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Abstract

In this paper we consider the Dirichlet problem for a singularly perturbed elliptic
equation of convection-diffusion type on a rectangular parallelepiped. For such a problem,
e-uniformly convergent monotone difference schemes on piecewise uniform meshes are
well known; their e-uniform order of accuracy does not exceed 1. Based on solutions of
finite difference schemes on piecewise uniform embedded meshes by using the Richardson
extrapolation technique, we construct a numerical solution that converges e-uniformly
with the second (up to a logarithmic factor) order of accuracy. The given technique
can be applied to the construction and justification of higher-order accurate numerical
solutions for n-dimensional problems, where n > 3.

1. Introduction

Special numerical methods for singularly perturbed boundary value prob-
lems are at present developed sufficiently well (see, e.g., [1-4]). These methods,
in contrast to methods for regular boundary value problems (see, e.g., [5, 6]),
allow us to obtain discrete solutions that converge uniformly with respect to a
perturbation parameter ¢ (i.e. solutions convergent e-uniformly). In the case of
singularly perturbed boundary value problems for reaction-diffusion equations,
special finite difference schemes have the e-uniform order of accuracy close to
two. However, for convection-diffusion equations the e-uniform order of ac-
curacy is not higher than one (see, e.g., [1-4, 7-9] and also the bibliography
therein). Note that the most part of known results concerns problems in one and
two dimensions; many-dimensional problems are considered only in [1]. Since
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the efficiency of numerical methods is largely defined by their convergence rate,
interest arises in the construction of special schemes for convection-diffusion
problems whose order of convergence is higher than one. It is very attractive to
use a technique which allows us to construct such high-order accurate methods
for many-dimensional problems.

Effective methods for constructing approximate solutions with increased or-
der of accuracy for regular boundary value problems are the Richardson and de-
fect correction methods (see, e.g., [5, 10, 11] and also the bibliography therein).
In the case of singularly perturbed boundary value problems, the defect cor-
rection method is applied in order to increase accuracy with respect to the
time variable for nonstationary boundary value problems of reaction-diffusion
in [12, 13] and convection-diffusion in [14, 15]. The improvement in accuracy of
solutions with respect to the space and time variables for singularly perturbed
nonstationary reaction-diffusion problems by using the Richardson method is
considered in [16]; the improvement in accuracy of solutions for singularly per-
turbed elliptic convection-diffusion equations on a strip is studied in [17, 18].

Note that grid constructions on uniform meshes are essentially used in the
construction and justification of the defect-correction and Richardson methods
for regular boundary value problems. In the case of singularly perturbed equa-
tions, for sufficiently large classes of boundary value problems it is necessary
to apply the condensing (in the boundary layer region) mesh technique for e-
uniform convergence (see, e.g., [1, 19]). Thus, in order to construct schemes
of higher-order accuracy for boundary value problems, in particular, for sin-
gularly perturbed equations, the most attractive is a technique based on the
defect-correction and Richardson methods, which uses nonuniform meshes.

In the present paper we consider a boundary value problem for a singularly
perturbed elliptic convection-diffusion equation on a rectangular parallelepiped.
For such a problem, the known special difference scheme from [1] on piecewise
uniform meshes converges e-uniformly, however, its e-uniform order of accuracy
does not exceed one. Based on solutions of finite difference schemes on piecewise
uniform embedded meshes by using the Richardson extrapolation technique, we
construct a numerical solution that converges e-uniformly with the order of ac-
curacy close to two. To justify the convergence of the numerical solution we use
expansions of solutions of special difference schemes with respect to the effec-
tive step-size of the mesh domain. Coefficients in the expansions of solutions of
the difference schemes (their regular and singular components) are defined from
solutions of the corresponding singularly perturbed boundary value problems.
The same technique can be applied to the construction of discrete solutions with
improved order of accuracy (of the second order up to a logarithmic factor) for
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boundary value problems in more than three dimensions.
2. Problem formulation

1. On the rectangular parallelepiped D, where
D={z:0<z,<d;, s=1,2,3}, (2.1)

we consider the first boundary value problem for the elliptic equation !

Logyu(z) = f(z), €D, u(z)=¢(), vcl. (2.2a)
Here I'=D\ D,
@ O - o’ : 0
2 1 _ _
Lag) = L(z.z) + L(2. = Z 5132’ %2 2) = Z bS(x)ax — c(z),
:]_ 3:1 s

, f(z), z € D, ¢(z), x € I are sufficiently smooth functions,
., 6 are faces of the set D, I' =UI}, I'; = I'j, moreover
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ag < as(z) < a’, by < by(x) < B, c(z) >0, (2.2b)
reD, s=1,2,3, ap, by > 0;

the singular perturbation parameter € takes arbitrary values in the half-open
interval (0, 1].

We suppose that on the set I'*, i.e. on the edges of D, compatibility con-
ditions are satisfied which ensure the sufficient smoothness of the solution of
problem (2.2), (2.1) for each fixed value of the parameter.

We use the following notation. The faces I, Ij43, 7 = 1,2,3 of the set D are
orthogonal to the z;-axis; I, I and I's contain the vertex (0,0,0). By I'" (by
I't), we denote that part of the boundary I' across which the characteristics
of the reduced equation passing through the points z € D leave (enter) the set
D, I~ =U_ I}

When the parameter € tends to zero, a boundary layer appears in a neigh-
bourhood of the set I'~. This layer is regular in the neighbourhood of the
smooth parts of '~ and is elliptic (corner) in the neighbourhood of the inter-
section of the faces I, 7 = 1,2, 3.

