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Abstract

We consider an initial boundary value problem on an interval for singularly perturbed
parabolic PDEs with convection. The highest space derivative in the equation is multiplied
by the perturbation parameter ¢, ¢ € (0,1]. Solutions of well-known classical numerical
schemes for such problems do not converge e-uniformly (the errors of such schemes depend
on the value of the parameter ¢ and are comparable with the solution itself for small
values of ). The convergence order of the existing e-uniformly convergent schemes does
not exceed 1 in space and time. In this paper, using a defect correction technique we
construct a special difference scheme that converges e-uniformly with the second (up
to a logarithmic factor) order of accuracy with respect to z and with the second order
of accuracy and higher with respect to t. The conditions are given which ensure the &-
uniform convergence of the defect-correction schemes with a rate of O(N~*InF N4 K ~*o),
k=1,2, kg =1,2,3, where N + 1 and K + 1 denote the number of the mesh points in x
and t respectively. Theoretical results and the efficiency of the newly constructed schemes
are confirmed with numerical experiments.

1. Introduction

In this paper we consider the initial boundary value problem on an interval for singularly
perturbed parabolic PDEs with convection. The highest space derivative in the equation is
multiplied by an arbitrarily small positive parameter €; ¢ € (0,1]. When the perturbation
parameter € tends to zero, the solution of such a problem typically exhibits a boundary layer
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in the outflow boundary region. This gives rise to difficulties when classical discretisation
methods are applied, because the errors in the numerical solution depend appreciably on the
value of the parameter €, namely, the errors of standard methods can be large when the step-
size in x becomes comparable with €. Thus, in connection with such behaviour of the errors
for standard numerical methods applied to the problem in question, it is of interest to develop
special numerical methods whose errors are independent of the parameter £ and depends only
on the number of mesh points, i.e. e-uniformly convergent methods. Such methods have been
proposed in the literature for a number of singularly perturbed elliptic and parabolic equations
(see, for example, [1-7] and also the bibliography therein). It should be noted that the rate of e-
uniform convergence of the known special schemes for parabolic convection-diffusion equations
is O(N~'In N+ K1), i.e., it is of order no more than one, where N and K define the numbers of
nodes in the meshes with respect to x and t. However, well-known classical difference methods
of high-order accuracy with respect to z and/or ¢ for the same problems (see, for example, [8],
[9] and also the bibliography therein), generally speaking, do not converge e-uniformly. Thus, it
is necessary to construct e-uniformly convergent schemes of high-order accuracy with respect to
x and/or t for a class of singularly perturbed convection-diffusion problems. Besides, a higher
order accuracy in time can considerably reduce computational expenses.

Defect correction techniques proved to be efficient for constructing e-uniformly convergent
schemes of high-order accuracy with respect to ¢t in the case of singularly perturbed reaction-
diffusion and convection-diffusion problems (see, for example, [10-12]). Therefore, this tech-
nique seems attractive to be used also in order to construct high-order accurate schemes in z
and t for singularly perturbed problems under consideration.

In the present paper, e-uniformly convergent schemes of high-order accuracy in time and
space are constructed, also based on the defect correction principle, in the case of boundary
value problems for singularly perturbed parabolic convection-diffusion equations. The efficiency
of the newly constructed schemes is confirmed with numerical experiments.

2. The studied class of initial-boundary value problems

On the domain G = D x (0,7], D = (0,1) with the boundary S = G \ G, we consider
the following singularly perturbed parabolic equation subject to the Dirichlet boundary condi-
tions?!:

. 0? 0 0
L(2.1)u(mat) = sa(x,t)w-kb(:v,t) a_a:_c(xat)_p(xat)a u(:v,t) :f(xat)a
(z,t) € G, (2.1a)
u(z,t) = ¢(z,t), (z,t) €8S. (2.1b)

For S = SyUS%, we distinguish the lateral boundary S*= {(z,t): x=0o0rz=1, 0<t<T}
and the initial boundary Sy = {(z,t): 0 <z <1, t = 0}. In (2.1) a(z,t), b(z,t), c(z,1),
p(z,t), f(z,t), (z,t) € G and ¢(z,t), (x,t) € S are sufficiently smooth and bounded functions
which satisfy

0<ap < a(x,t), 0<by < b(x,t), 0<py <p(a,t), c(x,t)>0, (z,t)€G. (2.1c)

Here ag, by, po are positive constants independent of . The perturbation parameter € in (2.1a)
may take any values from the half-open unit interval

e € (0,1]. (2.1d)

! The notation is such that the operator L,y is first introduced in equation (a.b).
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When the parameter € tends to zero, the solution exhibits a layer in a neighbourhood of the
set SL = {(z,t): x =0, 0 <t < T}, ie., the left side of the lateral boundary. This layer is
described by an ordinary differential equation (an ordinary boundary layer).

3. Difference scheme on an arbitrary mesh

To solve problem (2.1) we first consider a classical finite difference method, that is a base
scheme. On the set G' we introduce the rectangular mesh

Gh =w X Wy, (3.1)

where @ is the (possibly) non-uniform mesh of nodal points, z¢, in [0, 1], Wy is a uniform mesh

on the interval [0, T]; N and K are the numbers of intervals in the meshes @ and @ respectively.

