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Abstract

In this paper we consider Prandtl’s boundary layer problem for incompressible
laminar flow past a plate with transfer of fluid through the surface of the plate.
When the Reynolds number is large the solution of this problem has a parabolic
boundary layer. In a neighbourhood of the plate the solution of the problem has
an additional singularity which is caused by the absence of the compartability
conditions. To solve this problem outside nearest neighbourhood of the leading
edge, we construct a direct numerical method for computing approximations
to the solution of the problem using a piecewise uniform mesh appropriately
fitted to the parabolic boundary layer. To validate this numerical method, the
model Prandtl problem with self-similar solution was examined, for which a
reference solution can be computed using the Blasius problem for a nonlinear
ordinary differential equation. For the model problem, suction/blowing of the
flow rate density is vo(z) = —v;27'/2Re'/?2 1/, where the Reynolds number
Re can be arbitrarily large and v; is the intensity of the mass transfer with
arbitrary values in the segment [—.3,.3]. We considered the Prandtl problem
in a finite rectangle excluding the leading edge of the plate for various values
of Re which can be arbitrary large and for some values of v;, when meshes
with different number of mesh points were used. To find reference solutions
for the the velocity components and their derivatives with required accuracy,
we solved the Blasius problem using a semi—analytical numerical method. By
extensive numerical experiments we showed that the direct numerical method
constructed in this paper allows us to approximate both the solution and its
derivatives Re—uniformly for different values of v;.
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1 Introduction

Incompressible laminar flow past a semi-infinite plate P with mass transfer in
the domain D = R? is governed by the Navier-Stokes equations. Using Prandtl’s
approach the vertical momentum equation is omitted and the horizontal mo-
mentum equation is simplified, see [2] and [3]. For large Reynolds numbers the
new momentum equation is parabolic and singularly perturbed, which means
that the highest order derivative is multiplied by a small singular perturbation
parameter € = 7.

It is well known that for flow problems with large Reynolds numbers a bound-
ary layer arises on the surface of the plate. Also, when classical numerical
methods are applied to these problems large errors occur, especially in approx-
imations of the derivatives, which grow unboundedly as the Reynolds number
increases. For this reason robust layer-resolving numerical methods, in which
the error is independent of the singular perturbation parameter, are required.
Here we solve the Prandtl problem in a region including the parabolic boundary
layer. Since the solution of the problem has another singularity at the leading
edge of the plate we take as the computational domain the finite rectangle
Q = (.1,1.1) x (0,1) on the upper side of the plate, sufficiently far from the
leading edge (see Fig. 1) such that the leading edge singularity does not cause
excessive problems for the numerical method. We denote the boundary of 2
by ' =T, UI'rUT's UT'r where ', I'r, I'p and ' denote, respectively the
left-hand, top, bottom and right-hand edges of (.

L //T// 5 x

. llH,¢,,¢,_.¢..w-ww ——————————

Figure 1: Flow past a plate with suction/blowing.

In figure 1 we see the constant flow to the left hand side of the plate, along
the plate § denotes the width of the boundary layer and v (z) denotes the mass
transfer.



The Prandtl boundary layer problem in D is:
( Find u. = (ue, v.) such that for all (z,y) € D
u. satisfies the differential equation

1 0° —
~Re 821;/5 +u..Vu, =0

(Pe)§ Voau, =0
with boundary conditions

ue =0 and v; =vo(z) on '

(uc. =uponl,UTr

where vo(z) is the velocity normal to the plate at which mass is transferred
through its surface (see eqn (1) in section 2). The case for no mass transfer,
vo(z) = 0, was dealt with in [1] and it was used a the starting point for this
paper.

We construct a numerical method for which there are error bounds for the
solution components and their derivatives, such that the error constants do not
depend on the value of Re or v;, where v; is the intensity of the mass transfer.
That is, the method is (Re, v;)—uniform.

