B1)-bisector. If the pinch-point involves the three expanding
sites, the same trisector furnishes the vector ~N . Otherwise it involves two expanding sites and two
stable, and ~N can be derived from the intersection of the bisector plane separating the expanding sites
with the bisector separating the stable sites, as in (v.b).

Case (v.d): four expanding sites, with non-coplanar centres (SEEEE). In this case v is the unique
point equidistant from their centres, the pinch-point involves B0, and ~N can be derived from the
trisector separating three of the centres ci, cj, ck (i, j, k ≥ 1).

(vi): Given five sites Bi, let T be the (B0, B1, B2)-trisector and E the plane bisecting c3c4. If T is
a straight line, it is perpendicular to the plane c0c1c2, and if it is tangent to E, i.e., lies within E, then
( ~c0c1 × ~c0c2) · ~c3c4 = 0, a polynomial equation in the xj`.

Otherwise T is the transverse intersection of a plane E ′ with the (B0, B1)-Bisector. If it lies within
E then the planes E ′ and E coincide so

| ~N × ~N ′|2 = 0,

a polynomial equation. Otherwise if it is tangent to E then E ′ ∩ E intersect in a unique line L and
L meets the (B0, B1)-bisector tangentially. In this case there is a polynomial p such that p(xj`) = 0
(Lemma 3.10).

(vii): let L be the line equidistant from c2, c3, c4 and v the point on L closest to c0. It is the
orthogonal projection of c0 onto L. Let ~N1 = ~c2c3, ~N2 = ~c2c4, and ~N3 = ~N1 × ~N2. These vectors are
linearly independent, and by solving equations

~N1 · w = a1, ~N2 · w = a2, ~N3 · w = 0

we get a point w on the line L, and ~N3 is parallel to the line. From these it is easy to calculate the
projection v of c0 onto L. The coordinates of v are rational functions of the xj`. Then b(v) = 0 where
b is a linear or quadratic equation defining the (B0, B1)-bisector, and by multiplying by a suitable
polynomial to clear the denominators, we get a polynomial p(xj`) = 0.

(viii): The tangent T is in the bisector of c3c4, so if (viii) is not true then ~pc2 · ~c3c4 = 0.
(ix): Otherwise (c1 − (c2 + c3)/2) · (c3 − c2) = 0, a polynomial equation. Q.E.D.

6 5-site vertices
In this section S is assumed to be a set of disjoint spherical sites in fully general position. As noted in
Section 3, by proceeding to general position we may reduce the number of faces, but the assumption
of general position will continue until this question is considered in Section 9.
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(6.1) Definition Let B1 and B2 be sites in S, r a parameter. A point x is equidistant from B1 and B2

in S(r) (or in Vor(S(r))) if x is equidistant from the truncated sites Bi(r); similarly one speaks of x
being closer to B1 in S(r), etcetera.

For the rest of this paper, we consider a site of minimum radius in S, without loss of generality a
point-site p.

(6.2) Definition C(r) is the cell containing p in Vor(S(r)).

(6.3) Lemma C(r) is always convex. (Immediate from Lemma 1.6.)

(6.4) In this section we consider how the face structure of C(r) changes when C(r) is incident to a
5-site vertex. The vertex will be labelled v, and the sites involved will be labelled p, B2, B3, B4, and
B5: v is equidistant from the truncated sites Bi(r).

It is assumed that these sites are listed so the stable ones are listed before the expanding ones.
Since the sites are in general position, p is stable and B5 is expanding.

Since S is in fully general position, r 6= 0. Parameters s and t will always be ‘close to r’ and less
than r, and greater than r, respectively.

(6.5) Lemma At an SSSSE vertex on C(r) an SSSS vertex is removed and a new face is introduced
to C(r).

Proof. Since S is in fully general position, r is not the radius of any site in S.
In S(s), v is further from B5 than from the other sites, so B5’s cell in Vor(S(s)) is a positive

distance from v, and there is no (p, B5)-face near v. Note that v is an SSSS-vertex of C(s).
In S(t), v is closer to B5, so the line-segment pv intersects the (p, B5(t))-bisector at a point x.

Since x is on the line-segment pv and v is equidistant from p, B2, B3, and B4, in S(t), x is closer to
p than to B2, B3, and B4, so it is on the interior of a (p, B5)-face in C(t). This is the face introduced
to C(r). The point v is a positive distance from C(t): it is the SSSS-vertex removed. Q.E.D.