We define 7 = T/K, bt = 2**! — 2!, h = max; ', h < M/N, G, = GN Gy, Sp =SNGy ?
For problem (2.1) we use the difference scheme [8]

A(3_2)Z($,t) = f(xat)a (.’L‘,t) € Gh, (32&)
Z(.’E,t) = QO(.T), (33,t) € Sh. (32b)
Here
Agoyz(z,t) = {ea z,t)0zz + b(x,1)0, — c(:c t) — p(z,t Jg}z(x,t), (z,t) € Gp,

)
) = 2(WT )T (Baz(at 1) — Bz(a 1))
1) = (B (e 1) - 2 t))
1) = ()7 (e = 2 ),
) = 7 (2@ ) — 2@’ t = 7))
dz2(x,t) and Ozz(z,t), d6zz(x,t) are the forward and backward differences, and the difference
o
The difference scheme (3.2), (3.1) is monotone. By means of the maximum principle and
taking into account a priori estimates of the derivatives (see Theorem A.1 in the Appendix A)

we find that the solution of the difference scheme (3.2), (3.1) converges for a fixed value of the
parameter €:

operator 0zzz(x,t) is an approximation of the operator (z,t) on the non-uniform mesh.

lu(z,t) — 2(z,t) | < M(e?N'+71), (2,t) €Gh. (3.3)

This error bound for the classical difference scheme is clearly not e-uniform.
The proof of (3.3) follows the lines of the classical convergence proof for monotone difference
schemes (see [2, 8]). This results in the following theorem.

Theorem 3.1. Assume in equation (2.1) that a, b, ¢, p, f € HOTA(@), ¢ €

H0+20) () N H (0+2n) (S ), 9 > 4, n = 0, and let the compatibility conditions (A.1) with
n =0 (see Appendiz A) be satisfied. Then, for a fized value of the parameter e, the solution of
(3.2), (3.1) converges to the solution of (2.1) with an error bound given by (3.3).

2 Here and in what follows M (or m) denote generic sufficiently large (small) positive constants (possibly
subscripted) that do not depend on € and on the discretization parameters.



4. The e-uniformly convergent scheme

Here we discuss an e-uniformly convergent fitted mesh method for (2.1) by taking a special
mesh condensed in the neighbourhood of the boundary layer. The location of the nodes is
determined properly from the a prior: estimates of the solution and its derivatives. The way to
construct the mesh for problem (2.1) is the same as in [13, 10, 11]. More specifically, we take

Gn=G, =w*(0) x @y , (4.1a)

where @ is the uniform mesh with the step-size 7 =T/ K, i.e. @y = Wy(z.1), and W* = w*(o) is
a special piecewise uniform mesh depending on the parameter o € IR, which depends in turn
on ¢ and N. We take

o =o0@uy(e,N)=min{1/2, m 'eInN }, (4.1b)

where m is an arbitrary number from the interval (0,mq), my = ming [a *(z,t) b(x,t)]. The
mesh w*(o) is constructed as follows. The interval [0, 1] is divided in two parts [0, 0], [0, 1],
0 <1/2, and in each part we use a uniform mesh, with N/2 subintervals in [0,0] and [0, 1].

Theorem 4.1. Let the hypotheses of Theorem 3.1 be fulfilled. Then the solution of (3.2),
(4.1) converges e-uniformly to the solution of problem (2.1) and the following error estimate

holds:
\u(z,t) — 2(z,t)| < M (N'InN+7), (z,t) €G,. (4.2)

The proof of this theorem can be found in [2, 14].

5. Improved accuracy

5.1. High-order accurate schemes based on defect correction

In this section we construct a new numerical method based on defect correction, which also
converges e-uniformly to the solution of the boundary value problem, but with an order of
accuracy higher than in (4.2).

The technique used in this paper to improve accuracy is similar to that from [10, 11, 12].
For the difference scheme (3.2), (4.1) the error in the approximation of the partial derivative
(0/0t) u(zx,t) is caused by the divided difference d; z(x,t) and is associated with the truncation
error given by

ou 0%u Pu

ou s _og-1, 07U _ a1 20U _
8t(x’t) S;u(z,t)=2 TatQ(x,t) 6 Tat3(x,t 6), 0€l0,7]. (5.1)

Therefore, for the approximation of (0/0t) u(x,t) we now use the expression
dzu(z,t) + 77 u(x, t)/2, where Oz u(z,t) = bzulx,t— 7).

Notice that 0,7 u(x,t) is the second central divided difference. In a similar way, the truncation
error for the forward difference , z(z,t) is defined by the formula

2
g—Z(x,t) — Spu(z,t)=—2""1 hz%u(fc +6.,1), 6, €[0,nrY], z=2a", b=z -2



For the approximation of (0/0x)u(z,t) we use the relation 8, u(z,t) — h'dzz u(x,t)/2. We can
evaluate a better approximation than (3.2a) by defect correction

2 2

A@ioyz(x,t) = f(z,t) + 27 p(x, t) 271;(33, t) + 271 B b(x, 1) %(x, t), x=a", (5.2)
with € @ and t € Wy, where @ and W, are as in (3.1); 7 is the step-size of the mesh @, and
ht = x**! — 1% is a local step-size of the mesh wy; 2°(x, ) is the “corrected” solution. Instead of
(02/0t?) u(z,t) and (0?/0x?) u(x,t) we shall use dz7 2(x,t) and 0zz z(x,t) Tespectively, where
z(x,t), (z,t) € Gpaa) is the solution of the difference scheme (3.2), (4.1). We may expect that
the new solution z¢(x,t) has an e-uniform consistency error of order O(7?) with respect to the
variable ¢. This is true, as will be shown in Section 5.2 in Theorem 5.1. Concerning the variable
z, the consistency error of the corrected solution on uniform meshes is O(N~?) for a fixed e.
However, in the case of special piecewise uniform meshes the order of e-uniform convergence
with respect to z is expected as @(N~2 In®> N), that is the second order up to a logarithmic
factor (see Section 5.5).