2 Semi-analytical solution

Using the transformation described in [4], a self similar solution ug = (up,vB)
of (P.) can be written in the form

up = f (n)
v = Sy = (f () = f o)

where
— gy E
n=y o0
and the function f is the solution to the Blasius problem
Find f € C3([0,00)) such that for all n € [0, 00)

"

(P)Q " () + f () f () =0

FO)=v;, £(0)=0, lim o f (n) =1

In [5] the Blasius problem (Pg) is solved numerically for the function f, and
the relations are used to construct the Blasius solution ug of P.. From [4] we

have
(o) = —u /22 1)



Negative values of v; correspond to injection, positive values correspond to suc-
tion. Technically v; can have (—oo, c0), but in practice when v; < —0.87 the
boundary layer is blown away from the surface. In addition to this there is an
upper limit of 7.07 [2]. The Blasius equation with no mass transfer, v; = 0, was
dealt with in [1].

The purpose of finding this Blasius solution of Prandtl’s problem is that we
use it as a reference solution for the unknown exact solution in the expression for
the error, when we estimate the error in the direct method of the next section. In
this way, since the Blasius solution is known to converge Reynolds—uniformly to
the solution of Prandtl’s problem and we can estimate guaranteed error bounds
for it [5].

3 Nonlinear direct finite difference method

In this section we begin to construct a robust numerical method to solve the
Prandtl problem (P.) for all admissible values of Reynolds numbers Re and
v; € [-0.3,0.3].

We define the rectangular mesh as in [1] on the rectangle Q2 to be the tensor
product of two one-dimensional meshes QN = QN+ x O where N=(N,,, N,)).
The mesh in the x direction is the uniform mesh

Qe ={z; : 2, =0.1+iN,;1,0<i < N,}.
The mesh in the y-direction is the piecewise-uniform fitted mesh

2 N, N,. 2 N,
O ={y; 1y = 05,0 <j < Zhyy = o+(1-0) (=21 55 =
© I N, 2% 2N, 2

<J< Ny}
It is important to note the position of the boundary layer in order to define an
appropriate transition point o from the coarse to the fine mesh, so that there is
a fine mesh in the boundary layer. The appropriate choice in this case is

1
o= min{i, VelnN,}. (2)
The factor /¢ may be motivated from a priori estimates of the derivatives of the

solution u, or from asymptotic analysis. For simplicity we take N, = Ny, = N
(see Fig 2).
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Figure 2: 2-d mesh constructed from a tensor product.

Using the above piecewise uniform fitted mesh QN the problem (FP:) is dis-
cretized by the following nonlinear system of upwind finite difference equations
for the approximation velocity components U, = (Ug, V;)

( Find U, = (U., V;) such that for all (z;,y;) € QN
(-e02+ U, -D )Uc(zi,y;) =0
(PY) < (D™ - U)(zi,y;) =0

U.=0, V.=w(z;)onTpg

\UE=UB on FLUFT

where D™ = (D, D), D; and D, are standard backward difference opera-

tors, and 55 is a standard central difference operator.

4 Tterative direct finite difference method

Since the problem (PN) is a nonlinear system an iterative method is required
for its solution. This is obtained by replacing the system of nonlinear equations
with a sequence of systems of linear equations, this is an adaptation of the
method used in [1]. The systems of linearized equations are



( With the boundary condition UM = U192 on I'y,

for each i,1 < i < N, use the initial guess U?|x, = UM~

Xi_1

and for m =1,..., M; solve the following
two point boundary value problem for U™ (z;,y;)

(-ed2+Ur~t - D7) UM (2i,y;) =0, 1<j<N-1
with the boundary conditions U* = Ug on I'g UT'r,
(AN) ¢ and the initial guess for V| x, = 0.

Also solve the initial value problem for V™ (x;,y;)
(D~ -U)(@i,y;) =0,

with initial condition V™ = vg(z;) on I'p.

Continue to iterate between the equations for U until m = M;,
where M; is such that

[ max(|UM — UM~ , g [VM = VMt ) < tol.

