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Abstract

In this paper we deal with Prandtl’s boundary layer problem for incompressible
laminar flow past a wedge. When the Reynolds number is large the solution of
this problem has a parabolic boundary layer. We construct a direct numerical
method for computing approximations to the solution of this problem using a
piecewise uniform fitted mesh technique appropriate to the parabolic boundary
layer. We use the numerical method to approximate the self—similar solution of
Prandtl’s problem in a finite rectangle excluding the leading edge of the wedge,
which is the source of an additional singularity caused by incompatibility of
the problem data. We verify that the constructed numerical method is robust
in the sense that the computed errors for the velocity components and their
derivatives in the discrete maximum norm are Reynolds uniform. We construct
and apply a special numerical method related to the Falkner—Skan technique to
compute a reference solution for the error analysis of the velocity components
and their derivatives. By means of extensive numerical experiments we show
that the constructed direct numerical method is Reynolds—uniform.



1 Introduction

Incompressible laminar flow past a semi-infinite wedge W in the domain D = R?
/ W is governed by the Navier-Stokes equations. Using Prandtl’s approach the
vertical momentum equation is omitted and the horizontal momentum equation
is simplified , see [2]and [3]. The new momentum equation is parabolic and sin-
gularly perturbed, which means that the highest order derivative is multiplied
by a small singular perturbation parameter. In this case the parameter is the
reciprocal of the Reynolds number. For convenience we use the notation & = ﬁ.

It is well known that for flow problems with large Reynolds numbers a bound-
ary layer arises on the surface of the wedge. Also, when classical numerical
methods are applied to these problems large errors occur, especially in approx-
imations of the derivatives, which grow unboundedly as the Reynolds number
increases. For this reason robust layer-resolving numerical methods, in which the
error is independent of the singular perturbation parameter, are required. We
want to solve the Prandtl problem in a region including the parabolic boundary
layer. Since the solution of the problem has another singularity at the leading
edge of the wedge
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Figure 1: Flow past a wedge

we take as the computational domain the finite rectangle = (.1,1.1) x (0, 1)
on the upper side of the wedge, which sufficiently far from the leading edge (see
fig. 1) that the leading edge singularity does not cause problems for the nu-
merical method . We denote the boundary of @ by I' = T't UI'rUTs UTR
where 'y, I'r, I'p and T'g denote, respectively the left-hand, top, bottom and
right-hand edges of (.



The Prandtl boundary layer problem in D is:

( Find u, = (u., v.) such that for all (z,y) € D

u, satisfies the differential equation

_ 1 2%u. _ 77dU
Re %y +u..Vue =U

(Pe){ Vau. =0
with boundary conditions

u.=0onlIp

( e =uponT Ty

where m = %, B is the angle in radians of the wedge and U(z) = z™.
Our goal is to construct a numerical method for which there are error bounds
for the solution components and their derivatives, which do not depend on the

value of Re or 3, for Re € [1,00) and § € [0,1]. That is the method is (Re, §)—
uniform.

2 Falkner—Skan solution

Using the transformation described in [4], (P.) can be simplified to the well-
known Falkner—Skan problem, involving a non-linear ordinary differential equa-
tion, which we now describe. Writing

(m+1)ReU

n=y B) -

the velocity components have the form

ups(z,y) = uz™f'(n) = U f'(n)

m+1U m—1
vrs(z,y) = — %2 Re (f+ m——i—lnfl)'

where f is the solution of the Falkner—Skan problem

( For n € (0,00) find f € C3(0, 00)

frHffr+p =) =0
(PFS) <
with boundary conditions

[ f(0)=f'(0) =0, f'(00) = 1.

To find the components ups(z,y), vrs(z,y) of ups, and their derivatives,
we need to solve (Prg)numerically for f(n) and its derivatives on the semi-
infinite domain [0,00) and then we apply post-processing to determine numerical



approximations to u.. This process is described in detail in [1] for flow past a
flat plate.