Moreover, in a similar way we can construct a difference approximation with a convergence
order higher than two with respect to the time variable and O(N~2 In® N) with respect to the
space variable e-uniformly.

For notational convenience, on the mesh G) we write the finite difference scheme (3.2) in
the form

A(3.2)Z(1)(xat) = f(xat): (fl),t) € Gha (53)
W(z,t) = ¢(x,t), (x,t) € Sh,

where z()(z,1) is the uncorrected solution. This scheme is referred to as the base scheme.

5.2. The defect correction scheme of second-order accuracy in time

We denote by d,32(z,t) the backward difference of order £:

Ot 2(2,1) = (017 2(2,8) = 017 2(x,t = 7)) /7, t=kr, k2>1;
6ot 2(7,t) = 2(z,t), (z,t) € Gp-

To construct the difference schemes of second-order accuracy in 7 in (5.2), instead of
(02 /0t*)u(x,t) we use dy72(z,t), the second divided difference of the solution to the discrete
problem (3.2), (4.1). For the corrected solution 2 (z,t) we solve the problem for (z,t) € Gy,

A(3.2)Z(2) (.’L‘,t) = f(mat) + w(l)(%t)a ($,t) € Gha

2 (z,t) = (), (z,t) € Sh. (5:4)

Here

2
2,027 r L ou(z,0), t=1
w(l)(x,t) = p( ) atQ ( ) ’ (.’E,f) c Gh,

p(z,t) 271 78720 (z,8), t> 27

2
the derivative %(m, 0) can be obtained from the equation (2.1a). We shall call 2(?(z,t) the
solution of difference scheme (5.4), (5.3), (4.1) (or shortly, (5.4), (4.1)).



For simplicity, in the remainder of this section we suppose that the coefficients a(z,t), b(x, t)
do not depend on ¢

a(z,t) = a(z), b(z,t) =0b(x), (z,t) €, (5.5)
and we take a homogeneous initial condition:
o(z,t) =0, (z,t) € Sp. (5.6)
Under conditions (5.5), (5.6), the following estimate holds for the solution of problem
(5.4), (4.1):
| u(z,t) — 2@ (x, ) | <M [N'"InN+7%], (2,t) € Gh. (5.7)

Theorem 5.1. Let conditions (5.5), (5.6) hold and assume in equation (2.1) that a, b, ¢, p,
f e HO+2=0(G), o € H@+20)(So)n H@+20(5%), 9 > 4, n = 1, and also let the compatibility
conditions (A.1) with n =1 (see Appendiz A) be satisfied. Then for the solution of difference
scheme (5.4), (4.1) the estimate (5.7) is valid.

The proof of Theorem 5.1 can be found in [12].

Remark 1. The conclusion of Theorem 5.1 remains also valid for a number of cases when
the coefficients a and b depend on , ¢, for example, when the condition a~!(x, ) b(z,t) = g(x),
(z,t) € G is fulfilled; here a, b € H@*?*~2)(@G) (see the assumption of Theorem 5.1) and
condition (2.1c) must be satisfied. This remark holds also for Theorems 5.2, 5.3, 5.4.

5.3. The defect correction scheme of third-order accuracy in time

The above procedure can be used to obtain an arbitrarily large order of time-accuracy. Here
we only show how to construct the difference scheme of third-order accuracy in time. On the
grid G, we consider the difference scheme

A(3.2) 2(3)(1‘,t) = f(.T,t) + w(Q)(‘Tat)v (x,t) € Gh’

(e, t) = oz, 1), (z,1) € Sh. (5.82)
Here ) s
p(z, 1) (CHT% u(z,0) + 0127'2% u(z, 0)) , t=T
¢(2) (z.) = p(z,1) <C217'g—;2 u(z,0) + 0227'23—; u(z, 0)) , t=21 (> (z,t) € Gp,

p(Z,t) (0317—6252(2) (.73, t) + CV327—2(5332(1) (Zat)) ) t 2 37

2 (z,t) and 2?(z,t) are the solutions of problems (5.3), (4.1) and (5.4), (4.1), respectively;
the derivatives (0?/0t*)u(x,0), (0*/0t*)u(z,0) are again obtained from equation (2.1a). The
coefficients C;; are chosen to satisfy the following conditions:

0 0? 5 0 3
au(m, t) = dzu(x,t) + 0117'@ u(z,t — 7) + ChaT pre u(z,t — 1)+ O(7°),

0 2 O 3
au(x, t) = dzu(zx,t) + 0217'@ u(z,t — 27) + Coot pre u(z,t —27) + O(1°),
0

au(m, t) = dzu(x,t) + Ca1 7657 u(z, t) + Csom2857 u(z, t) + O(T).
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It follows that
011 = 021 = 031 = 1/2, 012 = 032 = 1/3, 022 = 5/6 (58b)

By 23 (2,%) we denote the solution of the difference scheme (5.8),(4.1) and again, for
simplicity, we assume that the homogeneous initial condition holds

o(z,t) =0, f(z,0)=0, (z,t)€S. (5.9)

Under conditions (5.5), (5.9) the following estimate holds for the solution of difference
scheme (5.8), (4.1):

|u(z,t) — 20 (z,1) | < M [N"'InN+7], (z,t) € G (5.10)

Theorem 5.2. Let conditions (5.5), (5.9) hold and assume in equation (2.1) that a, b,
¢, p, f € HOT=2(G), p € HO+2) ()N H @+2n) (§L), 9 >4, n =2, and let the compatibility
conditions (A.1) with n = 2 (see Appendiz A) be satisfied. Then for the solution of scheme
(5.8), (4.1) the estimate (5.10) is valid.