For notational simplicity, we suppress explicit mention of the iteration super-
script M; henceforth, and we write simply U, for the solution generated by
(AN). We take tol = 109 in the computations. We note that there are no
known theoretical results concerning the convergence of the solutions U. of
(PN) to the solution u. of (P.) and no theoretical estimate for the pointwise er-
ror (Uc.—u.)(z;,y;). It is for this reason that we are forced to apply controllable
experimental techniques, which are adapted to the problem under consideration
and are of crucial value to our understanding of the computational problems.
V* is defined to be
X
V= I?)%XVB. 3)

€

5 Error Analysis for the iterative direct method

In this section we compute Reynolds—uniform maximum pointwise errors in
the approximations generated by the direct numerical method described in the
previous section. For the sake of brevity, we show the errors for only the two
extreme values of mass transfer in the set we are dealing with, v; = 0.3 and
two tables for v = —0.3 as the quality behaviour of errors and convergence
orders are qualitatively the same as they are for v; = 0.3. We compare the
parameter uniform maximum pointwise errors in the approximations generated
by the direct numerical method of the previous section with the corresponding
semi—-analytic values of section 2. We use the following definitions for the errors

+—8192
EE(UE) =||U. - Us ||§i"



1 1 —8192
EN e) = 174 e — —N
NV = Ve =V g

where V* is defined as in eqn(3).

Graphs of the scaled discrete velocity components generated by (AN) are
given for N=32, e = 1.0 and 272 and v; = 0.3 and —0.3 in figure 3, 4 and 5 For
small Reynolds the velocity components are smooth which is shown in fig 3.
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Figure 3: Graphs of U. and

(V) for e = 1.0, N=32 and v; = 0.3.

In figs 4 and 5 we see that there is rapid change in a small region along the
plate for the scaled velocity components with v; = 0.3 and —0.3.
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Figure 5: Graphs of U, and i (V}) for ¢ = 2712, N=32 and v; = —0.3.

In figure 5 we see that in the top right hand corner of the graph of U, that
the transition point (eqn (2)) of the mesh QN is slightly smaller than the width



of the layer this is due to the effect of the mass transfer blowing the boundary
layer out.

e\N 8 16 32 64 128 256 512
270 1.82e-03  1.90e-03 1.17e-03  7.36e-04 3.98e-04 2.63e-04 1.37e-04
2-2 3.19e-02  1.54e-02 7.48e-03  3.69e-03 1.81e-03 8.77e-04  4.09e-04
2—4 7.72e-02  3.23e-02  1.53e-02  7.48e-03 3.69e-03 1.82e-03 8.79e-04
2-6 7.93e-02  4.53e-02  2.62e-02 1.48e-02 7.36e-03 3.67e-03  1.82e-03
2-8 7.67e-02  4.53e-02  2.62e-02 1.54e-02 8.96e-03  5.14e-03  2.90e-03

2720 | 1.53e-01 6.77e-02 2.62e-02 1.54e-02 8.96e-03 5.14e-03  2.90e-03
EVN 1.53e-01  6.77e-02  2.62e-02 1.54e-02  8.96e-03  5.14e-03  2.90e-03

Table 1: Computed maximum pointwise error EN(U,) where U, is generated
by (AN) for various values of €, N and v;=0.3.

e\N 8 16 32 64 128 256 512
20 4.06e-01 2.73e-01  1.54e-01 7.71e-02  3.84e-02 1.79e-02  8.71e-03
22 5.41e-01 3.39e-01  1.91e-01 1.03e-01 5.56e-02  3.04e-02  1.69e-02
2—4 1.48e+00 6.72e-01  3.40e-01  1.85e-01  1.04e-01  5.86e-02  3.32e-02
2 6
2—8

1.57e4+00 1.03e+00 6.41e-01  3.79e-01  2.10e-01  1.19e-01  6.76e-02
1.52e4+00 1.03e+00 6.41e-01  3.98e-01  2.59e-01  1.68e-01  1.08e-01

2720 | 1.44e400  1.03e+00  6.40e-01  3.98e-01  2.59e-01  1.68e-01  1.08e-01
EN | 1.57e+00 1.03e+00 6.41e-01  3.98e-01  2.59e-01  1.68e-01  1.08e-01

Table 2: Computed maximum pointwise error EN (3 V.) where V, is generated

by (AN) for various values of ¢, N and v;=0.3.