For the boundary value problem under consideration it is required, by using
the Richardson extrapolation technique, to construct a discrete solution that
converges e-uniformly with the order of accuracy higher than 1.

! Throughout the paper, the notation L; xy (M(j.x), Gn(j.r)) means that these operators (constants, grids)
are introduced in formula (j.k).



About the contents. Discrete constructions related to problem (2.2), (2.1)
are considered in Sections 4, 5 and 6. A prior: estimates for solutions of prob-
lem (2.2), (2.1) used in the constructions are discussed in Section 3. In Section 4
we examine a variant of the Richardson method on special embedded meshes
where the transition points of piecewise uniform meshes remain fixed when
these meshes are refined. Conditions imposed on the width of the finer part
of the mesh (in the boundary layer region) that are necessary to construct ap-
proximate solutions with the increased e-uniform order of accuracy are given in
Section 5. Expansions of solutions to finite difference schemes and approximate
solutions of the improved order of accuracy are considered in Section 6. When
performing the discrete constructions and justifying convergence of the approx-
imate solutions, the majorant function technique is used (see, e.g., [6, 20]).

3. A priori estimates of solutions and derivatives

1. In this section we discuss a prior: estimates of solutions and derivatives
for the boundary value problem (2.2), (2.1); the derivation of the estimates is
similar to that in [1].

1.1. Using the majorant function technique (see, e.g., [20]), we find the
estimate 2

lu(z)| < M, ze€D. (3.1)
We represent the problem solution as the decomposition
u(z) =U(z) +V(z), z €D, (3.2a)

where U(z) and V(x) are the regular and singular components of the solution.
The function U(z), = € D is the restriction, onto D, of the function U%(z),
z € D°. The function U O(z), = € D" is the solution of the boundary value
problem

LoU%z) = f%z), =€ D’ U%z)=¢%z), el (3.3)

Here D is the VII-th octant (opposite to the first octant), which is an exten-
sion of D beyond the sides I, I and I3 (the intersecting planes forming this
octant contains the sides I'y, I'; and I'g); the data of problem (3.3) are smooth
continuations of the data of problem (2.2), (2.1) that preserve properties (2.2b)
on ﬁo; L0 = [%?) 4 %), We assume that the functions f°(z) and ¢°(z),

2 Here and below M, M; (or m) denote sufficiently large (or small) positive constants which do not depend
on ¢ and on the discretization parameters.




x € D’ are equal to zero outside an m;-neighbourhood of the set D. The
singular component V' (z) is the solution of the problem

LoyV(z)=0, z€D, V(z)=¢px)-U(z), ze€l. (3.4)
The regular component U(z) is decomposed into the sum of functions
U(z) = Up(x) + eUs(x) + - -+ + "Up(z) + vy(z), z € D, (3.2b)
which corresponds to the following representation of the function U%(z):
U'z) = Ud(z) + eU%z) + -+ + "U%z) +%(z), z€D’;  (3.5a)

U(z) = U%x),...,oy(z) = v¥(z), = € D, where U’(z) is the solution of
problem (3.3). In (3.5a) the components UJ(z) and UP(z), i = 1,...,n are
solutions of the problems

L Us(z) = f(), =D’ \I™, (3.5b)

We consider that the data of problem (2.2), (2.1) (in addition to the com-
patibility conditions on the set ', which ensure the smoothness of the solution
u(z)) satisfy supplemental conditions on the set I™**=I"*N{I"\ '~} that ensure
the sufficient smoothness of the functions U{(z) and U?(z), i =1,...,n. It is
not difficult to write out such conditions, for example, in that case when the
boundary function ¢(z) together with its derivatives vanishes on the set I'*.

For simplicity, we suppose the following inclusions to be satisfied:

= Cn+2+a(ﬁ)7 Ui c C3n+2—2z‘+a(ﬁ)’ (3.6)
1=0,1,...,n, n>1, «a>0.

In this case U € C"2+%(D) is true; for U(x) and V (z) we obtain the estimates

319
kin k2q, ks
0z 05 0%,

|V(z)| < M exp(—me_lr(w,F_))a z €D,
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where r(z, ') is the distance between the point z and the set I'~, m is an

arbitrary number in the interval (0,mg), mo = min[a;'(z)bs(z)]; K = n + 2
S’

if the data of problem (2.2), (2.1) are sufficiently smooth.

1.2. We now present estimates for derivatives of the function V(z). The
function V(z) is decomposed as

3 3
= Z Vb) (:1:) 4+ Z Wj,j+1) (33) + ‘/(17273) (3]), T € D. (32C)
j=1 j=1
Here V{;)(z), V(;j+1)(z) and V{1 23)(z) are respectively one-dimensional, two-
dimensional and three-dimensional boundary layers; V{; j11)(z) = V(1,3 (z) for
j=3

The functions V;(z) and V{; j+1)(z), © € D are the restrictions on D of the
functions

V(O') (z), x€ E(J')5 V(?,j+1) (z), =€ ﬁ(j,j+1)- (3.8)

Here E(j) is a slab in D" containing the faces I, Iy, I's and I§, and ﬁ(jjjﬂ) is
a cylinder in D’ that is the intersection of the slabs E(j) and ﬁ(jﬂ).
The functions V(?.) (x) are solutions of the boundary value problems

Ly 3V () =0, z € Dy, (3.9a)
‘/(0) (3;) = (p((]j)(x), €T &€ F(j), ] = 1, 2, 3. (39}3)

The function cp((’j)(:c) = ¢(z) — U%x), z € I|; satisfies the condition

{ o(z) —U(z), =€ Ij.