The proof of Theorem 5.2 can be found in [12].

In a similar way we could construct difference schemes with an arbitrarily high order of

accuracy in time
ON'In N+7"), n>2.

5.4. A scheme with improved convergence in space

We now describe a defect-correction scheme which is used to improve accuracy with respect to
the space variable. On the mesh (3.1) we consider the discrete problem

Aoy (z,t) = fz,t) +¥0(z,t), (z,t) € Gy,

(5.11)
Mz, t) = o(z,t), (z,t) € Sh,

where
YUz, t) = b(x, 1) 27 B 055 2V (2,8), 2z =2, (2,t) € Gy;
20 (z, 1), (z,t) € G is the solution of the base scheme (5.3), (3.1); A~ = 2*—2*!, 27! 2’ € w.
Note that d,z(z?,t) —27 h=1 635 2(x?, t) = 65 2(2*,t), where 0z z(z°, t) is the first central differ-
ence derivative, 6z z(z', ) = (b + h'=1) ™" (2(z'1, 1) — 2(z*~,t)). We call the function z[2(z, t),
(z,t) € G}, the solution of difference scheme (5.11), (5.3), (3.1) (or, shortly, (5.11), (3.1)).
In contrast to the mesh (4.1), in the case of scheme (5.11), (5.3) we use the special fitted

mesh with the rather extended (as compared with the mesh (4.1)) neighbourhood of the small
stepsize in x:

Gh, = Ghuaa (5.12a)
where @* =, ,, (o) provided that
0 = 0(5.12)(¢, N) = min { 1/2, Im ten N} , (5.12b)

m = my.1), | > 3 is an arbitrary number.
Assume that conditions (5.5), (5.6) are valid. Then we obtain the following e-uniform
estimate for the solution of problem (5.11), (5.12):

lu(z,t) — 28z, )| < M [N??In® N + 7], (z,t) € G,. (5.13)
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Theorem 5.3. Let the hypotheses of Theorem 5.1 be fulfilled. Then the solution of the
difference scheme (5.11), (5.12) satisfies the estimate (5.13).

The proof of this theorem is given in the Appendix B.

5.5. A scheme with improved convergence in time and space

At last we give the difference scheme of higher order accuracy with respect to = and ¢.
On the mesh (3.1) we approximate the boundary value problem (2.1) by the difference
scheme

A(3.2)Z[2,n+1] (.T, t) = f(‘ra t) + ¢[1] (.’E, t) + dj(n) (37, t)a (.’E, t) € Gha (514)
2[2’”+1](a:,t) =o(x,t), (z,t) €Sy, n=1,2.
Here
1 1 2
w[l] (‘rﬂ t) = wgs].ll) (CC, t)ﬂ w(l)(xa t) = w((s)él) (iE, t)a Tﬁ(Z) (iE, t) = w((s)s) (.’L’, t)

When calculating the functions [t (z,t), ¥ (x,t) and ® (z,t) we use respectively the func-
tions () (z,t) and 2V (x,t), 22 (x,t), where 2(!)(x,t) and 2(?) (z,t) are the solutions of problems
(5.3), (3.1) and (5.4), (3.1) as before. We call the function 2>"*1(z,t), (z,t) € Gpa1), the
solution of difference scheme (5.14), (3.1). To solve the boundary value problem (2.1) more
accurately, we use the difference scheme (5.14) on the special mesh (5.12).

In the case of conditions (5.5), (5.6) we obtain the estimate

u(z,t) — 223 (2, t)) < M [N2In® N +7°], (2,t) € G,. (5.15)
In that case when conditions (5.5) and (5.9) are satisfied, we have the estimate
u(z,t) — 223 (2, )] < M [N2In® N+ 7], (2,t) € G,. (5.16)

Theorem 5.4. Let the hypotheses of Theorem 5.1 (Theorem 5.2) be fulfilled. Then for the
solution of the difference scheme (5.14), (5.12) the estimate (5.15) (estimate (5.16)) holds.

The proof of this theorem is similar to the proof of Theorem 5.3.

6. Numerical results for the scheme of improved accu-
racy in space and time

Let us consider some numerical results for scheme (5.14), (5.12) for n = 1.
To see the effect of the special scheme in practice, we find the solution of the following

boundary value problem
0? 0 0
L(ﬁ_l)U(ﬁﬁ, t) = {

€57 +% - a} u(z,t) = f(x,t), (z,t) € G,

(6.1)
u(z,t) = (z,t), (z,t) € S,
where
uw(0,t) =t* +1°, w(l,t)=t+t°, 0<t<T=1; u(x,0)=0, 0<z<1;
fz,t) =12eta® +4t2® — 2* — 5¢%
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It should be noted that the solution of this problem is singular.

It is very attractively to use the analytical solution of problem (6.1) for the computation of
the errors in the approximate solution, as was in [10, 11]. But here a suitable (for computation)
representation of the solution u(z,t) is unknown. Instead of the exact solution, it is possible to
use the solution of the discrete problem on a very fine mesh. But this method is not effective
because the analysis of the order of accuracy for a defect-correction scheme requires a very
dense mesh that leads not only to large computational expenses but also to large round-off
errors.