Tables 1 and 2 are the errors of the scaled velocity components generated
by (AN), for various values of N and Reynolds with v; = 0.3. From the tables
we see for each given N as Reynolds increases the error becomes constant with
respect to Reynolds, we will refer to this as stabilising.

e\N 8 16 32 64 128 256 512
20 4.49e-03  5.27e-03  4.19e-03  2.45e-03 1.33e-03  6.95e-04  3.98e-04
272 3.09e-02  1.94e-02 1.11e-02  5.98e-03  3.10e-03  1.59%e-03  8.20e-04
2-4 2.94e-01 1.24e-01 5.74e-02 2.77e-02 1.37e-02 6.80e-03  3.43e-03
2 6
2-8

3.93e-01  1.87e-01  9.89e-02  5.28e-02  2.54e-02  1.25e-02  6.24e-03
4.59e-01  2.17e-01  9.94e-02  5.49e-02 3.06e-02  1.70e-02  9.43e-03

2720 | 2.57e-01 1.66e-01 9.75e-02 5.49e-02 3.06e-02 1.70e-02  9.43e-03
EN 4.59e-01  2.17e-01  9.94e-02  5.49e-02  3.06e-02  1.70e-02  9.43e-03

Table 3: Computed maximum pointwise error EN(U.) where U, is generated
by (AN) for various values of ¢, N and v;=-0.3.

Table 3 is the error values of the scaled velocity component in the x direction
generated by (AN) for various values of N and Reynolds with v; = —0.3. As



with the previous tables the error stabilises as Reynolds increases.
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Figure 6: Graphs of U, — U§%? and

(V. — VE192) for ¢ = 1.0, N=32 and

Graphs of the differences U, — U2 and % (V. — V5192) for ¢ = 1.0, N=32

V=

with v; = 0.3 are smooth as shown in fig 6.
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Figure 7: Graphs of U, — U§%? and
v; = 0.3.

‘}* (Vs - V£8;192) for € = 2712, N=32 and

For large Reynolds numbers the boundary layer arises, due to this rapid
change of velocity in a small region, the error is localised in the boundary layer
for both U, and = V; for N=32 and £ = 272 for v; = 0.3 (see fig 7).

We now estimate the orders of convergence of the numerical approximations
generated by the direct numerical method, by introducing the computed orders
of convergence using the definition from [1] they are

U — UE*|lay
|[U2N — UR'2[laz~

N —
ps,comp - lOQQ

and pi\f,mp by
maz, |[|[UN — UE?||qy

ma. |[U2N — UR*2||gzn

pg}mp = lOQZ

with corresponding definitions for the scaled components.



e\N 8 16 32 64 128 256
270 -0.07 071 0.67 0.92 076 1.04
2-2 112 1.05 1.03 1.02 1.03 1.05
2—4 1.45 1.8 1.08 1.04 1.03 1.03
2-6 1.01  0.90 0.92 1.07 1.04 1.02
2-8 1.00 0.90 0.87 085 0.85 0.85
2-20 1.04 1.03 0.87 0.85 0.85 0.85
Poomp | 1.04 1.03 087 085 085 0.85

Table 4: Computed orders of convergence pY.,,..., PRmp for Us
U. is generated by (AN) for various values of £, N and v;=0.3.

8192
__[IB

where

Tables 4 — 5 indicate the order of convergence for U, is at least 0.8 and 0.6

1
for e

(Vz) for v; = 0.3 and all Reynolds.

e\N 8 16 32 64 128 256
20 0.57 0.83 1.00 1.01 1.10 1.04
272 0.67 0.83 089 0.89 0.87 0.85
24 1.14 098 0.87 0.84 0.82 0.82
2-6 061 0.69 0.76 0.86 0.82 0.81
2-8 0.56 0.68 0.69 0.62 0.62 0.64
2-20 0.49 0.68 0.69 0.62 0.62 0.64
Pomp | 061 0.69 069 062 0.62 0.64

Table 5: Computed orders of convergence pY, ..., PR, for o= (Ve — V592)
where V. is generated by (AN) for various values of £, N and v;=0.3.