0, rzel™;

This function cp(()J)( z) vanishes outside the m-neighbourhood of the set I';. The

functions V% . | (z), = € Dy;;+1) are solutions of the problems

(j,g+1

)
L3 3V 441 (@) =0, z € D(jjt),

Vi (@) = ¢ (@), @€ L, 5=1,23.
The function cp((]j j H)(a:), being smooth on the faces Dy; ;11), vanishes on the set
r +(D(j,j+1)) and satisfies the condition

+ 3 Vig@) + Qa0 = 0@), T, s=jj+1.
s=7,5+1



For the components in the representation (3.2c) we have

ak
Via(z)| < Me™® + el Flexp(—melr(z, I})), 3.7b
axlflaxgzaxigg (J)( )| < M| J exp( ( J)) ( )
o 1-k 1
e Vi (@) < M + e exp(—me (e, U Tan)),
1 0Ty O3
o k 1
Vi )| < Me " exp(—me r(x, 7)),

re€D, j=1,2,3, k<K, K=K(n)=n+2,

where sy = s1(k1, ko, k3,7), 51 = ki for j =1, s9 = s2(k1, ko, k3, 7), s2 = ki + ki1
for j = i; otherwise s1(k1, ko, k3, 7) and sa(k1, ko, k3, 7) are equal to zero; k;y1 =
ky for @ = 3, I’y = I for j = 3; m = m3.7a).

The following estimates are also valid:
oF _

uw(z)] < Me™* 2zeD, k<K. 3.10
S (@) < - (3.10)

Theorem 3.1. Let the condition as, bs, ¢, f € C*2 (D), ¢ €
C3t2te(D) s = 1,2,3, n > 1, a > 0 be valid for the data of the boundary
value problem (2.2), (2.1), and let its solution and the components U;(z) in the
representation (3.2b) satisfy condition (3.6). Then the solution of the boundary

value problem and its components in the representation (3.2) satisfy estimates
(3.7) and (3.10), where K = n + 2.

4. Monotone difference schemes

In this section we give an e-uniformly convergent difference scheme for prob-
lem (2.2), (2.1). We will use solutions of this scheme in order to construct
numerical solutions with the increased order of accuracy.

1. On the set ﬁ(g_l) we introduce the mesh

Eh = w; X Wy X Ws, (41)

where w; is a mesh on [0, dy]; in general, the mesh w; is non-uniform. Suppose
that hl = 2 — 2t 2' 2t € &,, hy = max; h%, h = max, h,. We assume
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that the condition h < M N1 holds, where N = min[Ny, No, N3]; N, + 1 is the
number of mesh points in w;.

On the mesh Eh(4.1), we approximate the boundary value problem (2.2), (2.1)
by the difference scheme

Az(z) = f(z), z € Dy, =z(z)=p(z), =& I}. (4.2)

Here Dh:DﬂEh, thpﬂﬁh,

Az(z) = {6 Z as(z)0zz5 + Z bs(z)dys — c(w)} z(z),

s=1

dzs2(x) and dzz732(x) are the first and second difference derivatives; for example,
6—=z(z) =2 (b + R bm2(z) — 632(2)], = = (28, 29, 23).

The difference scheme (4.2), (4.1) is monotone [6] e-uniformly on a mesh
with an arbitrary nodal distribution.

In the case of uniform meshes
ﬁh = Wi X Wy X W3, (43)

where W, are uniform meshes on [0, ds], s = 1, 2, 3, the convergence for solutions
of the difference scheme, by taking account of the a prior: estimates, is verified
under the condition h = o(¢) with the error estimate

lu(z) — 2(z)] < MN'(e+ N7, z € Dyus). (4.4)

2. We now consider a scheme on piecewise-uniform meshes.
On the set D we construct the mesh

D, =w' X wh X wi. (4.5a)

Here w} is a mesh with piecewise-constant step, s = 1,2,3. To construct the
mesh w! we divide the segment [0, d] into two parts [0, 04 and [o5,ds]; o5 is
a parameter from the interval (0,d;). The step-sizes of the mesh are constant

on each of the subintervals and equal to A" = 20,N;1 on [0,0,] and pY =
2(ds — o5)N 1 on [0,,d,]. Assume

o5 = 0s(e, Ny, dg;1,m) = min[27'd,, Im*eIn N,], s=1,2,3, (4.5b)

where m = m37), [ > 0 is a parameter of the mesh. The meshes @}, and hence
the mesh
D, = D; (1) (4.5¢)
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have been constructed.
To approximate problem (2.2), (2.1), we use scheme (4.2) on the mesh

D}, = Dyus(l=1). (4.6)

For solutions of the difference scheme (4.2), (4.6) we obtain the estimates
lu(z) —z(z)] < MN~'InN, z e D,; (4.7)
lu(z) — 2z(z)] < MN ' minfe™, InN], z € D;. (4.8)

Definition. Let the function z(z), * € D be a solution of some scheme,
and let the following estimate hold for this function:

lu(z) — 2(z)| < M u(N7Y ¢), =€ Dy, (4.9)

where u(N—1, ¢) — 0 as N — oo for fixed values of the parameter e. We say
that this estimate is unimprovable with respect to the values of N and ¢ if the
estimate

lu(z) — 2(z)| < M po(NY, €), z € Dy,

in general, fails in that case when pg(N71, ¢) = o(u(N71, ¢)) at least for some
values of the parameter ¢, ¢ € (0, 1].