Hence, we use the method from [15], different from the above-mentioned techniques. The
solution of problem (6.1) is represented in the form of the sum

u(z,t) =U(z,t) + VO (z,t) + v(z,t), (z,t) € G, (6.2)

where U(z,t) = ta* + 1%, V) (x,t) is the main singular part (two first terms) of the asymp-
totic expansion of the solution of problem (6.1), and v(x,t) is the remainder term, which is a
sufficiently small smooth function. The function V() (z,t) has a sufficiently simple analytical
representation

VO (2,t) = Vi(z,t) + Vi(z,t), (2,t) €G, where
Vola,t) = £10(2), W(a) = [exp(—e1a) — exp(~e1)] / [1 - exp(=e71)]
Vi(z,t) = —4t° z exp(—e 'z) / [1 — exp(—e )],
Vo(z,t)| < M, |Vi(z,t)] < Me, (z,t) €G.
The function v(z,t) is the solution of the problem
Lgayv(z,t) = fo(z,t), (z,t) €, (6.3)
v(0,t) =0, vo(l,t)=-Vi(1,t), 0<t<T, v(z,0) =0, 0<z<]1,

with
folz,t) = —41* [t exp(~1/e) + 3z exp(—z/e)] / [1 — exp(—1/e)].
For the function v(x,t) the following estimate holds:

8k+k0

—
oz otko

(x,t)‘ <M1 +e7*, (2,t)€G, k+2ky<4, k<3, (6.4)

Then the function v(z,t) and the product £?(9*/0x*)v(x, t) are e-uniformly bounded. Thus, we
can consider v(z,t) as the regular part of this solution and, moreover, v(z,t) is of order O(g?),
according to (6.4).

(1.)  For the chosen value of ¢, we solve the discrete problem, which approximates the
boundary value problem (6.3), on the finest available mesh G, = @;:(5_12) for N = K = 2048,
and there are no difficulties to find the function v(z,t) = v2°48(z,t) and the reference solution
u(6.2)(x,t) which can be practically taken as the exact solution

u2)(2,t) = w2 (z,t) = Uz, t) + VIO (2, 1) + 02" (2, 1).

(2.) Further for solving problem (6.1), we use successively the scheme (5.3), (5.12) and the

defect correction scheme (5.14), (5.12) to find the functions z(!)(z, t) and 2>?(z, t), respectively.
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Note that z(!)(z,t) is the uncorrected solution, 2[>?(z,¢) is the corrected solution. Then we
compute the maximum pointwise errors F,; (N, K, ¢) by the formula

BN, K,2) = max |#(w,8) —u'(w,8)], j=(), [2,2] (6.5)
(J::t)eGh

Here u*(x,t) is the linear interpolation obtained from the reference solution u?**®(x,t) corre-

spondingly to the numerical solution 27 (x,t), j = (1), [2,2] for N = K =2!,i=2,3,...,10.

The computational process (1.) and (2.) is repeated for all valuesof e = 27", n =0,1,2,...,
13. As a result, we get E,0)(N = K,¢) and E,p2(N = K, ¢) for the functions z(!)(x,¢) and
222)(z, 1), respectively, for various values of e, N = K (see Table 1).

Table 1. Errors for the model problem (6.1), namely, E,q) (N = K, €) for the
special scheme (5.3), (4.1) and E,;2,21(IN = K, e) with improved convergence
in time and space for the defect correction scheme (5.14), (5.12)

e\ N 4 8 16 32 64 128 256 512 1024
2(1)
20 3.00-1 1.61-1 841-2 4282 2152 1072 531-3 2583 1213
21 4.46-1 246-1 1.29-1 6.59-2 3.32-2 1.67-2 8333 4.14-3 2.04-3
22 5.69-1 3.29-1 1.72-1 8.77-2 4432 2222 112-2 5.59-3 2813
273 7.07-1 3.92-1 2.06-1 1.06-1 540-2 2.73-2 1372 6.89-3 3.47-3
2—4 8.08-1 4.34-1 2451 1331 6962 3572 1.81-2 9.15-3 4.61-3
25 8.46-1 4.681 2.66-1 1.54-1 8882 5.082 2782 142-2 7.183
26 8.54-1 480-1 2.77-1 160-1 930-2 5332 2992 1.65-2 9.01-3
2-7 8.56-1 4.86-1 2.82-1 1631 9.57-2 5492 3.082 1.70-2 9.30-3
28 8.57-1 4881 2.85-1 1.65-1 9.71-2 5572 3.13-2 1.73-2 9.44-3
2-° 857-1 490-1 2.86-1 1.67-1 9.77-2 5.61-2 3.15-2 1.74-2 9.51-3

210 857-1 490-1 2.871 1.67-1 9.81-2 5632 3.16-2 1.75-2 9.55-3
2- 1 857-1 491-1 2.881 1.67-1 9.82-2 5642 3172 1.75-2 9.57-3
212 857-1 491-1 2.881 1.67-1 9832 5642 3172 1.75-2 9.58-3
213 857-1 491-1 2.831 1681 9.84-2 5.64-2 3.17-2 1.75-2 9.583

