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SUMMARY

This paper deals with grid approximations to Prandtl’s boundary value problem for boundary layer

equations on a flat plate in a region including the boundary layer, but outside a neighbourhood of

its leading edge. The perturbation parameter ε = Re−1 takes any values from the half-interval (0, 1];

here Re is the Reynolds number. To demonstrate our numerical techniques we consider the case of

the self-similar solution. By using piecewise uniform meshes, which are refined in a neighbourhood of

the parabolic boundary layer, we construct a finite difference scheme that converges ε–uniformly. We

present the technique of experimental substantiation of ε–uniform convergence for both the numerical

solution and its normalized (scaled) difference derivatives, outside a neighbourhood of the leading

edge of the plate. By numerical experiments we demonstrate the efficiency of numerical techniques

based on the fitted mesh method. We discuss also the applicability of fitted operator methods for the

numerical approximation of the Prandtl problem. It is shown that the use of meshes refined in the

parabolic boundary layer region is necessary for achieving ε–uniform convergence. Copyright c© 2002

John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mathematical modeling of laminar flows of incompressible fluid for large Reynolds numbers

Re often leads to a study of boundary value problems for boundary layer equations. Those

quasilinear equations are singularly perturbed, with the perturbation parameter ε defined

by ε = Re−1. The presence of parabolic boundary layers, i.e., layers described by parabolic

equations, is typical for such problems [1, 2].

The difficulties arising in the numerical solution even of linear singularly perturbed equations

are well known. So, the application of numerical methods developed for regular boundary value

problems (see, e.g., [3, 4]) to the problems in question yield error bounds which depend on

the parameter ε. For small values of ε, the errors may be comparable to, or even much larger

than the solution of the boundary value problem. This behaviour of the approximate solutions

requires the development of numerical methods whose errors are independent of the parameter

ε, i.e., ε–uniformly convergent methods. The presence of a nonlinearity makes it considerably

more difficult to construct ε–uniformly convergent numerical methods. For example, even in

the case of ordinary differential quasilinear equations there do not exist fitted operator methods

that converge ε–uniformly (see, e.g., [5, 6]). This negative result has been also shown for linear

problems with a parabolic boundary layer, for example, in [7–9]. Thus, the development of ε–

uniform numerical methods for resolving boundary layer equations is of considerable interest.

At present, finite difference schemes convergent ε–uniformly in the maximum norm are

developed and studied for wide classes of linear singularly perturbed problems, including

problems with a parabolic boundary layer (see, e.g., [8–10]). It often occurs that the theoretical

orders of ε-uniform convergence are quite low and would seem to imply that the constructed

schemes will yield errors too large for practical use of these schemes. However, numerical results

show that the actual convergence orders are close to those typical for regular problems (see,

e.g., [11, 12]). Thus, the experimental technique for a posteriori estimation of the parameters

in error bounds seems to be crucial for problems with rather complicated behaviour of the

solution. Note that our meaning of an a posteriori estimation is not related to the concept of

a posteriori control in adaptive methods. Here, we use a posteriori estimation to generate an

estimate of the error in a numerical solution after the computations have been completed.

It is of interest to apply the existing technique to the construction of ε–uniformly convergent

schemes for boundary layer equations in that part of the boundary region where the layer
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is parabolic. Note that, because of the nonlinearity of the boundary layer equations, the

existing for justifying convergence and a priori estimates of the exact solutions do not allow

us theoretically to prove ε–uniform convergence of the numerical solutions in the L∞–norm.

In this connection, we are forced to use only the alternative a posteriori method to study

convergence, in particular, ε–uniform convergence of the numerical solutions.

In this paper we consider grid approximations of a boundary value problem for boundary

layer equations for a flat plate outside a neighbourhood of its leading edge. The boundary layer

in the considered domain is parabolic. We consider the case when the solution of this classical

Prandtl problem is self-similar. We construct a finite difference scheme, which is a natural

development of monotone ε–uniformly convergent schemes for linear boundary value problems

with a parabolic layer. For this we use standard numerical approximations on piecewise uniform

meshes which are refined in the neighbourhood of the boundary layer. As is shown, the use of

this fitted mesh technique that originated in [8] is necessary to achieve ε–uniform convergence.

We sketch an idea of experimental a posteriori studying ε–uniform convergence of numerical

approximations for the Prandtl problem. Note that the Prandtl problem of flow past a flat

semi–infinite plate has a self-similar solution which is expressed in terms of a solution of a

quasilinear third-order ODE, so-called Blasius’ equation, defined on a semiaxis. To evaluate

errors in the numerical solution of the Prandtl problem, as an approximation to the self-similar

solution (reference solution) we use a linear interpolant of the numerical solution to the Blasius

equation. We study the behaviour of errors depending on both the parameter ε and the number

of mesh points. This method is used to justify ε–uniform convergence of both the numerical

solution and its scaled derivatives (outside a neighbourhood of the leading edge of the plate).

We emphasize the growing interest in strong numerical investigations of a boundary layer;

see, for example, [13]. Note that the solutions of boundary layer equations for large Re are

close to the solution of the Navier-Stokes equations in the parabolic boundary layer region.

This means that the reference solution of Prandtl’s problem is the leading term in the solution

of the Navier-Stokes equations at high Reynolds numbers.