(6.6) Lemma At an SSSEE vertex on C(r) no new face can be introduced.

Proof. Let e be the (p, B2, B3)-trisector, so it contains v, and let E be the plane equidistant from
B4(r) and B5(r) (and from their centres). These last two sites are expanding and the others stable.

The only faces of C(r) incident to v are closest to one of the four sites Bi, 2 ≤ i ≤ 5. To prove
that no new faces are introduced at v, it is enough to prove the following claim: if s < r is close to r,
then C(s) has four faces close to v, one for each site Bi.

Since v is closer to p, B2, and B3 than to B4 and B5 in S(s), there is a (p, B2, B3) edge containing
v in C(s).

The clearance sphere of v in S(r) touches five sites. Consider the plane Π through the points of
contact with p, B2, and B3. Since S is in fully general position and v is a 5-site vertex in Vor(S(r)),
it is not a pinch-point, and neither of the other two contact points of the clearance sphere are in the
plane Π (Lemma 1.18).

If the clearance sphere touches the other two sites on the same side of Π, say that there is a
unilateral contact, otherwise say there is a bilateral contact. Let e be the (p, B2, B3)-trisector.
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Figure 6: Evolution of diagram (t > r) from an SSSEE verex, bilateral and unilateral contacts
respectively.

As a point v′ moves away from v along e in Vor(S(r)), on a side of Π containing the one or two
contacts, the contact points become strictly closer to v ′ than to the sites p, B2, B3 (Lemma 2.4). This
means that B3 or B4, or both if the contact point is unilateral, intersect the sphere around v ′ touching
p, B2, B3. It follows that the edge containing v in Vor(S(s)) (recall s < r is close to r) is bounded
by a vertex also closest to B4 or B5, both vertices existing in the case of a bilateral contact.

The case of a bilateral contact is simplest: the edge containing v and contained in e in Vor(S(s))
meets a (p, B1)-face and a (p, B2)-face at v, and a (p, B4) and a (p, B5)-face at its bounding vertices.
This proves the claim for a bilateral contact. See Figure 6.

We consider a unilateral contact. The trisector e meets the plane E separating B4(r) and B5(r)
transversally at v, by requirement (vi) for fully general position (paragraph 5.3).

Writing e = B ∩ E ′ where B is a bisector and E ′ is a plane, consider a point x moving from v
along e in C(s) in the direction of these contact points. The edge e meets the plane E transversally, so
x moves into one of the halfspaces bounded by E and away from the other: without loss of generality,
into the halfspace containing B4. The edge is bounded by a (p, B2, B3, B4)-vertex, call it w, and w
is incident to a (p, B4)-face in C(s). The edge meets the B4-cell transversally at w by the trisector
monotonicity principle (Lemma 2.4.) Hence w is nondegenerate, not a pinch-point (Lemma 1.18).
Since w is incident to a (p, Bi)-face for 2 ≤ i ≤ 4, it is sufficient to show that there is a (p, B5)-face
nearby.

There are three other edges incident to w, and one of them, at least, must be directed towards the
plane E (Lemma 1.19). Suppose it is the (p, B3, B4)-edge. Following this edge towards E we reach
a point on E, which is a (p, B3, B4, B5)-vertex, a nondegenerate vertex incident to a (p, B5)-face in
C(s).

In other words, if s < r is sufficiently close to r then v is close to four faces of C(s). This proves
the claim in the case of a unilateral contact.

Since each of the four sites Bi contributes a face to C(s) near v, no new faces can be introduced
near v in C(r). Q.E.D.

In the above argument it is unnecessary to speculate about when faces can be lost at an SSSEE
vertex.

(6.7) Lemma At an SSEEE vertex on C(r) a face is removed from C(r) and an SEEE vertex intro-
duced.

Proof. Again, let v be a vertex in C(r) with five closest sites p, B2, B3, B4, B5, where the last
three sites are expanding.

If s < r is close to r then the clearance sphere of v in Vor(S(s)) touches p and B2 but not the
other three sites. Therefore v is interior to a (p, B2)-face.
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Figure 7: argument to show x and y belong to the same face of C ′(r).

If t > r is close to r then the clearance sphere of v in Vor(S(t)) touches B3, B4, B5 but not p nor
B2. Thus v is on a (B3, B4, B5)-trisector, which is a straight line L. By requirement (vii) for fully
general position, v is not the point closest to p on L.