E,»(N) | 8.57-1 4.91-1 2.88-1 1.68-1 9.84-2 5.64-2 3.17-2 1.75-2 9.58-3

2[2:2]
20 1.29-1 3.81-2 1.04-2 2593 5494 780-5 1374 1614 1.684
2-1 1.89-1 5.73-2 1.54-2 3973 9744 2194 5885 7.79-5 8425
22 2.51-1 7312 1952 5.03-3 130-3 3.584 1254 6.77-5 5.385
23 3.01-1 8832 2432 6583 1.76-3 4954 1704 8755 6.67-5
2—4 3.63-1 1.05-1 3.51-2 1.06-2 3.14-3 8994 2674 9995 5.76-5
25 3.96-1 1.28-1 4.14-2 151-2 5273 1893 6294 1.854 6.56-5
2-6 4.34-1 1521 4.65-2 1.632 5803 2023 6.744 2134 7.445
27 4.52-1 1641 524-2 1682 6.06-3 2103 6974 2154 7.05-5
28 4.60-1 1.70-1 5.54-2 1.71-2 6.183 2.14-3 7.09-4 2184 6.99-5
29 4.64-1 1731 5.69-2 1.72-2 6243 2.16-3 7.144 2194 6.99-5

210 466-1 1.75-1 5.76-2 1.73-2 6273 217-3 7174 2204 7.00-5
2-11 467-1 176-1 580-2 1732 6283 2173 7184 2204 7.01-5
2-12 4681 1.76-1 5.82-2 1.74-2 6.28-3 2.17-3 7194 2204 7.01-5
2-13 4.68-1 1.76-1 5.83-2 1.74-2 6.29-3 2.17-3 7194 2204 7.01-5

E,22(N) | 4.68-1 1.76-1 5.83-2 1.74-2 6.29-3 2.17-3 7.19-4 2.20-4 7.01-5

In this table the function E.i (N = K,¢) is defined by (6.5). In the bottom line E.i(N) gives the computed
maximum pointwise errors for each column, i.e., E,;(IN) = max E,; (N = K,¢); here j = (1), [2,2].
[
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Analyzing these results from Table 1, we see e-uniform convergence of the numerical so-
lutions with increasing N = K for both of the functions z(!)(z,t) and 2/2%(x,t). Further we
observe that the errors for the function z1%%(z,t) are smaller than the errors for the function
2D (x,t), that is, the new defect correction scheme gives the better result.

If we calculate the ratios of the maximum pointwise errors

Ezj (2_1N)

R,;(N) = BN

Jj= (1)’ [272]

for the functions 2(!)(x,¢) and 2/>?(xz,t) and place them in Table 2, then we can see that the
order of convergence is almost one for the function 2" (x,¢) and almost two for the function
2122l(z, ), which corresponds to the theoretical results.

Table 2. Ratios of the maximum pointwise errors for the functions z(® and
(2,2]
z

N 8 16 32 64 128 256 512 1024
R,,(N) |1.74 1.70 1.71 1.71 1.74 1.78 1.81 1.83
R,22(N) | 2.66 3.02 3.35 2.77 2.90 3.02 3.23 3.14

Conclusion

In this paper we have shown theoretically that the use of a defect correction technique for
solving the class of boundary value problems for a singularly perturbed parabolic convection-
diffusion equation allows us to construct effectively e-uniformly convergent schemes with the
second (up to a logarithmic factor) order of accuracy with respect to z and with the second,
third and higher orders of accuracy with respect to t.

The numerical example is given where it is shown that the order of convergence with respect
to the space variable is O(N~2 In? N), which corresponds to the theoretical results.

Appendix A. A prior:i estimates of the solution and its
derivatives

In this section we rely on the a priori estimates for the solution of problem (2.1) on the
domain G = D x [0,7T] and its derivatives as derived for elliptic and parabolic equations in
[2, 13, 16].

We denote by H@(G) = H??/?(G) the Holder space, where ) is an arbitrary positive
number [17]. We suppose that the functions f(z,t) and ¢(z,t) satisfy compatibility conditions
at the corner points, so that the solution of the boundary value problem is smooth for each
fixed value of the parameter ¢.

For simplicity, we assume that the following conditions hold at the corner points Sy N sh.

ak ako
W(p(xvt) :O: w@(%,t):(], k+2k0§ [19]+2n7
k+ko

Wf(x,t)ﬂ), k+2k <[9]+2n—2,

(A.1)
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where [ ¥ | is the integer part of a number J, 9 > 0, n > 0 is an integer. We also suppose that
[J]+2n > 2.

Using interior a priori estimates and estimates up to the boundary for the regular function
u(&,t) (see [17]), where u(€,t) = u(z(€),t), £ = x/e, we find the estimate for (z,t) € G
ak+k0

oxk Otko

u(ac,t)‘ <Me™* k+2k<2n+4, n>0. (A.2)

This estimate holds, for example, for
uwe HEHI(@), v>0, (A.3)

where v is some small number.

For example, (A.3) is guaranteed for the solution of (2.1) if the coefficients satisfy inclusions
a, ¢, p, f € HOT=2(qQ), ¢ € HO+2)(S,) N H (9+20) (?L), ¥ >4, n > 0 and condition (A.1)
is fulfilled.

In fact we need a more accurate estimate than (A.2). Therefore, we represent the solution
of the boundary value problem (2.1) in the form of the sum

u(z,t) = Uz, t) + W(a,t), (z,t) €G, (A.4)

where Uz, t) represents the regular part, and W (z, t) the singular part, i.e., the boundary layer.
The function U(z,t) is the smooth solution of equation (2.1a) satisfying condition (2.1b) for
t =0 and x = 1. For example, under suitable assumptions for the data of the problem, we can
consider the solution of the boundary value problem for equation (2.1a) smoothly continued
onto the domain G~ extended beyond of S (G is a sufficiently large neighbourhood of G
beyond of SL). On the domain G the coefficients and the initial value of the extended problem
are the same as for (2.1). Then the function U(x, ) is the restriction (on G) of the solution to
the extended problem, and U € H®"*4+")(G), v > 0. The function W (z, ) is the solution of a
boundary value problem for the parabolic equation

L(2.1) W(iﬂ',t) = 07 (iE,t) € G’

(A.5)
W(z,t) = u(z,t) —U(z,t), (z,t)€S.