Table 6 indicate the order of convergence for U, is at least 0.8 for v;

and all Reynolds.

e\N 8 16 32 64 128 256
2-0 -0.23 0.33 0.78 0.88 0.94 0.80
22 0.67 0.80 0.90 0.95 0.96 0.96
24 1.25 1.11 1.05 1.02 1.00 0.99
2—6 1.07 092 0.90 1.05 1.02 1.00
2—8 1.08 1.13 0.8 0.84 0.85 0.85
2-20 0.64 077 0.83 0.84 0.85 0.85
Pomp | 108 113 086 0.84 085 0.85

Table 6: Computed orders of convergence pY, .., Doy, for Us
U. is generated by (AN) for various values of e, N and v;=-0.3.

8192
_.[IB

=-03

where

The results in tables 1 - 6 indicate that the direct numerical method is
Reynolds uniform for the scaled velocity components with v; = —0.3 and
v; = 0.3, thus we can guarantee accuracy for arbitrary Reynolds.

10
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Figure 8: Graphs of /(D, Uc) and D, V; for e = 1.0, N=32 and v; = 0.3.

Graphs of the computed scaled derivatives generated by (AN) applied to P.
are given for N=32 and ¢ = 1.0 and 2712 with v; = 0.3 are given by figs 8 and
9. In figure 8 we see for small Reynolds the graphs for \/e(D, U.) and D, V.
are smooth, with activity near I'r.
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Figure 9: Graphs of \/g(D, U.) and D, V. for e = 2~ '2, N=32 and v; = 0.3.

Figure 9 shows that the area of most activity is along the plate in the bound-
ary layer and close to the leading edge for \/EDy_ U: and DV, for v; =0.3.
Tables 7 - 8 show the errors for the scaled derivatives \/ED; U: and DV, for
v; = 0.3, as before the error stabilises as Reynolds increases.

e\N 8 16 32 64 128 256 512
270 9.50e-02  4.78e-02  2.41e-02 1.23e-02 6.32e-03  3.35e-03  1.86e-03
2-2 1.87e-01  9.50e-02  4.78e-02 2.41e-02 1.23e-02 6.32e-03  3.35e-03
24 3.21e-01  1.87e-01  9.50e-02  4.78e-02 2.41e-02 1.23e-02  6.32e-03
276 3.37e-01  2.59e-01  1.63e-01  9.50e-02  4.78e-02  2.41e-02  1.23e-02
2-8 3.37e-01  2.59e-01 1.63e-01  9.89e-02 5.78e-02  3.33e-02  1.89e-02
2710 | 3.37e-01  2.59e-01  1.63e-01  9.89e-02 5.78e-02  3.33e-02  1.89e-02
2720 | 3.37e-01 2.59e-01 1.63e-01 9.89e-02 5.78e-02  3.33e-02  1.89e-02
EVN 3.37e-01  2.59e-01  1.63e-01  9.89e-02  5.78e-02  3.33e-02  1.89e-02

Table 7:  Computed maximum pointwise scaled error +/e||D, U.
DyUgu)ZHQ_N/FL where U, is generated by (AN) for various values of £, N and
’U,'=0.3. ‘

11



e\N 8 16 32 64 128 256 512
20 5.29e-01 3.89e-01  2.32e-01  1.19e-01  6.02e-02  2.98e-02  1.57e-02
22 7.50e-01 5.44e-01  3.31le-01  1.87e-01  1.04e-01  5.91e-02  3.47e-02
2-4 1.30e+00 8.79e-01  5.35e-01  3.13e-01  1.84e-01  1.09e-01  6.52e-02
2 6
2 8