Estimates (4.4), (4.8), i.e. e-dependent estimates for errors of the discrete
solutions, are unimprovable with respect to the values of N and ¢, and the
e-uniform estimate (4.7) is unimprovable with respect to the values of N.

Theorem 4.1. Let the solutions of the boundary value problem (2.2), (2.1)
satisfy a priori estimates (3.7), (3.10) for K = 3. Then the solution of the
difference scheme (4.2), (4.6) converges to the solution of the boundary value
problem at a rate of O(N~11In N) e-uniformly as N — oo. For the discrete so-
lutions the error estimates (4.4), (4.7) and (4.8) are valid; estimates (4.4), (4.8)
and (4.7) are unimprovable with respect to the values of N, € and N respectively.

5. Necessary condition for improving the accuracy by the Richard-
son method

1. The Richardson (extrapolation) method to increase accuracy of mesh
solutions for regular boundary value problems is fairly well developed in the
case of difference schemes on uniform meshes (see, e.g.,[10]). This method uses
an expansion of the discrete solution in power series with respect to the step-size
of the mesh domain, where the coefficients of this expansion are independent of
the value of the step-size. The linear combination (extrapolation) of the mesh

9



solutions on meshes with different step-sizes, applied in the method, allows us
to increase accuracy of the discrete solution.

We mention the Richardson method that was applied in [10] to solve ordi-
nary differential equations with discontinuous coefficients, where finite differ-
ence schemes on piecewise uniform meshes were used. The step-sizes of such
meshes on those parts where the coefficients are smooth were commensurable.

We consider the Richardson method in the case of problem (2.2), (2.1).

At first, we introduce some definitions. We say that a mesh Dj is e-uniformly
dense on D, if variations of the function u(z) (i.e. the solution of the boundary
value problem (2.2), (2.1)) in neighboring nodes of the mesh ESL tend to zero
e-uniformly as N — oco. Let a discrete solution z°(x) have been constructed
on some e-uniformly dense mesh Ez by using the Richardson method, and
moreover

lu(z) — 22(z)] < MN™, z €D,

We say that the function 2°(z), z € ﬁz converges e-uniformly with the order
higher than one if v > 1, and strictly higher than one if v > 1 + m;.

2. We now describe the Richardson method used to improve accuracy of dis-
crete solutions on the basis of special difference schemes of the form (4.2), (4.5).

In the case of scheme (4.2), (4.5) the mesh region D), and the discrete solution
z(z), z € EZ are defined by the scheme parameters N;, Ny, N3 and by the
perturbation parameter €. Associated with this base scheme, it is required to
construct “daughter” difference schemes, whose solutions have the same main
terms of the expansion with respect to some effective “mesh step-size” as the
solution of the base scheme. It is convenient to use the value N~! as the effective
mesh step-size. For the daughter difference schemes we introduce the meshes

D =wih x @it x @ik, (5.1)

k

where @’" are piecewise-uniform meshes whose step-size on the segments [0, o

and [0y, ds] is k times larger than the step-size in the basic mesh @* s(4.5)) EZ =

ﬁ;k(l) In the daughter meshes W:* = @W:*(0?), 0¥ = o545)(N

5(4.5

0 is independent of k. We denote the solution of problem (4. 2) (5
—xk
T € Dh

For the uniform meshes (4.3) the meshes EZ are defined in a similar way.
In the case of the base scheme (4.2), (4.6), we use the meshes

—xk —xk
D, = Dh(5.1)(l - 1)- (5-2)

)); the value
1) by 2 (=),

3. Let us look over requirements that are necessary for using the Richardson
method in the case of meshes (4.6), (5.2).
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3.1. We consider a model example. Let on the semiaxis D, where
D = (0, 00), (5.3)
it be required to solve the boundary value problem

& d
Lu(z) = {é‘w + %} u(z) =0, ze€D, ulz)=¢(x)=1, z€l, (54)
moreover, u(z) — 0 for z — oo.

On the set (5.3), we introduce a uniform mesh

Dy, (5.5)

with the step-size h = N~1. To solve problem (5.4), (5.3) we use the difference
scheme

Az(z) = {ebz + 0.} 2(x) =0, x € Dy, (5.6)

z2(z) = p(z), ze€l'; z(z)—>0 for z— oco.

Let zFo(z), = € Ezo be the solution of problem (5.6) on the mesh

D)’ (5.7)

whose step-size equals kgh, where ky > 1. Let
D, =D,nDy. (5.8)

Using the functions z(z), z € Dy, and z*(z), z € D,’, we construct the discrete
solution

L(z) = vz(z) + (1 —9)2"(2), =€ 52.