If (A.3) is true, then W € HC®"+4+)(G). Now, for the functions U(x,t) and W (z,t) we derive
the estimates

HFtko

Pz at—koU(x’t)‘ <M, (4.6)
ak-Hco K 1

WW(.T,t)‘ < Me "exp(—mune ), (A7)

(z,t) € G, k+2ky<2n+2,

where m4.7) is a constant from the interval (0,mg), mo = mingla '(x,t) b(z,t)]. Estimates
(A.6) and (A.7) hold, for example, when

U, We H®HP(G), v>0. (A.8)

Inclusions (A.8) are guaranteed if a, ¢, p, f € HO+"=2(G), p € HO*+20)(S)) n H ¥+2n) (?L),
¥ > 4, n > 0 and condition (A.1) is fulfilled. We summarize these results in the following
theorem.
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Theorem A.l. Assume in equation (2.1) that a, b, ¢, p, f € HO2(G), ¢ €
HO+27)(55) N Hw”")(gL), 9 > 4, n > 0 and let condition (A.1) be fulfilled. Then, for

the solution u(x,t) of problem (2.1) and for its components from the representation (A.4), it
follows that u, U, W € H@+2)(Q) and that estimates (A.2), (A.6), (A.7) hold.

See the proof of the theorem in [2].

Appendix B. The proof of Theorem 5.3

In order to see about the idea of the proof of Theorem 5.3 we make some constructions in
the case of a model problem.
On the set
D =10,1] (B.1)

with the boundary I' = D \ D, we consider the following boundary value problem

Lu(z) = {8 a(:L')dal—:2 + b(x) % - c(x)} u(z) = f(z), =z € D, (B.2)
u(z) = o(x), ze€l.
The functions a(z), b(x), ¢(x), f(x) are sufficiently smooth and bounded functions which satisfy
a(xr) > ap >0, b(x) >by >0, c(z) >0, z€D.

On the fitted mesh B B
Dy =D,, (B.3)

where B
D, = Wis1g)(0), o=0(e,N) = min{1/2, Im™'eInN },

m is a constant from the interval (0,my), mo = ming [a~!(z) b(z)], I > 3, we use the following
difference scheme for problem (B.2), (B.1):

Az(z) = {e a(2)dz + b(2)d; — c(z) }2(x) ), x € Dy, (B.4)
z2(z) = p(z), x € I}.

Here Dh :Dﬂﬁh, Fh :Fﬂﬁh
We decompose the solution of problem (B.2), (B.1) into the sum of its regular and singular
components

u(z) =U(z) +V(z), x€D, (B.5a)

which are constructed similarly to the components from (A.4). In an analogous way, the solution
of problem (B.4), (B.3) can be decomposed into the sum

2(z) = 2y(z) + 2v(z), x € Dy. (B.5b)

Here, in the case of a sufficiently smooth function v(z), € D, we denote by z,(x), € Dy, the
solution of the problem

Az(z) = Lv(z), =€ Dy, z(z) =v(z), =z € I}

13



The function 2¢(x), z € Dy, i.e., the solution of the defect-correction scheme
Apay2f(z) = f(z) +b(x) 27 h "L 6z 2(x), x € Dy,
2°(z) = o(z), x € Iy,
is decomposed analogously
2°(z) = 25(x) + 25 (), x € Dy, (B.5¢)

where the components z{,(x) and z{ (z) are the solutions of the defect-correction schemes cor-
responding to the components of the decomposition (B.5a). Assume that

wo(T) = 2,(z) —v(x), W&(x)=2i(x) —v(z), =z €& Dy, (B.5d)

where v(z) is one of the functions (U(x) or V(z)) from the representation (B.5a). -
Let us estimate the component w$,(z). Note that the functions w{ (), wy(z), 25 (x), x € Dy,
are the solutions of the following problems

Awé(z) = (L—A)V(2) +2 'R b(z) Szzwy (), x € Dy, (B.6)
wy(z) = 0, x€ Iy

Awy(z) = (L—A)V(z), z € Dy, (B.7)
wy(z) = 0, x€ [y

Az(z) = 27 Wt b(e) {Om V(o) + dmmwr(a) ), @ € Dy, (B.8)
2y () = V(z), =z €Iy,

where

= {ea(z) 6z + b(z) 05 — c(2) } 2(),
8 z(x) is the centered difference, 0 z(z%) = (h* + hi=1) " (2(zit!) — 2(zt~1)).

Using the majorant function technique, we find
lwy(z)] < M {N"'min[InN,e'|+ N7}, =z € Dy; (B.9a)
W Smwy(z)) < MNT 2e€ Dy, z>0; z=21". (B.9b)

Further, considering problem (B.7), (B.3) on the set x < o we get the estimate for
|h* 162z wy (z)] on x € Dy, for z < o

W Szwy(z)| < M {N?min®* InN,e™"] 7' exp(—me™'z) + N7}, (B.10)
€Dy, <0, m=mgssa).