As a point x moves from v closer to p along L it enters the interior of C(r) in Vor(S(r)). Then
it is interior to C(t) for t > r sufficiently close to r. Therefore there is a point x where L meets
the boundary of C(t), close to v, and x is at a positive distance from the B2-cell. The vertex x is a
(p, B3, B4, B5)-vertex, where three faces meet, as claimed. Q.E.D.

(6.8) Lemma With fixed point-site p and parameter r, let

S ′(r) = {p} ∪ {B(r) : B ∈ S, radius ≥ r}.

Then the cell containing p in Vor(S ′(r)) contains at most one (p, B(r))-face for each B 6= p ∈
S ′(r). Hence C(r) contains O(n) SEEE- and SEEEE-vertices.

Proof. Let C ′(r) be the cell containing p in Vor(S ′(r)). Every SEEE vertex (and SEEEE-vertex)
on C(r) is a vertex of C ′(r), so it is enough to show that C ′(r) has O(n) vertices. Since C ′(r) is
convex (Lemma 6.3), by Corollary 4.5 it is enough to show that C ′(r) has at most n − 1 faces.

Given a site B with B(r) ∈ S ′(r)\{p}, let B ′ = B(r). Let x, y be points in the (p, B ′)-bisector,
and strictly further from all other sites in S ′(r). We need to show that x and y belong to the same
open face (Definition 1.2) of C ′(r).

Let D be the cell containing B ′ in Vor(S ′(r)\{p}), a set of sites all of radius r, so D is a convex
polytope, and x and y are interior to D. So is z, the centre of B ′. Since D is convex, it contains the
triangle xyz and its interior. This triangular region intersects the cell C ′(r) in a convex set containing
the line xy but not containing z. See Figure 7

It intersects the boundary of C ′(r) in a curve connecting x to y in C ′(r). This boundary curve is
interior to D, so it is entirely within the same open (p, B ′)-face. Hence there is at most one (p, B ′)-
face. Q.E.D.

(6.9) Lemma At an SEEEE vertex v on C(r) either one SEEE vertex is removed and a new SE face
is introduced, or one SEE edge is exchanged for another, but the number of faces is unchanged.

Proof. The SEEEE vertex is a vertex of the convex cell C ′(r) discussed in the above Lemma
6.8, so the argument can be simplified by confining our attention to C ′(s) and C ′(t). Let Q be the
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clearance sphere around v in Vor(S ′(r)), touching p and touching the other sites Bi at points pi. Since
the centres ci are not coplanar, neither are the points pi (pi = v + α ~vci, where α = |pv|/(|pv|+ r), a
relation which preserves coplanarity).

The plane p2p3p4 divides the sphere Q into two regions, one containing p5. In terms of the trisector
monotonicity principle (2.4), one side is towards p5 and one away from p5. Similarly for p2p3p5 and
two other planes.

These four planes divide Q into ten open regions, one for each face and one for each edge of the
tetrahedron p2p3p4p5. Corresponding to the face p2p3p4 we have a region with a ‘bias,’ ‘away from
p5’ and ‘towards’ the other three points. This region is bounded by three arcs given by the p2p3p5-,
the p2p4p5-, and the p3p4p5-planes. We call this a +,+,+,- region to indicate the bias away from p5.

Corresponding to the edge p2p3 we have a region bounded by two arcs where Q intersects the
p2p3p4- and the p2p3p5-planes. Points in this region are biased towards p2 and p3 and away from p4

and p5. We call this a +,+,-,- region.
The two possibilities in this lemma depend on whether p is in a +,+,+,- or a +,+,-,- region. By

requirement (ix) of fully general position, p is interior to one of these regions.
First note that if s < r is close to r then the point on the line-segment vci equidistant from p and

Bi(s) is interior to a (p, Bi)-face. Hence C ′(s) contains (p, Bi)-faces close to v for 2 ≤ v ≤ 5. We
need only consider the situation for t > r close to r.

Case (i): p is in a +,+,+,- region of Q. Without loss of generality, p is biased away from p5 and
towards the other three sites. The point v is outside C ′(t), being more remote from p than the other
sites Bi(t).