It is necessary to find the coefficient «y for which the function 2°(z), z € ESL con-
verges e-uniformly. Note that the solution of the difference scheme (5.6), (5.5)
(as well as scheme (5.6), (5.7)) does not converge e-uniformly to the solution of
problem (5.4), (5.3).

Considerations of explicit solutions to the boundary value problem (5.4),
(5.3) and schemes (5.6), (5.5) and (5.6), (5.7) show that there does not exist
a parameter v for which the function 2°(z), * € D, converges e-uniformly as
N — oo.

Thus, in the case of singularly perturbed boundary value problems (2.2),
(2.1) and base schemes (4.2), (4.3) (schemes on uniform meshes) the Richardson
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method does not allow us to construct approximate solutions that converge e-
uniformly. Note that the mesh ﬁz(s.s) in the case of problem (5.4), (5.3) is not
e-uniformly dense on D.

3.2. On the unit segment D, where

D =(0,1), (5.9)
we consider the problem
Ligyu(z) = 0, z €D,

u(z) = p(z), ze€l, ¢0)=1, ¢(1)=0. (5.10)

On D59, we construct the mesh
D, =@, (5.11)

where W] = Wy, 5 (01) for o1 = min[271, Im~!eln N], m is an arbitrary number
from the interval (0,1), I = 1. We approximate problem (5.10), (5.9) on the
mesh (5.11) by the following difference scheme:

Ase 2(z) =0, z€D;, z(z)=p(x), zclj. (5.12)

Let 2M(2), z € Ezko be the solution of problem (5.12) on the piecewise-
uniform mesh tho. Using the functions z(z), z € D,, and z%(z), z € D", it

is required to construct the discrete solution
D(z) = yz(z)+ (1 —y)2P(z), z € EZO

that converges e-uniformly with the order strictly higher than one. Here EZO =

D, N E;;ko. Note that the mesh ﬁ;o is e-uniformly dense on D in the case of
problem (5.10), (5.9).

The examination of explicit solutions to the boundary value and difference
problems shows that the following estimate is attainable for their solutions (by
virtue of a choice of ms 11):

u(z), 2(z), 2M(z) > mN™1" for 2 =051, (5.13)

for an arbitrarily small value of & > 0. Considering the boundary value and
discrete problems for x > 0y(5.11), we justify that there does not exist a function

(), v € ﬁ;o for which the following estimate is satisfied:

|u(x) — zo(a:)| < MN™ 1720 g ¢ 320, o = Q(513)-
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Thus, in the case of singularly perturbed boundary value problems (2.2),
(2.1) and base schemes (4.2), (4.6) the Richardson method does not allow us
to construct approximate solutions that converge e-uniformly with the order
strictly higher than 1.

Theorem 5.1. In the case of the base scheme (4.2), (4.6) and the daugh-
ter schemes (4.2), (5.2) the Richardson method does not allow us to construct
discrete solutions with e-uniform order of accuracy strictly higher than 1 on
e-uniformly dense meshes in D.

3.3. Studying schemes (4.2), (4.5) and (4.2), (5.1) under the condition
[>n, n>1, (5.14)
we arrive to the following statement.

Theorem 5.2. The condition (5.14) is necessary for achieving the order of
e-uniform convergence higher than n (on e-uniformly dense meshes) for the
Richardson method using the base scheme (4.2), (4.5) and the associated (daugh-
ter) schemes (4.2), (5.1). Under the condition | = n, the Richardson method
does not allow us to construct discrete solutions with e-uniform order of accu-
racy strictly higher than n on e-uniformly dense meshes in D.

6. The Richardson method for problem (2.2), (2.1)

1. We will find a discrete solution of the boundary value problem (2.2), (2.1)
with the order of accuracy close to two in the form

L(z) = yz(z) + (1 = 9)2(z), z € ﬁ;o, (6.1)

where 2(z), z € D, and 2 (z), z € ﬁ;ko are solutions of the difference schemes
(4.2), (4.5) and (4.2), (5.1) under the condition

=2 (6.2)

The coefficient v in (6.1) is defined by expansions (two first terms) of the func-
tions z(z) and 2™ (z) with respect to the value N~!, where N = Ny 5. We con-
struct these expansions of the functions assuming that the values o5, s = 1,2,3
for the meshes EZ and Ezko are the same, 0, = 0445)(l = 2). Note that the
leading first terms in the expansions of the functions z(z) and z*(z) are the
function u(z), i.e. the solution of the boundary value problem (2.2), (2.1).

2. It is convenient to discuss the concept for the construction of expansions
with a model example.
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2.1. On the segment D, where
D = (0,dy), (6.3)

we consider the boundary value problem

Lu(z) = {ad—2 +b(z) L - c(x)} w@) = f@), zeD,  (6.4)

u(z) = (), zel};

the functions b(z), c¢(z), f(x) are sufficiently smooth, moreover, b(z) > by > 0,
c(z) >0, z€D.
On D, we construct the piecewise uniform mesh

D, =i, 1=2, (6.5)

where W} = 51(4.5)(01), o1 = o145 (6,N1,dy;l = 2,m), m is an arbitrary
number from the interval (0, my), mo = min[b(z)].
D

Problem (6.4), (6.3) is approximated by the difference scheme
Az(z) = {ebzz +b(x)d, — c(z)} z(z) = f(x), x € Dy, (6.6)
z(z) = p(z), =€ I}

We introduce the notation. Let v(z), z € D be a sufficiently smooth function.
By z,(z), z € Dy, we denote a solution of the problem

Az(z) = Lv(z), = € Dy, =z(z)=v(z), x € I[}.