Considering problem (B.8) and taking into account estimates (B.9b), (B.10) and also the esti-
mate for h*~'zz V (), we find the estimates

|25 ()| < M [exp(—me 'z)+ N "', z € Dy (B.11a)
|wé(z)] < MN™" ze€ D, z>o0 (B.11b)
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On the set z € Dy, z < o, the solution of problem (B.6) satisfies the estimate
w§(z)] < M {N?min’ InN,e”'| + N} ze€D,, z<o. (B.12)
Thus, by virtue of estimates (B.11b), (B.12), we obtain
V(z) =25 (z)] < MN?min® InN,e”'|, z € Dj. (B.13)

To estimate the component wf; () we use solutions of problems which are similar to problems
(B.6)-(B.8)

= (L—=—A)U(x)+ 27 A" b(2) bz wu(z), T € Dy,
= 0, zely
= (L—=A)U(x), x € Dy,
= 0, z€ Iy,
= f(z)+ 27 B b(a) {55@U(x) + 5§3wU(x)}, z € Dy,
= U(z), x € Iy.
In this case we obtain the estimate
U(z) — 25(z)] < MN?>min [InN,e '], z € Dy, (B.14)
Thus, by virtue of (B.13), (B.14), we have
lu(z) — 2(z)] < M N ?min® [InN,e"'|, =z € Dj.

The analysis of convergence of schemes (5.11), (5.12) in the case of problem (2.1) is similar to
that for scheme (B.4), (B.3) for problem (B.2). The technique of investigating approximations
to derivatives with respect to x and ¢ with using difference derivatives of discrete solutions is
given in [12], where defect-correction schemes of higher-order accuracy with respect to the time
variable are considered.

We represent the functions z(!(z,t), 2(z,t), (x,t) € Gy, i.e., the components of the
solution to problem (5.11), (5.3), (5.12), as a sum of functions corresponding to the decompo-
sition (A.4)

(1) = zg] (x,t) + ZE] (z,1), (B.15a)
2V (z,t) = zg) (z,t) + z‘(,l)(x, t), (x,t) € Gp;

assume that

wiV(z,t) = 20 (x,t) — v(z, 1), (B.15Db)

v

(1)

z,,[f](x,t) —v(z,t), (z,t) € Gy,

(S

where v(z,t) is any function in representation (A.4). The functions wy (z,1), wq(,l)(x, t), 2 (z,1)
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are the solutions of the problems

AwlB(z,t) = (L —Av(z,t) + 27 AL b(x, t) 0z WiV (2, 1), (B.16a)
= (L—MNv(z,t), (z,t) € Gy, (B.16b)
= W (z,t) =0, (z,t) € Sp;
= folx,t) + 27 A b(a, t) {5@; v(z,t) + (555(4)1()1)(3:,75)} , (z,t) € Gy, (B.16¢)
= v(x,t), (z,t) € Sh,

where f,(z,t) =0 for v(x,t) =V (z,t), fo(z,t) = f(z,t) for v(z,t) =U(z,t).
Taking into account a priori estimates (A.6), (A.7) for the components from (A.4), we find

0F wy (2,1)] <
M [(N"'min[In N,e7 ']+ e Ny'') exp(—me™z) + N7|, z<o;
= { MN=¢", z>o0; (x,t) E@’Z;
(Rt 5s wM (z,1)] <
- { M [(N?min*lnN,e Y|+ e N ' Ny et exp(-me 'z) + N, z <o
T | MN 2>0; (2,t)€Gh; k=0,1,2,

where
6F2(x,t) = 8,08 2(x, 1), k>1, 6 z(z,t) =6z(x,t), 6 z(x,t) = z(z,1);
@Z =GyN{t<T—kh}, m= mary, q=(1 +mie TN,
n=H?) " @-0), M =hD,, o0=0p1.
Taking into account the above estimates, we obtain
Wiz, 4)] < M [N?min®In N, e+ Ng?], (z,t) € Gh. (B.17)
Further we find the estimates for the difference derivatives of the function wé-l ) (z,t)
55w (@, 1) < MNY 4+ N;Y, (2,8) €Gy, k=0,1,2
5.0 0)] < { M [e7}(N™* :l— N, 1) exp(—ms_lxl—i- N7+ N;', z<o;
M[Nt+ N;'l, z>0; (z,t) € Gp\ Ss.

Taking these estimates into account, we establish the estimate
W bz iy (,1)] < (B.18a)
- { M{N~2min’[In N,e71] + Ny ?}[e7! exp(-me~t2) +1], z<o;
T | Me ' [N24+ N2, x>0; (x,t) €Gh.
Making estimate (B.18a) for > ¢ more precise, we obtain
=L bz wi (2, 1)] < (B.18b)
<MIN?+ N2+ N2+ Ny (e+NYH g, (z,t) €Gh z>0.
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Taking estimates (B.18) into consideration, we find the estimate
wP(z, )| < M{N*min’[In N,e ']+ N, %}, (z,t) € G, (B.19)

for the function wg](a:,t), which is the solution of problem (B.16a), (5.12), where v(z,t) =
U(z,t). Taking into account estimates (B.17), (B.19), we have the estimate

lu(xz,t) — 28 (x,t)| < M {N"’min’[InN,e7"]+ Ny}, (2,t) € Gy, (B.20a)
and also the e-uniform estimate
lu(z,t) — 28 (z,t)] < M [NT2In® N + N; %], (x,t) € Gy (B.21a)
Also, the following estimates are valid:
lu(z,t) — 23 (x,t)| < M{N?min’[In N, + N; 2}, (z,t) € G; (B.20b)

lu(z,t) — 23 (x,t)| < M[N"2 I N + N2, (z,t) € G, (B.21b)

where z2(z, 1), (z,t) € G is the bilinear interpolant constructed from the values of the function
2 (x,t), (z,t) € G. Estimates (B.20) and (B.21) are unimprovable with respect to the values
of N, Ny, € and N, Ny respectively.
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