Because of the bias of p, as a point w moves away from v along the (B3(r), B4(r), B5(r))-
trisector, the clearance sphere (the sphere touching the four expanding sites, not necessarily p) recedes
from p (trisector monotonicity principle 2.4). Therefore this trisector meets C ′(r) only at v. Similarly
for the other two trisectors not involving B5(r). Therefore the polyhedral cell D containing B5(r) in
Vor(c2, c3, c4, c5) intersects C ′(r) in exactly one point v. If t > r then C ′(t) ⊆ C ′(r), and v /∈ C ′(t),
so D does not intersect C ′(t). There is no (p, B5(t)) face.

As a point w moves away from v along the (B2(r), B3(r), B4(r))-trisector then its clearance
sphere recedes from B5(r) and absorbs p in its interior (trisector monotonicity). One can argue as
previously that if t > r is sufficiently close to r then w meets a (p, B2(t), B3(t), B4(t))-vertex. This
covers case (i).

Case (ii): p is in a +,+,-,- region. Without loss of generality it is biased towards p2 and p3 and
away from p4 and p5. By considering a moving point w as in the previous case, one concludes that the
(Bi(r), Bj(r), Bk(r))-edge from v is locally interior to C ′(r) if it is ‘opposite’ B4 or B5 and meets
the edge only at v if it is ‘opposite’ B2 or B3. Let E be the (B2(r), B3(r)) face incident to v in
Vor(c2, c3, c4, c5). Thus E intersects C ′(r) in a single point and does not intersect C ′(t) if t > r,
so there is no (p, B2(t), B3(t))-edge if t > r. But the (B2(t), B3(t), B4(t))-trisector meets C ′(t) at
a (p, B2(t), B3(t), B4(t))-vertex; similarly there is a (p, B2(t), B3(t), B5(t))-vertex. These bound a
(p, B2(t), B3(t))-edge on C ′(t). For 2 ≤ i ≤ 5 there is a (p, Bi)-face incident to one of these vertices.

Similarly if s < r is sufficiently close to r there is a (p, B4(s), B5(s))-edge incident to all four
faces at its interior and its endpoints. There is no (p, B2(s), B3(s))-edge. Q.E.D.

(6.10) Corollary There are O(n) SEEEE-vertices overall, for all r.

Proof. At an SEEEE-vertex, either a new face is introduced, and that face is a face of Vor(S ′(r))
where S ′(r) is as in the above lemma, or the number of faces does not change.
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Let C ′(r) be the cell containing p in Vor(S ′(r)), where S ′(r) is as in the above lemma. At an
SEEEE vertex on C(r), at most one new face is introduced to C(r), and also to C ′(r), so it is the
only face owned by some truncated site B(t) in C ′(t), for t > r close to r.

Next consider when a (p, B)-face is removed from C ′(r). As in the previous lemma, let D be
the cell containing B in Vor(S ′(r)\{p}). It intersects C ′(r) in a single point. Since C ′(r) continues
to shrink, there can never again be a (p, B)-face. Thus a (p, B)-face is introduced at most once and
there are O(n) SEEEE-vertices incident to C ′(r). Q.E.D.

7 Face split-points
Recall that every trisector is a conic section.

(7.1) Lemma Let x be a point on a (p, B2, B3)-edge of Vor(S(r)), where B2 has positive radius,
smaller than the radius of B3. There is a unique plane Π containing the (p, B2, B3)-trisector. The
tangent to the trisector at x divides Π into two halfplanes of which one contains the trisector.

Then near x, the tangent remains in that cell of Vor(S(r)) containing B3, the site with larger
radius.

Proof. Let the lines connecting x to the centres of B2 and B3 meet their boundaries at p2 and p3,
contact points of the clearance sphere. The tangent T is the (p, p2, p3)-trisector. Let B′

2 be a ‘shadow
site’ located inside B3, so B′

2 has the same radius as B2 and it and B3 share a common tangent-plane
at p3. Note that x is on the (p, B2, B

′

2)-trisector, which has the same tangent T at x. The cell owned
by p in Vor(p, B2, B3) is convex (Lemma 6.3), and T is tangent to it, so T only meets this cell at x.
Therefore there exists an open ball V around x such that V ∩ T is contained in the union of the B2-
and B3-cells, and also in the (B2, B

′

2)-bisector.
Any point y close to x in V ∩ T is equidistant from B2 and B′

2. The distance from y to B ′

2 is
|y − q2|, where q2 is closest to y on B ′

2. The line-segment yq2 intersects the boundary of B3 strictly
between y and q2, since B′

2 is inside B3. Therefore y is closer to B3 than to B′

2, hence closer to B3

than to B2 or to p. Q.E.D.