We decompose the solution of problem (6.4), (6.3) into the sum of its regular
and singular components:

u(z) =U(z)+V(z), =€ D. (6.7a)

In a similar way, the solution of the discrete problem (6.6), (6.5) can be repre-
sented in the form

2(z) = zu(z) + zv(z), =€ D,. (6.7b)

2.2. We now find an expansion of the function zy(z).
For the function wy(z) = 2y (z) — V(z), # € D,, i.e. a component of the
truncation error for the solution of problem (6.6), (6.5), we have the relation

Awy(z) = (A= L)V (z) =

= (5@? - dd—;) V(z) + b(z) (6;,; = %) V(z), z€ D,

14



where

(62— 15 Vi

MN_I, r =0y,
(A= L)V(z)| < s 1 . @)
MN=2(e+ N D lexp(—me™(z — 01)), > o1+ Mihy”;

d 1,0 &
(o 2] - Y

Thus, the largest discrepancy of wy (z) is caused by the particular truncation

€ < Me_?’(hgl))QeXp(—me_lx), T < 0y;

< Me3(hiY)2exp(—mez), = < o3

z € Dy.

error p »
o — —)V(z) ~ 27 'YV =V (z

on the subdomain x < o1; this component contributes to the total error with an

error of order ¢! hgl). The remainder part of the truncation error gives a con-

tribution to wy(z) not exceeding the magnitude ]\46‘2(h§1))2 <M N~21n®N.

We introduce the function Vi(z), z € D, i.e. the solution of the boundary

value problem
d2
dz?

The function V;(z) satisfies the estimate

LVi(z) = —o1b(z)—=V(z), ze€ D, Vi(z)=0, zel. (6.8a)

Vi(z)| < M In N exp(—me™'z), z € D, (6.8b)
moreover,
(A — L)Vi(z)] < Me™'N7'In®> Nexp(—me~'z), =z € D}, = <oy.
Thus, for the function wy(z) — N71Vj(z) we obtain the estimate
|Alwy (z) — N7V (z)]| < Me'N~2 In* N exp(—me'z), z € D}, z<o;.
Taking account of the given relations, we find
|zv(z) — (V(z) + N"'Vi(z))| < MN*In’ N, z € D;.
Thus, we have the following expansion for the singular component zy (z):
2 (z) = V(z) + N"Wi(z) + pv(z), = € D, (6.9)
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where |py(z)| < MN~2In*N, z € D,.

2.3. An expansion for the regular component zy(z) in the representation
(6.7b) can be constructed in a similar way. We obtain the following expansion:

2v(z) = U(z) + N~ () + py(z), =€ Dy, (6.10a)
which can be verified directly. Here
U(z) = Uj(z) + Ul(z), =€ D, (6.10b)

the functions U{(z) and UZ(z) are solutions of the problems

d2
LU} (z) = —alb(w)ﬁU(x), reD, Ul(z)=0, zeT; (6.11a)
Hi

LU2(z) = { —(di— 201)b(x)cid_af2U($)’ T } , z€D, (6.11b)
0, T >0
Ui(z)=0, ze€l.
For the components Uj(z), UZ(z) and py(x) we obtain the estimates
|Ui(z)| < M, |Ui(z)| < Moy, z€D, (6.10c)
lpu(z)| < MN2InN, zeD,.

2.4. The expansions (6.9) and (6.10) imply the following expansion for the
function z(z), € D, i.e. the solution of problem (6.6), (6.5):

2(z) = u(z) + N uy(z) + pu(z), = € Dy, (6.12)
where
un() = Ui(2) + Vie), ¢ € D, pule) = pur(e) + pv(e), @ € D},
moreover,
lui(z)| < MInN, z €D, |p(z)]<MN2In’N, z € D, (6.13)

. —=*k . .
For the function z*(z), = € D, ', we obtain the expansion

2 (z) = u(z) + kN ur(z) + plo(z), z € ﬁ;ko, (6.14a)
where u1(z) = u(6.12)(), and also
P (z)| < MN2In? N, z € D" (6.14b)
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It follows from expansions (6.12), (6.14a) and estimates (6.13), (6.14b) that
the function

2L(z) = vz(z) + (1 —9)2"(z), =€ ﬁ;o, (6.15)
where z(z) and 2% (z) are the solutions of problem (6.6) on the meshes ﬁz(ﬁf,)
and D;°, with

v =" =ko(ko— 1), (6.16)
satisfies the estimate

lu(z) — 2°(z)| < MN~2In’N, z € EZO. (6.17)

Theorem 6.1. Let the data of the boundary value problem (6.4), (6.3) sat-
isfy the condition b, ¢, f € C**(D), o > 0. Then the function z?6'15)(a;),

T € ﬁzo, i.e. the numerical approximation by the Richardson method based on

solutions of the difference scheme (6.6) on the meshes 32(6‘5) and ﬁ;ko, under
the conditions (6.2) and (6.16) converges to the solution of the boundary value
problem (6.4), (6.3) e-uniformly at a rate of O(N~2In* N) as N — oo; for
the functions z(z) and z*(zx) the ezpansions (6.12) and (6.14) are valid, and
estimate (6.17) holds for the function 2°(x).