1.37e4+00 1.25e+00 9.17e-01  6.14e-01  3.60e-01  2.15e-01  1.29e-01
1.37e4+00  1.25e+00 9.17e-01  6.40e-01  4.41e-01  3.02e-01  2.04e-01

2720 | 1.36e+00 1.25e4+00 9.16e-01  6.40e-01 4.41e-01  3.03e-01  2.04e-01
EN 1.37e+00 1.25e+00 9.17e-01  6.40e-01  4.41e-01  3.03e-01  2.04e-01

Table 8: Computed maximum pointwise error || D, V. — D, V§'%?||=x where V.

is generated by (AN) for various values of &, N and v;=0.3.

For small Reynolds the errors are evenly distributed thought out the domain
with the largest occurring in the region of 'y, (fig 10).

“blasius_minus_prandtl_D_y v’
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Figure 10: Graphs of \/(D, U. — D,U3'*?) and D, V. — D,V§'¥* for ¢ = 1.0,
N=32 and v; = 0.3.

Figure 11 displays the errors of /D, U, and D, V; for N=32 and ¢ = 2-12
with v; = 0.3, the error is contained within the boundary layer with the largest
error arising at the points closest to the leading edge.
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Figure 11: Graphs of \/&(D, U, — D,UR'**) and D, V. — D,V§'?* for e =271,
N=32 and v; = 0.3.

Tables 9 - 10 show the order of convergences for DV, and \/EDy_ U, for
various N and Reynolds with v; = 0.3.
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e\N 8 16 32 64 128 256
2-0 0.99 0.99 098 096 092 0.84
272 098 0.99 099 0.98 096 0.92
2—4 0.78 0.98 099 0.99 098 0.96
2 6
2 8

0.38 0.66 0.78 0.99 0.99 0.98
0.38 0.66 0.72 0.77 0.80 0.82

2-20 0.38 0.66 0.72 0.77 0.80 0.82
Poomp | 0.38 0.66 0.72 0.77 0.80 0.82

Table 9: Computed orders of convergence p,,,.., PN, for \e(D,U. —
D, U89%) where U. is generated by (AN) for various values of £, N and v;=0.3.

From table 9 it can be read that \/ED; U. for v; = 0.3, has an order of
convergence no less than 0.6 for N > 16.

e\N 8 16 32 64 128 256
20 044 074 096 099 1.01 0.92
2-2 046 0.72 083 0.85 0.81 0.77
2-4 0.56 0.72 0.77 0.77 0.75 0.74
2—6
2 8

0.14 0.44 0.58 0.77 0.74 0.74
0.13 0.44 0.52 0.54 0.55 0.57
2—20 0.12 0.44 052 0.54 054 0.57
0.14 0.44 052 0.54 0.54 0.57

N
Peomp

Table 10: Computed orders of convergence pY,,,..,., Phomyp for D Ve — D, V3192
where V. is generated by (AN) for various values of &, N and v;=0.3.

From table 10 it can be read that DV, for v; = 0.3, has an order of con-
vergence no less than 0.5 for N > 32.
Tables 7 - 10 indicate that the direct numerical method is Reynolds uniform
for \/ED; Us and D, V. for v; = 0.3, this result also holds for the case when
v; = —0.3.
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Figure 12: Graphs of % (D7 Vz) in the domain QN\(X; UTy) for £ = 1.0 and
€ =2"12 N=32 and v; = 0.3.

Figure 12 shows that the graphs for %D; Ve for N =32 and € = 1 and
€ = 2712 with v; = 0.3, we can see that the leading edge has an obvious affect on
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the region close to I'z, for both small and large Reynolds due to this singularity
when dealing with the errors of %D; V. we only investigate the subdomain

QN N[0.2,1.1] x [0,1]).

e\N 8 16 32 64 128 256 512
270 2.49e4+00 2.58e4+00 1.17e+400 6.49e-01  3.43e-01 1.71e-01  8.76e-02
2-2 3.69e4+00 3.10e+00 1.12e+00 5.8%-01  3.05e-01 1.49e-01  7.37e-02
2-4 1.07e+01  6.43e+00  1.52e+00 7.72e-01  3.89e-01  1.88e-01  9.23e-02
2 6
2 8