(7.2) Merge-points and split-points. Let x be a pinch-point relative to four sites (truncated to
radius r) p, B2, B3, B4, in S(r) On the boundary of the p-cell C(r) there are four faces incident to x.

Suppose the sites are labelled so the leftmost face incident to x is a (p, B2)-face, the rightmost
a (p, B4)-face, and the two faces in between are (p, B3)-faces. There are two incident edges, a
(p, B2, B3)-edge on the left and a (p, B3, B4)-edge on the right.

It is possible that the two (p, B3)-faces actually be the same face, being connected by paths not
passing through x, but that is unimportant.

Since S is in fully general position, at least one site is expanding. It is possible that two sites are
expanding, but B2 and B4 cannot both be expanding by Lemma 7.1, since the (p, B2, B3)-edge would
meet its tangent at x from the right, and the (p, B3, B4)-edge would meet its tangent at x, the same
line, from the left, whereas the first edge should be to the left of the second near x.

(7.3) Definition The pinch point is classified as a merge point or a split point as follows:

• If B3 is expanding but B2 and B4 are stable, it is a merge point.
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• If two of the sites, B3 and B4, say, are expanding, it is a merge point.

• If B3 is not expanding, so B2 or B4 is, it is a split point.

(7.4) Lemma At a pinch point x in C(r), two (p, B3)-faces merge or split according as x is a merge
point or a split point.

Proof. (See Figure 8.)
Case (a): only B3 is expanding. For s < r near r, x is equidistant from p, B2 and B4, but

further from B3(s), so it is interior to an edge separating the (p, B2)- and (p, B4)-faces. Let e be the
(p, B2, B4)-trisector. Near x, e is in the (p, B3(r))-bisector, strictly interior except at x. Let u and v
be two points in e, on either side of x, and close to x. The sphere centred at u, and touching B2 and
B4, intersects the interior of B3(r), hence intersects the interior of B3(s) for all s < r sufficiently
close to r. Similarly for v. Therefore if s < r is sufficiently close to r then x is closer to B2 and
B4 than to B3(s), that is, x is interior to a (p, B2, B4)-edge, while u and v are on the same trisector
but not on the edge; therefore, the edge has vertices in Vor(S(s)) between u and v. These must be
(p, B2, B3, B4)-vertices, incident to two B3-faces.

If t ≥ r is close to r then the same trisector is as close to B3(t) as to p, B2 and B4 near x,
strictly closer when t > r. Then choosing u and v on the same trisector, for any w between u and v
let ft(w) be the unique point equidistant from p and B3(t) on the line-segment wp. Notice that this
line-segment is in the cell owned by p in the related Voronoi diagram Vor(p, B2, B4), so z is closer
to p than to B2 and B4. Therefore ft is a path connecting ft(u) to ft(v) in the (p, B3(t))-bisector. If
t > r then the path is strictly interior to a (p, B3(t))-face. Also, fr(u) and fr(v) are interior to the two
B3-faces in C(r). By making t sufficiently close to r we can make ft arbitrarily close to fr, and in
particular we can make ft(u) arbitrarily close to fr(u), similarly for ft(v). Thus the two (p, B3)-faces
in C(r) merge together to one in C(t).

Case (b): B3 and B4 are expanding, B2 stable. Let e be the (p, B2, B3(r))-trisector. If t > r
then points on e are closer to B3(t) than to p and B2. Taking intersections with line-segments as in
Case (a), we get a path ft of points in the (p, B3(t))-bisector, closer to p than to B2, and also closer
to p than B4(t) because the line-segments do not cross the (B3(r), B4(r))-bisector, which coincides
with the (B3(t), B4(t))-bisector. Thus we get a path strictly interior to a (p, B3(t))-face, and this path
connects points close to points in the two (p, B3)-faces in C(r).

We shall invoke Lemma 2.6. Let P be the plane through x normal to the edges’ tangents at x
in C(r). By requirement (viii) for fully general position, P is not perpendicular to the axis pc2, and
its intersection with the (p, B2)-bisector is a curve whose tangent is never perpendicular to that axis.
Therefore this curve can be parametrised as a path f(τ) satisfying the requirement of Lemma 2.6.
The pinch-point x = f(τ) for some τ ; without loss of generality x = f(0), and at τ = 0 df/dτ is
directed away from the plane through the two contact points and perpendicular to df/dτ . Lemma 2.6
discusses the growth of balls Bτ centred at f(τ) and touching p (and B2(t)).