The purpose of finding this Falkner—Skan solution of Prandtl’s problem is
that we use it as a reference solution for the unknown exact solution in the
expression for the error, when we estimate the error in the direct method of the
next section. In this way, since the Falkner—Skan solution is known to converge
Reynolds—uniformly to the solution of Prandtl’s problem and we can estimate
guaranteed error bounds for it. For this purpose we use the Falkner—Skan so-
lution for (Prg) when N=8192, namely U%!2?  which provides the required ac-
curacy for the velocity components US$?, VEL? and their derivatives D, VEL?
D, VEE¥? and their scaled derivative \/eD,Us 3.

3 Prandt!l’s Problem

The aim of this section is to construct a robust numerical method to solve the
Prandtl problem (FP:) for all admissible values of # and Reynolds numbers Re.

When constructing a mesh in the rectangle Q, it is important to note where
the boundary layer occurs in order to define an appropriate transition point
from the coarse to the fine mesh. We define the mesh as a tensor product of
two one—dimensional meshes. The mesh in the x direction is the uniform mesh
(see fig. 2)

ONe ={z; : 2, =0.14+iN,;',0<i < N,}.
The mesh in the y-direction is a piecewise—uniform fitted mesh, which is defined
by
N,. 2 N,

N — L <j< N}

2 N,
O ={y; :y; =0j,0<j < Ly = o+ (1-0)(j— L) > =L
€ J J Ny 2 J 2 Y 2

The transition point o is chosen so that there is a fine mesh in the boundary
layer when required. The appropriate choice in this case is

1
o= min{i, VelnNy,}.
The factor 4/ may be motivated from a priori estimates of the derivatives of
the solution u. or from asymptotic analysis. The rectangular mesh is then the
tensor product ON = QN+ x QN where N=(N,, N,)). For simplicity we take

N, =N, =N.

The problem (P:) is discretized by the following non-linear upwind finite
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Figure 2: 2-d mesh constructed from a tensor product

difference method on the piecewise uniform fitted mesh QN
( Find U, = (U, V.) such that for all (z;,y;) € QN
U. satisfies the finite difference equations
—e02Ue (45,y;) + Ue (@4,y5) D5 Ue (3, y;5)+

(PN) ) V;(Z‘i,yj)D;Us(xiayj) = U(.’L‘,)%(wz)

£

with boundary conditions

UEZOOIIFB

\ UE =UFS on FLUPT

where, for any continuous function V.(z;,y;) on the domain QN Dy is defined
by

o\ u oy Ve(xi,y;) Dy Ue (@i, y5) it Ve(zi,y5) > 0
V;:‘(xuyJ)DyUE(x“yJ) B { %(xzay])D;—UE(mz)yj) if V:’:‘(:I:zay]) <0.

63, is the standard second order centered difference operator in the y direction,
D,, D} and D, , D} are the standard first order backward, respectively for-
ward, finite difference operators in the x and y directions.

The need to change between forward and backward differences is due to the
fact that, at angles 8 > 0.1, V. is initially negative and then becomes positive.
Therefore, without these changes, the tridiagonal system is no longer diagonally



dominant and the continuation algorithm fails to converge.

Since the problem (PN) is a nonlinear system an iterative method is required
for its solution. This is obtained by replacing the system of nonlinear equations
with a sequence of systems of linear equations. The systems of linearized equa-
tions are

( With the boundary condition UM = U§1%2 on I,

for each 4,1 < i < N, use the initial guess U%|x, = M

Xi-1

and for m =1,..., M; solve the following
two point boundary value problem for U™ (x;,y;)

(—edy + U -D UM, y;) = (UdE) (2:), 1<j<N-—-1
with the boundary conditions U® = Ups on I'g U I'r,,

(4N) 4 and the initial guess for V?|x, = 0.

Also solve the initial value problem for V™ (z;,y;)

(D_ ' U;”)(:c,,yj) =0,

with initial condition V™ = 0 on I's.

Continue to iterate between the equations for U until m = M;,
where M; is such that

max(|UM — UM%, g5 VM — VMol ) < tol.

\

For notational simplicity, we suppress explicit mention of the iteration super-
script M; henceforth, and we write simply U, for the solution generated by
(AN). We take tol = 1079 in the computations. We note that there are no
known theoretical results concerning the convergence of the solutions U. of
(PN) to the solution u. of (P.) and no theoretical estimate for the pointwise er-
ror (U. —u.)(z;,y;). It is for this reason that we are forced to apply controllable
experimental techniques, which are adapted to the problem under consideration
and are of crucial value to our understanding of the computationally problems.
V* is defined to be
V* = max Vps.
QN

e

4 Error Analysis

In this section we compute Reynolds—uniform maximum pointwise errors in
the approximations generated by the direct numerical method described in the
previous section. For the sake the brevity, we show the errors for only one
typical value of the angle of the wedge, 8 = 0.6.