3. We determine a discrete higher-order accurate solution of problem (2.2),
(2.1) by the relation

L(z) = yz(z) + (1 —9)2"(2), =€ EZO, (6.18a)

where 2(z) is the solution of problem (4.2), (4.5), and 2% (z) is the solution of
problem (4.2) on the mesh ﬁ;;ko. Here

D' =D.nD" D =w*xwixwt, D' =D;"(1), (6.18b)

*xk

where W}

= w0, 5=1,2,3;
y=9" =ko(ko—1)7", 1=2; (6.18¢)

the value kj is, in general, arbitrary, kg > 1.
We suppose that the data of the boundary value problem (2.2), (2.1) and the
components of its solution in the representation (3.2) are sufficiently smooth.

Then the function 2?6_18)(:1:) satisfies the estimate

lu(z) — 215 (¢)| < MN210®N, z € Dj, - (6.19)
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This estimate can be proved by using expansions for the functions z(z), = € ﬁ;
*ko
and zF(z), z € D, .

4. We now construct expansions for solutions of the difference schemes (4.2),
(4.5) and (4.2), (5.1) in the case of condition (6.2).

The decomposition of the continual solution u(z) of the boundary value
problem (2.2), (2.1)

u(@) =U()+ Y _ Vip(e)+ Y V(@) + Vass(e), z€D  (6.20)

j=1 j=1

(see, for example, representation (3.2)) corresponds to the discrete decomposi-
tion of the solution z(z) of the finite difference scheme

3
Z + ZZV(J) + Z ZV(JJ+1) + ZV(123)( )’ T € Dh; (621)
J=1 =

here j+1 =1 for 7 = 3.
4.1. We consider the singular components from (6.21). The function
2V, 44 () is Tepresented as a sum of functions

3
W (@) = Viag (@) + N7 Viaogi(@) + oy, (2), @ €Dy, (6.22)

=1

N = N5), where V{1 23)i(z), © € D are solutions of the boundary value prob-
lems
82
LeayViasi(z) = —oi N N7 bz )8332 Ve (z), €D,

7
‘/(1,2,3)2'(:17) = 07 (S Fa 1= 17273'
The function 2y, ,, (z) is decomposed into the sum of functions
2V, 5 () = Ve (2) + N~ Z Vijj+i() + pv, 0 (T), T € Dy; (6.23)
i=1
where the function V{; j11);(z) for ¢ # j, 7 + 1 has the following representation:
3 J—
Vigeni(z) =Y Vlii(z), z€D, i=1,23.
k=1

18



The components from (6.23) are restrictions of the functions V((; j+1)(@) and
V&Hl)i(a:), z € D(;j+1)38)- These functions V“+1) () and their components

V(’J“(} ) ;(z) are solutions of the problems

_ 0?
LoyVjeni(®)=—0i NN bi(2) 55V i) (@) @ € D),

1
V((J)',j+1)z‘(“7):07 €I+, 1=757+1
0? 0
3$,V(m+1)( z), =€ Dijjp,

?

Loy Vi i(@) = — (di — 07) NN; by (o)

Vé?jﬂ)z‘(x):(), z € I 41);

(d; — ;) NN 1b(z) 83 2vom)(ag), 2 < 0y

LV yi(z) =
0, x; > 0;

J,J+1)i

2 € D) \ T(jjryies,

Vig+ni(@) =0, @ € I riss;
Lz, Z)V(??JH) z)=—{Laa — L }V Girni(T); T € Dijjry,
Viijeni(®)=0, @€ Ijjymis; i7#4,5+1, i=1,2,3

Here V(?’JH) (z) = V(?’,jﬂ)(:s.s)(x)’ T € E(j,j+1)v

L; = aa,-(:l:)a— + b@(a:)i —ci(z), c(z) = Zci(:c), i=1,2,3.

dz? Oz; —
The function 2y, (z) has the expansion
2, (z) = Vi (z) + N~ 121/ z) + py, (), = € Dy, (6.24)

moreover, V{;y(z) for ¢ # j has the representation

3
k=1

The components from (6.24) are restrictions on D of the corresponding compo-
nents that are solutions of the problems
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% .

(@) =—0;NN; 'b;(z) (z), =€ D,

LpgVij), (9:[:?V<j)
V() =0, @€ Ty, i=j;
10 1 0% o
LeayVii(e)=—(di — o)) NN bi(z) 5 5V (2), = € D),

V(l-o-(ilj):(), T cC F(j);

— 9% 1,0
(dz — O'l)NNl 1bl($) {V (3;), T; < 0; _
0, T; > 0;

V(@) =0, = € Ljs;

LeayViyi(z)=—{Les — Li} Vii(z), = € Dy,

Vi(e)=0, zely; i#j, i=123,

where V) (z) = V() 35(2), = € D).