As τ increases the two contact points of Bτ with B3(r) and B4(r) become interior to Bτ , so they
enclose small open neighbourhoods of these contact points. For s < r sufficiently close to r, these
neighbourhoods intersect B3(s) and B4(s). Since the ball B0 touching p with centre f(0) = x does
not, there exists a least τ ′ > 0 such that Bτ ′ touches B3(s) or B4(s). Let y = f(τ ′).

At t = 0, df/dt is not parallel to the (B3(s), B4(s))-bisector (a plane), and it is directed towards
B4(s) and away from B3(s). This holds for t sufficiently close to 0, so we can assume that y is
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closer to B4(s) than to B3(s), so it is interior to the (p, B2, B4(s))-edge in C(s), at positive distance
from B3(s). In other words, this edge exists in C(s). As previously we can argue that C(s) contains
(p, B3(s)) faces close to the (p, B3(r))-faces. Thus we have shown that two (p, B3)-faces merge at x.

Case (c): B2 and B3 are not expanding but B4 is. The common tangent to the two edges bounds
them on the right. Let e be the (p, B2, B3)-trisector. For s < r sufficiently close to r, all points in
e are closer to these three sites than to B4(s), and therefore the edge e bounds the same (p, B3)-face
near x in C(s).

If t > r is sufficiently close to r then x is closer to B4(t) than to the other three sites. Let
e be the (p, B2, B3)-trisector. Using the trisector monotonicity principle (Lemma 2.4) we can find
points u and v close to x and equidistant from p, B2, B3, and B4(t). They are vertices bounding a
(p, B2, B4(t))-edge. Points on this edge are at positive distance from the two (p, B3)-faces meeting u
and v. Thus near x one (p, B3)-face splits into two. Q.E.D.

(7.5) Transverse pinch-points. When a pinch-point v is on C(r), but the face being pinched is not
on C(r), then there is an edge e on C(r) containing v and another edge e′ tangent to e at v. We call
this a transverse pinch-point.

In comparing with pinch-points as previously discussed, the site p will play the rôle of B2, and
we shall suppose that the face being pinched is on a (B2(r), B3(r))-bisector. It is possible that B2 be
expanding. The fourth site B4(r) owns a cell D(r) in Vor(S(r)) touching C(r)

We take p, B2, B3, B4 in that order and classify the pinch-point according to which sites are ex-
panding: SSSE, SSES, SSEE, SESE, SEES, SEEE. The conclusions are as follows.

SSSE: Viewed from outside C(r), the (p, B2, B4(r))- and (p, B3, B4(r))-faces are on opposite
sides of their common tangent, so this is in fact a merge-point on C(r). Two (p, B4(t))-faces merge
into one.

SSES: This is a merge-point in our previous classification. The edges e, e′ get separated, C(t)
gets separated from D(t), whereas for s < r there is a (B2, B4(s))-face near v. A face is deleted.

SSEE: This is a merge-point in our previous classification. A face is deleted.
SESE: Same as SSEE.
SEES: Edges e and e′ get separated. A face is deleted.
SEEE: Edges e and e′ get separated. A face is deleted.

8 The upper bound
We consider the evolution of C(r) as r increases (up to the maximum radius occurring in S).

C(0) is a convex polyhedron with at most n−1 faces. As r increases, some of these faces become
curved, and new faces appear and disappear.
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(8.1) Lemma Let S be parametrised as usual by the coordinates of its centres. If S is in general
position, and S ′ is sufficiently close to it, then S ′ is in general position and Vor(S ′) is homeomorphic
to S.

Sketch proof. S ′ is in general position because the set of configurations in general position is
open, since polynomials are continous. If S ′ is sufficiently close to S then one can set up correspon-
dences between all features (sites, vertices, edges, faces) in each Voronoi diagram, and homeomor-
phisms connecting them.

(8.2) Lemma The structure of C(r) changes only at 5-site vertices or at pinch-points or transverse
pinch-points.

Sketch proof. If S(r) is in general position, then one can argue somewhat as in the previous
lemma that Vor(S(t)) is homeomorphic to Vor(S(r)) for t close to r. Also, if S(r) is degenerate but
the degeneracies do not affect C(r), then C(r) is homeomorphic to C(t).