For this case we compare the parameter uniform maximum pointwise errors
in the approximations generated by the direct numerical method of the previous
section with the corresponding values of U§d?. We use the following definitions
for the errors

—38192
EX(U.) = ||U. — Urs g~

1 1 ——=8192
EN( Vo) = pllVe = Vs g

The results in Tables 1 and 2 indicate that the method is Reynolds—uniform
for the scaled velocities.

e\NV 8 16 32 64 128 256 512
270 ] 1.80e-03 1.34e-03 7.58¢-04 4.33e-04 2.36e-04 1.29¢-04 6.98e-05
272 | 1.39e-02 8.19e-03 4.51e-03  2.40e-03 1.24e-03 6.30e-04  3.16e-04
2% | 3.00e-02 1.66e-02 8.87e-03 4.59¢-03 2.33e-03 1.17e-03  5.83e-04
276 | 3.39e-02 2.04e-02 1.10e-02 5.69e-03 2.87e-03 1.43e-03  7.11e-04
278 | 3.32-02 1.99e-02 1.12e-02 5.82¢-03 2.98¢-03 1.51e-03  7.65e-04
2710 | 3.34e-02 1.93¢-02 1.11e-02 5.82e-03 2.98¢-03 1.51e-03  7.65e-04
2712 | 3.81e-02 1.93e-02 1.10e-02 5.81e-03 2.98¢-03 1.51e-03  7.65e-04
271 | 4.62-02 1.93e-02 1.10e-02 5.81e-03 2.98¢-03 1.51e-03  7.65e-04
2716 | 5.05e-02 1.93e-02 1.10e-02 5.81e-03 2.98¢-03 1.51e-03  7.65e-04
2718 | 5.26e-02 1.93e-02 1.09e-02 5.81e-03 2.98¢-03 1.51e-03  7.65e-04
2720 | 537e-02 1.93e-02 1.09e-02 5.81e-03 2.98¢-03 1.51e-03  7.65e-04
EY | 537e-02 2.04e-02 1.12e-02 5.82e-03 2.98¢-03 1.51e-03  7.65e-04

Table 1: Computed maximum pointwise error EN (U.) where U. is generated
by (AN) for various values of ¢, N and $=0.6.

e\ 8 16 32 64 128 256 512
270 [ 267e-01 1.77e-01 9.95e-02 5.25e-02 2.79e-02 1.50e-02  8.28e-03
272 | 1.89e-01 1.07e-01 5.39e-02 2.76e-02 1.41e-02 7.32e-03  3.88¢-03
274 | 1.28¢-01 7.11e-02 3.52e-02 1.78¢-02 9.02e-03 4.61e-03  2.39¢-03
276 | 9.82e-02 5.51e-02 2.85e-02 1.51e-02 7.65e-03 3.88e-03  1.98e-03
278 | 8.60e-02 4.53e-02 2.21e-02 1.15e-02 6.02e-03 3.17¢-03  1.67e-03
2710 1 8.00e-02 4.09e-02 1.93e-02 9.75e-03  5.02e-03  2.59e¢-03  1.33e-03
2712 | 7.69e-02 3.88¢-02 1.79e-02 8.95e-03 4.55e-03 2.31e-03  1.18e-03
271 | 7.54e-02 3.77e-02 1.72e-02 8.57e-03 4.32¢-03  2.18¢-03  1.10e-03
2716 | 746e-02 3.72e-02 1.69e-02 8.37¢-03 4.20e-03 2.11e-03  1.06e-03
2718 | 74%e-02 3.70e-02 1.68e-02 8.28¢-03 4.15e-03  2.08¢-03  1.04e-03
2720 | 7.40e-02 3.68¢-02 1.67e-02 8.23¢-03 4.12e-03 2.07e-03  1.04e-03
EY | 2.67e-01 1.77e-01 9.95e-02 5.25e-02 2.79e-02 1.50e-02  8.28¢-03

Table 2: Computed maximum pointwise error EN (Vl* V) where V; is generated
by (AN) for various values of €, N and 3=0.6.