1.18e+01  1.14e+01 2.16e400 1.16e400 5.71e-01 2.68e-01  1.30e-01
1.22e+01 1.14e+01 2.16e400 1.17e400 6.33e-01 3.31le-01  1.74e-01

2720 | 1.98e4+01 1.15e+01 2.16e4+00 1.17e+00 6.33e-01  3.31e-01  1.74e-01
EN 1.28e+01 1.15e+01 2.16e+00 1.17e+00 6.33e-01  3.31e-01  1.74e-01

Table 11: Computed maximum pointwise scaled error V*~1||D; V. — D, V%?||
in the subdomain (Y N[0.2,1.1] x [0,1]) where V. is generated by (AN) for
various values of ¢, N and v;=0.3.

Table 11 gives the errors of the scaled derivative %D; V. for various values

of N and Reynolds with v; = 0.3 in the subdomain (QN N[0.2,1.1] x [0,1]). The
table show that the error stabilises as Reynolds increases.

e\N 8 16 32 64 128 256
270 -0.05 1.15 0.85 0.92 1.00 0.97
22 0.25 1.47 093 095 1.03 1.02
2-4 0.73 208 0.98 099 1.05 1.03
2 6
2 8

0.05 240 089 1.02 1.09 1.04
0.09 240 089 0.88 0.94 0.93

2-20 0.15 241 089 0.88 0.94 0.93
Poomp | 015 241 089 0.88 0.94 0.93

Table 12: Computed orders of convergence pY ..., PN, for ¢=(D, V. —
D, V892 in the subdomain (Q¥ N [0.2,1.1] x [0,1]) where V. is generated by
(AN) for various values of &, N and v;=0.3.

From table 12 it can be read that %D; Ve for v; = 0.3 has an order of
convergence no less than 0.85 for V > 16.
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Figure 13: Graphs of (%(D, V. — 6,Vp) in the domain QN\(X; UT.) and
1 (D7 Vi — 8, VB) in the subdomain (2N N[0.2,1.1] x [0, 1]) for e = 2712, N=32
and v; = 0.3.

Figure 13 shows that on the domain QN\(X; UT}), the error for D; V. for
N =32and e = 2712 with v; = 0.3 is large due to the leading edge singularity, by
shifting down the x axis away from the singularity and looking at the subdomain
(2 N[0.2,1.1] x [0,1]) the error is significantly less.
Tables 11 - 12 indicate the within the subdomain the direct numerical method is
Reynolds uniform for %D; V. for v; = —0.3, this result also holds for v; = —0.3.

6 Conclusion

We considered Prandtl’s boundary layer equations for incompressible laminar
flow past a plate with suction/blowing of the flow rate density vg (z) = —v;2~'/2Re'/22=1/2,
where the Reynolds number Re can be arbitrarily large and v; is the intensity
of the mass transfer with arbitrary values in the segment [—.3,.3]. When the
Reynolds number is large the solution of this problem has a parabolic boundary
layer at the surface of the plate excluding its leading edge. We constructed a
direct numerical method for computing approximations to the solution of this
problem using a piecewise uniform fitted mesh technique appropriate to the
parabolic boundary layer. To validate this numerical method, the model Prandtl
problem with self-similar solution was examined, for which a reference solution
can be computed using the Blasius problem for a nonlinear ordinary differential
equation. We considered the Prandtl problem in a finite rectangle excluding
the leading edge of the plate for various values of Re which can be arbitrary
large and for some values of v;, when meshes with different number of mesh
points were used. To find reference solutions for the the velocity components
and their derivatives with required accuracy, we solved the Blasius problem us-
ing a semi—analytical numerical method. By extensive numerical experiments
we showed that the direct numerical method constructed in this paper allows us
to approximate both the solution and its derivatives Re—uniformly for different
values of v;.
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