Otherwise, C(r) must include 5-site vertices, or pinch-points, or transverse pinch-points. Q.E.D.

(Recall that two faces cannot touch in their interiors (Corollary 1.12)). The face-structure of C(r)
can change as follows.

• SSSSE vertex: a face is introduced.

• SSSEE vertex: a face possibly deleted, none introduced.

• SSEEE vertex: a face is deleted.

• SEEEE vertex: a face possibly introduced, none deleted.

• Merge point: two faces merge.

• Split point: a face splits.

• Transverse pinch-point of any other kind: two faces merge.

We are concerned mostly with when the number of faces increases. This is at SSSSE vertices,
at SEEEE vertices, and at split points. Overall, O(n) faces can be introduced at SEEEE vertices
(Corollary 6.10). When a face is introduced at an SSSSE-vertex, an SSSS vertex is deleted.

Let the radii of sites in S be listed

r0 = 0 < r1 < r2 < . . . < rk−1.

We consider the evolution of C(r) in k − 1 phases. In the j-th phase rj−1 < r < rj.
Suppose that an SSSS vertex is deleted in the j-th phase; by induction we can assume that C(rj−1)

has complexity O(n). At an SSSSE vertex, an SSSS vertex is deleted and an SSSE face introduced;
this can happen O(n) times in the j-th phase.

It remains to bound the number of faces added at split points during the j-th phase. So long
as such a face is incident to some vertex which can be counted, we have an upper bound. For this
reason we count the evolution of vertices at various events affecting C(r), as tabulated below. The ±
notation indicates the number of vertices of various kinds gained and lost at the event. For example,
at an SSSSE event, an SSSS vertex is lost and three SSSE vertices are gained. Events with the same
label can have different possible outcomes.
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Event type Vertices gained/lost
SSSSE vertex − SSSS +3 SSSE
SSSEE vertex bilateral −2 SSEE +2 SSEE
SSSEE vertex bilateral −2 SSSE − SSEE + SSEE
SSSEE vertex unilateral −2 SSSE − SSEE + SSEE
SSEEE vertex −3 SSEE + SEEE
SEEEE vertex −3 SEEE + SEEE
SEEEE vertex −2 SEEE + SEEE
SSSE merge point ignore
SSEE merge point ignore
transverse pinch ignore
split point +2 SSSE

The events which are ignored are events in which the numbers of faces, edges, and vertices all
decrease. The table shows that the total number of vertices increases only for two events: SSSSE and
split point. Each SSSSE event trades one SSSS vertex for three SSSE, so there are O(n) in the j-th
phase. The new vertices, created at SSSSE events and split points, are all of type SSSE. Let us call
those SSSE vertices created at split points split vertices. These are the only vertices on C(r) which
are created without removing some other vertex, and the only faces which are not accounted for by
considering incident vertices are those faces created by split events and bounded only by SSSE split
vertices.

Consider when an SS face is split by an SE face, as in Figure 8. The face is bounded by the
convex side of an SSS edge, and this edge touches an SSE edge. If the SSS edge bounds a (p, B2)
face on its concave side and a (p, B3) face on the other, and the expanding face is a (p, B4)-face, then

radius(B2) < radius(B3).

If there are more split faces (p, B5), (p, B6) . . . along the boundary of F then

radius(B2) < radius(B3) < radius(B5) < radius(B6) . . .

Therefore there cannot be more than j split faces occurring consecutively along the boundary
of F . Thus the number of split faces adjacent to F is proportional (the constant of proportionality
involves j, which is bounded) to the number of otherwise accounted vertices adjacent to F ; hence
there are O(n) faces on C(r). Summarising:

(8.3) Theorem C(r) has complexity O(n), hence Vor(S) has complexity O(n2).

Proof. The complexity bound on C(r) has been established as discussed with the aid of Corollary
4.5. The second part is immediate from 4.1. Q.E.D.

9 General position and complexity
We began with a set of n disjoint spherical sites, and selected a nearby set S ′ in general position, and
then another nearby set in fully general position. If S ′ has as many faces as S then its complexity is
at least that as S.
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This is not necessarily the case. When removing 5-site vertices, or coplanar sets of centres, it can
be shown that the number of faces cannot decrease (because the faces involved in Vor(S) are close
to similar faces in Vor(S ′)). However, this is not the case with pinch-points. When pinch-points are
removed the nearby faces sometimes stay separate and sometimes merge. It must be ensured that
faces do not merge.