In fig. 3 we see that the computed scaled velocity components have no
non-physical oscillations. The boundary layer at the wedge is apparent for the
horizontal velocity component U,.
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Figure 3: Graphs of U, and ¢V for e =278 N=32 and 8 =0.6

In Tables 3 and 4 we give the computed orders of convergence for the velocity
components. We define pﬁ,’wmp by
1US — UEs®llay
|[U2N — URs®[laz~

N _
Pe comp = 1092

maze ||UY — Upg?|lay
maz [|[UN — Ugd®|lozv

e\V 8 16 32 64 128 256
270 0.42 082 0.81 0.87 0.88 0.88
272 0.76 086 0.91 095 0.98 0.99
24 0.85 091 0.95 098 0.99 1.01
26 0.73 089 0.95 099 1.00 1.01
2-8 0.74 083 0.94 097 0.98 0.99
2710 1079 080 093 097 0.98 0.99
2712 1098 081 092 096 0.98 0099
2714 1126 081 092 096 0.98 0.99
2716 1139 082 092 096 0.98 0.99
271% 145 0.82 091 096 0.98 0.99
2720 1148 082 091 0.96 0.98 0.99
Poomp | 1.40  0.86 0.94 0.97 0.98 0.99

Table 3: Computed orders of convergence pY,,,.., b, for U — Up'$? where

U. is generated by (AN) for various values of ¢, N and $=0.6.



e\V 8 16 32 64 128 256
270 059 0.83 092 091 0.90 0.86
272 0.82 099 0.97 096 095 0.92
24 0.84 1.02 099 098 0.97 0.95
26 0.84 0.95 0.91 098 098 0097
2-8 0.92 1.03 0.95 093 0.93 093
2710 1097 1.09 098 096 0.96 0.96
2712 1099 1.11 1.00 0.98 0.98 0.97
2~ 1100 1.13 1.01 0.99 0.99 0.99
2-16 1100 114 1.01 0.99 0.99 0.99
27 1101 114 1.02 1.00 0.99 1.00
2720 1101 1.14 1.02 1.00 1.00 1.00
phomp | 059 083 0.92 091 090 0.86

Table 4: Computed orders of convergence pY, ..., Poom, for o= (Ve — VES?)

where V. is generated by (AN) for various values of £, N and $=0.6.

From these tables we see that for all N > 16 the order of convergence for the
approximations to the scaled velocity components in each case is at least 0.78.
Thus we have shown that for the velocity components the methods is Reynolds
uniform for § = 0.6.

The graphs in fig. 4 show where the error in the scaled velocity components
is largest. For the horizontal component this is at points in the boundary layer
and for the vertical component it is at points farthest from the surface of the
wedge.
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Figure 4: Graphs of U, —Ups and (V. — Vis) for e =278, N=32 and 3 = 0.6

In Tables 5-7 we display the computed maximum pointwise errors of the
approximations to the scaled first order derivatives of the velocity components.
Since DyV = —D,U it is only necessary to show the errors for one of them.
Further computations, not reported here, show that the errors for the scaled
derivatives reduce as the angle § tends to 1, because the singularity at the
leading edge has less effect. From these numerical experiments it follows that
the method is (Re, 3)-uniform.