4.2. The regular component zy(z) has the expansion

z(z)=U(z) + N~' Y Ui(z) + pu(z), = € Dy, (6.25)

where UF(z), z € D are restrictions of the functions U (z), z € ﬁ(():s.s)- The

functions U*'(z) can be found by solving the problems
82

2
Ox;

LoayUl(z) = —(di — o)) NN 'bi(2) -=U"(z), =€ D",

Ulz) =0, =€l

LU(2) = (d; — 20;)N Ni—lbi(m)aaj% U%(z), z; < o CaeD\
0, T; > 0;
U(z) = 0, zel};
LU (z) = —{Leay — Li} U(z), z€ D",
U¥z) =0, zeTI?,
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where U(z) = UZ.O(3‘5)($), zeD .

4.3. The expansions (6.22)—(6.25) for the components from the representa-
tion (6.21) imply the following expansion for the function z(z), z € Dy :

2(z) = u(z) + N Huo(z) + ui(z)] + pu(z), z € Dy, (6.26)

3
ug(z) = Z [Uil(ﬂf) + Vioyi(2) + Viiizrni(2) + Viim1,i(@) + Viagg0i(2)]

=1
3
— Z + U3 ) + ‘/(z)z+1(33) + ‘/(z)l+2(x) + ‘/(7:,7:4_1),’:_'_2(33)} , T € D’
=1
3
pu + Z va(J) + p‘/(,]]-i-l)( ):| + p‘/(1,273) (x), i E Dh.
7=1

For the functions wg(z), uy(z) and p,(xz) we obtain the estimates
lug(z)] < M InN, |ui(z)] < MelnN, ze€D;
lpu(z)] < MN2I®N, zeD,.

. —~*k .
The function z*(z), x € D, has the expansion

#(z) = u(e) + N'uo() + (@) + ol (@), w€ D, (627)
where u;(T) = u;g.26)(2), i = 1,2, and also | pfo(z)| < MN2In* N, = € D*ko.
Estimate (6.19) follows from expansions (6.26) and (6.27).

Theorem 6.2. Let the solutions of the boundary value problem (2.2), (2.1)
satisfy a priori estimates (3.7) for K= "T. Then the function 2?6‘18)(@, x Eﬁzo,
i.e. the approximation by the Richardson method based on solutions of the dif-
ference scheme (4.2) on the meshes ﬁ;(4‘5) and EZ’E&IS), under condition (6.18c)
converges to the solution of the boundary value problem (2.2), (2.1) e-uniformly
at a rate of O(N2In>N) as N — co; for the functions z(z), = € D, and
ZM(z), z € ﬁzko the expansions (6.26) and (6.27) are valid, and estimate (6.19)

holds for the function 2?6‘18)(37), T € ﬁzo.
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7. Remarks and generalizations

1. In the case of the condition
e< MN™, (7.1)

expansions (6.26) and (6.27) are essentially simplified. For the functions z(z)
and z*(z) the following expansions are valid:

z(z) = u(z) + N ug(z) + pu(z), z € Dy,
2o (z) = w(z) + koNtug(z) + po(2), =z €D, ",

where ug(x) = ug(.26) (%), moreover,

pu(z)| < MN“2In® N, z € D;, |ph(z)]< MN2In®N, z€ D"
2. The given techniques for constructing and justifying e-uniformly conver-
gent difference schemes of increased accuracy is directly applicable to problem
(2.2) on an unbounded tube domain D, where

D=DUIl, D={z: 0<z,<ds, z3€ R, s=1,2}. (7.2)

We denote the faces of D orthogonal to the z;-axis by I'; and [I'j19, 7 = 1,2;
the faces I} and Iy contain the axis z1 = z9 = 0; I’ = U?Zl I';; we set
I'™ =Ujo1a I

When the parameter € tends to zero, a boundary layer appears in a neigh-
bourhood of the set I'~. This layer is corner in the neighbourhood of the
intersection of the faces Iy and I5.

To solve problem (2.2), (7.2), we use the monotone scheme (4.2), (4.1), where
the mesh @3 in (4.1) is as follows

W3 1s a mesh on the x3-axis, (7.3)

with N3 + 1 being the maximal number of nodes in the mesh w3 on the unit
interval. In the case of piecewise-uniform meshes condensing in the boundary
layer, we consider the mesh @j in (4.5) as

Wy 18 the uniform mesh. (7.4)

If the data of problem (2.2), (7.2) are sufficiently smooth, and under suitable
compatibility conditions on the faces I'*, the solutions of the difference schemes
(4.2), (4.1), (7.3) and (4.2), (4.5), (7.4) satisfy estimates (4.4) and (4.7), (4.8)
respectively.
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When constructing approximate solutions of increased accuracy, we use the
Richardson method. The numerical solution is determined by the relation (see
(6.18))

L) =y2(2) + (1-v)(z), €Dy, (7.5)
where z(z) is the solution of problem (4.2), (4.5), (7.4), and z*(z) is the solu-
tion of problem (4.2) on the mesh ﬁ;?ﬁ'lsb); the coefficient «y satisfies condition
(6.18c). Note that the step-size of the mesh wi* in (6.18b) is k times larger
than that of the mesh (7.4).

It is not difficult to find conditions imposed on the data of the boundary
value problem (they are similar to the conditions given in Theorem 6.2) under
which the following estimate (similar to estimate (6.19)) holds for the function

2?7.5) (2): w0
lu(z) — 2?7‘5)(:1:)| <MN?W’N, z€D,. (7.6)

Estimate (7.6) can be justified similarly to estimate (6.19).
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