Suppose x is a pinch-point involving a point-site p and sites B2, B3, . . . Bk, k ≥ 4, so the
(p, Bi, Bi+1)-edges all touch at x, leave the sites p, B2, Bk fixed and move the other sites slightly
away from p. Then x is interior to the (p, B2, Bk)-edge and the number of faces (2k−2) is preserved.

However, there may be other pinch-points which are displaced at the same time, and the total
number of faces may be reduced. The difficulty can be met. It is not necessary that the total number
of faces be preserved or increased, but the total number of faces incident to the p-cell in Vor(S ′),
where p is a point site.

Among all the pinch-points on the p-cell in Vor(S), let P be the set of sites which contribute an
outermost face to at least one pinch-point on this cell, and choose a site B of smallest radius in P . If
we move that site slightly closer to p then all pinch-points involving B are removed in the way that
we desired, i.e., the number of incident faces is preserved. Repeating the process we remove all the
pinch-points from the p-cell.

Having removed all pinch-points involving faces on the p-cell, we transform a configuration S
to a new one S ′ without any such pinch-points and with at least as many faces on the p-cell. Apply
the usual arguments to obtain a configuration S ′′ in fully general position and ‘close’ to S ′ when
considered as a point in R

3. Since S ′′ is in fully general position, the line-segment S ′S ′′ in R
3 is

not entirely in the zero-set of any of the polynomials whose vanishing is necessary to violate fully
general position. In other words, this line-segment contains only finitely many sets of sites (encoded
as points) not in fully general position. By moving S ′′ sufficiently close to S ′ on the same line-
segment, we can ensure that all configurations on the line-segment S ′S ′′, except perhaps S ′, are in
fully general position. In particular, there are no pinch-points on the cell owned by p in any of the
configurations between S and S ′′. It follows that in Vor(S ′′) the cell owned by p has at least as many
faces as in Vor(S).

10 The bound on number of radii is essential
The folllowing construction shows that the if the number of distinct radii is unbounded, then the cell
owned by a point site p can have quadratic complexity.

It is already known that cells in the Voronoi diagram of spheres can have quadaratic complexity,
and the question is studied in all dimensions in [3]. However, we believe that this particular result,
where the cell is owned by a point site, was hitherto unknown.

The construction begins in two dimensions. Let C be the circle with centre (0, 1) and radius 1; p
will be located at the origin, and C will be the clearance circle for the point (0, 1), which will be a
vertex of high degree.

(10.1) Lemma The discs Dk with centres (1/2k, 0) and tangent to C are all disjoint.

Proof. Note that for any a 6= 0, (1 + a/2)2 > 1 + a, so
√

1 + a < 1 + a/2.
The radius of Dk is
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Discs Dk and D` with k < ` have centres separated by the distance 1/2k − 1/2` ≥ 1/2k+1. The
sum of their radii is less than (1/4k + 1/4`)/2 < 1/4k. This is ≤ 1/2k+1 for all k ≥ 1, so the circles
are disjoint. Q.E.D.

Choose the discs D1, . . . , Dn as sites in a 2-dimensional Voronoi diagram. Then the centre of C
is a Voronoi vertex where the cell owned by p at the origin meets the n cells owned by the sites Di.
See Figure 9.

Now rotate the circle C and discs Di around the x-axis. The discs Di sweep out spherical sites Bi

in R
3. The centre of C sweeps out a circle E which is in fact the (degenerate) Voronoi edge closest

to p and the n sites Bi. The highest point (0, 2) sweeps out a circle P .
The rotated circle C produces a (pinched) torus T of which P is the largest bounding circle. The

torus T is also the region swept out by the clearance spheres centred on the circle E. If we place
n point-sites p1, . . . , pn on the bounding circle P , as a point x sweeps around the circle E, then its
clearance sphere touches each one of these sites in turn.

Now displace the points pi slightly inside the torus, so that the point sites pi now contribute n
faces to the cell of p in the Voronoi diagram. The circle E is broken up into n Voronoi edges, still
degenerate.

Finally, expand the sites Bi, i = 1, . . . , n− 1, so that the single circle E, a degenerate edge, splits
into n − 1 circular edges close to E. The faces contributed by the pi split each of these circles into n
edges, so the resulting Voronoi cell has more then n(n − 1) edges with 2n + 1 sites. In other words,
it has quadratic complexity.

The general idea is illustrated in Figure 10.
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