e\N 8 16 32 64 128 256 512
279 | 3.73e-02 1.91e-02 1.04e-02 5.52e-03 2.91e-03 1.55e-03  8.49e-04
272 | 7.35e-02 3.73¢-02 1.88¢-02 9.51e-03 4.87e-03 2.54e-03  1.38e-03
27% | 1.39e-01 7.35e-02 3.73e-02 1.88¢-02 9.51e-03 4.87e¢-03  2.54e-03
27% | 1.44e-01 1.00e-01 6.40e-02 3.73e-02  1.90e-02 9.61e-03  4.90e-03
278 | 1.44e-01 1.00e-01 6.40e-02 3.87e-02 2.30e-02 1.33e-02  7.56e-03
2710 1 1.44e-01 1.00e-01 6.40e-02 3.87e-02 2.30e-02 1.33¢-02  7.56e-03
2712 | 1.44e-01 1.00e-01 6.40e-02 3.87e-02  2.30e-02 1.33e-02  7.56e-03
2714 | 1.44e-01 1.00e-01 6.40e-02 3.87e-02 2.30e-02 1.33e-02  7.56e-03
2716 | 1.44e-01 1.00e-01 6.40e-02 3.87e-02 2.30e-02 1.33e-02  7.56e-03
2718 | 1.44e-01 1.00e-01 6.40e-02 3.87e-02  2.30e-02 1.33¢-02  7.56e-03
2720 | 1.44e-01 1.00e-01 6.40e-02 3.87¢-02 2.30e-02 1.33¢-02  7.56e-03
EY | 1.44e-01 1.00e-01 6.40e-02 3.87e-02 2.30e-02 1.33e-02  7.56e-03
Table 5: Computed maximum pointwise scaled error +/e||D, U.
D,U 1%532“@ /r, Where U is generated by (AN) for various values of £, N and
B=.6.
e\V 8 16 32 64 128 256 512
279 ] 2.09e-01 1.58¢-01 1.03e-01 5.98¢-02 3.24e-02 1.68¢-02 8.45e-03
272 | 2.55e-01 1.81e-01 1.13e-01 6.44e-02 3.45e-02 1.79e¢-02  9.11e-03
27% | 2.79e-01 1.69e-01 1.07e-01 6.12e-02 3.29e-02 1.71e-02  8.74e-03
276 | 2.92e-01 2.08¢-01 1.31e-01 7.63e-02 3.86e-02 1.98¢-02 1.04e-02
278 | 2.92e-01 2.08¢-01 1.31e-01 7.92e-02 4.66e-02 2.71e-02  1.56e-02
2710 | 2.92e-01 2.08¢-01 1.31e-01 7.92e-02 4.66e-02 2.71e-02  1.56e-02
2712 1 2.92-01 2.08¢-01 1.31e-01 7.92e-02 4.66e-02 2.71e-02  1.56e-02
271 | 2.92e-01 2.08¢-01 1.3le-01 7.92e-02 4.66e-02 2.71e-02  1.56e-02
2716 1 99%-01 2.08¢-01 1.31e-01 7.92e-02 4.66e-02 2.71e-02  1.56e-02
2718 | 2.92e-01 2.08¢-01 1.31e-01 7.92e-02 4.66e-02 2.71e-02  1.56e-02
2720 | 2.92-01 2.08¢-01 1.31e-01 7.92e-02 4.66e-02 2.71e-02  1.56e-02
EY | 29201 2.08¢-01 1.31e-01 7.92e-02 4.66e-02 2.71e-02 1.56e-02
Table 6: Computed maximum pointwise error ||D; V. — D, V22| | where V
is generated by (AN) for various values of &, N and 3=.6.
e\N 8 16 32 64 128 256 512
279 | 1.50e+00 1.59e+00 1.12e+00 6.58¢-01 3.74e-01 2.55e-01 3.78e-01
272 8.75e-01  8.23e-01  6.22e-01 3.93e-01 2.50e-01 1.75e-01  8.49e-02
24 6.43e-01  6.64e-01  5.49e-01 3.80e-01 2.55e-01 1.78e-01  1.05e-01
2-6 5.89e-01  6.03e-01  5.05e-01 3.66e-01 2.58e-01 1.85e-01 1.26e-01
28 5.68e-01  5.72-01  4.64e-01 3.19e-01 2.21e-01 1.59e-01 1.14e-01
2710 1 560e-01 5.59-01  4.46e-01 2.95e-01 1.93e-01 1.29e-01  8.42e-02
2712 | 557e-01  5.53e-01  4.37e-01 2.84e-01 1.79e-01 1.14e-01  6.99e-02
271 | 556e-01 5.50e-01 4.33e-01 2.78-01 1.72e-01 1.07e-01  6.28e-02
2718 | 556e-01 5.48e-01  4.30e-01 2.75e-01 1.68e-01 1.04e-01  5.93e-02
2718 | 555e-01 5.48e-01  4.29e-01 2.74e-01 1.67e-01 1.02e-01  5.76e-02
2720 | 555e-01 5.47e-01  4.29e-01 2.73e-01 1.66e-01 1.01e-01  5.67e-02
EY | 1.50e+00 1.59e+00 1.12e+00 6.58¢-01 3.74e-01 2.55e-01  3.78e-01
Table 7: Computed maximum pointwise scaled error V*~!||D; V. = D, V2 §||5%

where V. is generated by (AN) for various values of £, N and 3=.6.
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In Tables 8 -?? we display the computed orders of convergence for the ap-
proximations of the first order derivatives of the velocity components D, V;, D 'V,
and scaled derivative \/EDy_ U, obtained respectively from the corresponding Ta-
bles 5-7. We see that for each value of N the orders of convergence stabilize as
€ = 0 for § = 0.6. Similar behavior is observed for all § € [0, 1].

e\V 8 16 32 64 128 256
270 0.97 0.87 091 092 091 0.87
272 0.98 099 0.98 097 0.94 088
24 0.92 098 0.99 098 0.97 0094
26 0.52 0.65 0.78 0.98 098 0.97
28 052 065 0.72 075 0.79 0.81
210 1052 065 072 075 0.79 0.81
2712 1052 065 072 075 0.79 0.81
274 052 065 072 075 0.79 0.81
2~ 052 065 072 075 0.79 0.81
27 1052 065 072 075 0.79 0.81
2720 | 052 065 072 075 0.79 0.81
Poomp | 052 0.65 0.72 0.75 0.79 0.81

Table 8 Computed orders of convergence pY,,,.., PN, for Ve(D, U —
D,U812?) where U, is generated by (AN) for various values of £, N and 3=0.6.

e\V 8 16 32 64 128 256
270 040 062 0.78 089 0.95 0.99
272 0.49 068 0.81 090 0.95 0097
274 0.72 066 0.80 089 094 097
26 0.49 067 0.78 098 0.96 0.92
28 0.49 067 0.73 076 0.79 0.79
210 1049 067 0.73 0.76 0.79 0.79
2712 | 049 067 0.73 076 0.79 0.79
27 049 067 0.73 076 0.79 0.79
2716 1049 067 0.73 0.76 0.79 0.79
27 | 049 067 0.73 076 0.79 0.79
2720 | 049 067 0.73 076 0.79 0.79
Peomp | 049 0.67 0.73 0.76 0.79 0.79

Table 9: Computed orders of convergence pY,,,..., pX, . for D; V. — D, V3
where V. is generated by (AN) for various values of &, N and =0.6.
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e\V 8 16 32 64 128 256
272 0.09 0.40 066 0.66 0.51 1.05
24 -0.05 0.27 053 0.58 051 0.77
2-6 -0.03 0.26 047 0.50 0.48 0.55
28 -0.01 030 054 0.53 0.48 0.48
210 0.00 033 0.60 061 0.58 0.62
g~ 12 0.01 0.34 062 067 064 0.71
214 0.02 035 064 070 0.68 0.77
2-16 0.02 035 064 071 070 0.80
2-18 0.02 0.35 0.65 0.72 0.71 0.82
2-%0 0.02 035 065 072 0.72 0.83
Poomp | -0.08 051 0.76 0.82 0.55 0.54

Table 10: Computed orders of convergence pY ... pX,., for ¢=(D V. —
D, V%) where V. is generated by (AN) for various values of ¢, N and 3=0.6.

5 Conclusion

We considered Prandtl’s boundary layer equations for incompressible laminar
flow past a wedge with angle g7, 8 € [0,1]. When the Reynolds number is large
the solution of this problem has a parabolic boundary layer. We constructed a
direct numerical method for computing approximations to the solution of this
problem using a piecewise uniform fitted mesh technique appropriate to the
parabolic boundary layer. We used the method to approximate the self-similar
solution of Prandtl’s problem in a finite rectangle excluding the leading edge
of the wedge for various values of Re and 3. To analyse the efficiency of the
constructed we constructed and applied a special numerical method related to
the Falkner—Skan technique to compute reference solutions for the error anal-
ysis of the velocity components and their derivatives. By means of extensive
numerical experiments we showed that the constructed direct numerical method
is Reynolds and 8 uniform.
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