We now highlight the unsolved and solved mathematical issues involved in this paper. The

main aim is to develop a direct numerical method that will produce Re–uniformly accurate

solutions to the boundary layer equations, for which flow past a flat plate is a model problem. To

analyse the convergence of these numerical approximations, we need either a theoretical error

bound or an exact solution. However, for the boundary layer equations, there are currently no
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theoretical results on the existence and uniqueness of solutions for all values of the Reynolds

number. An alternative approach to analysing any proposed numerical method is required.

In this paper, the self–similar solution of the Prandtl problem involves solving the Blasius

problem. Hence, to generate a reference solution for the Prandtl problem, we need to generate

accurate approximations to the solution and its derivatives of the Blasius problem. In [14]

theoretical error bounds were derived for the numerical solutions and their discrete derivatives

generated from a new numerical method applied to the Blasius problem. These computed

solutions can then be used to generate reference solutions of the Prandtl problem for all

values of the Reynolds number. Although we cannot produce theoretical error bounds for the

numerical solutions of the direct method applied to the Prandtl problem, we can demonstrate

numerically that the numerical solutions are converging independently of the Reynolds number

by comparing these numerical solutions to the reference solution (generated via Blasius).

2. PROBLEM FORMULATION

Let a flat semi–infinite plate be disposed on the semiaxis P = {(x, y) : x ≥ 0, y = 0}. The

problem is assumed to be symmetric with respect to the plane y = 0; we discuss the steady

flow of an incompressible fluid on both sides of P , which is laminar and parallel to the plate (no

separation occurs on the plate). We consider the solution of the problem on the bounded set

G, where G = {(x, y) : x ∈ (d1, d2], y ∈ (0, d0)} , d1 > 0. (2.1)

Let G0 = {(x, y) : x ∈ [d1, d2], y ∈ (0, d0]}; G
0

= G. Assume S = G \ G, S = ∪Sj ,

j = 0, 1, 2, where S0 = {(x, y) : x ∈ [d1, d2], y = 0}, S1 = {(x, y) : x = d1, y ∈ (0, d0]},

S2 = {(x, y) : x ∈ (d1, d2], y = d0}, S0 = S0; S0 = G \G0 = S0. On the set G, it is necessary

to find the solution U(x, y) = (u(x, y), v(x, y)) of the following Prandtl problem:

L1 (U(x, y)) ≡ ε
∂2

∂y2 u(x, y)− u(x, y)
∂
∂x

u(x, y)− v(x, y)
∂
∂y

u(x, y)= 0, (x, y)∈G, (2.2a)

L2U(x, y) ≡ ∂
∂x

u(x, y) +
∂
∂y

v(x, y) = 0, (x, y) ∈ G0, (2.2b)

u(x, y) = ϕ(x, y), (x, y) ∈ S, (2.2c)

v(x, y) = ψ(x, y), (x, y) ∈ S0. (2.2d)
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Here ε is the viscosity in the case when U(x, y) and x, y are dimensional quantities, and

ε = Re−1 when U(x, y) and x, y are dimensionless quantities. The parameter ε takes arbitrary

values from (0,1].

The solution of problem (2.2), (2.1) exists and is sufficiently smooth when the functions

ϕ(x, y), ψ(x, y) are sufficiently smooth and, moreover, the functions ϕ(x, y) and ϕ(x, y)

together with ψ(x, y) satisfy appropriate compatibility conditions, respectively, on the sets

S∗ = S1∩
{

S0 ∪ S2
}

(i.e., at the corner points adjoining to the side S1) and S0∗ = S1∩S0 [2].

In general, the existence and uniqueness of a solution of (2.2), (2.1) remains an open question.

We now wish to define the boundary functions ϕ(x, y) and ψ(x, y) more exactly.

In the quarter plane

Ω, where Ω = {(x, y) : x, y > 0} , (2.3)

let us consider the Prandtl problem whose solution is self-similar [1]:

L1 (U(x, y)) = 0, (x, y) ∈ Ω,

L2U(x, y) = 0, (x, y) ∈ Ω \ P,

u(x, y) = u∞, x = 0, y ≥ 0,

U(x, y) = (0, 0), (x, y) ∈ P

(2.4)

where u∞ is the velocity of free stream at infinity; u∞ = 1 for the case of dimensionless

variables.

Problem (2.4), (2.3) is a subproblem of (2.2), (2.1). Because of the special choice of the

boundary functions, a self-similar solution of problem (2.4), (2.3) exists [1].

The self-similar solution of problem (2.4), (2.3) can be written in terms of some function

f(η) and its derivative

u(x, y) = u∞f ′(η), v(x, y) = ε1/2 (

2−1u∞ x−1)1/2
(ηf ′(η)− f(η)) , (2.5)

where η = ε−1/2
(

2−1u∞ x−1
)1/2

y. The function f(η) is the solution of the Blasius problem

L(f(η)) ≡ f ′′′(η) + f(η)f ′′(η) = 0, η ∈ (0,∞),

f(0) = f ′(0) = 0, lim
η→∞

f ′(η) = 1.
(2.6)

In the sequel we call the numerical approximations to the velocity components (u, v) from

(2.5) the reference solutions for the Prandtl problem.
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The functions ϕ(x, y), ψ(x, y) in (2.2) are defined by 1

ϕ(x, y) = u(2.5)(x, y), (x, y) ∈ S, ψ(x, y) = v(2.5)(x, y), (x, y) ∈ S0. (2.7)

Note that ϕ(x, y) = ϕ(x, y; ε) = 0, ψ(x, y) = ψ(x, y; ε) = 0, (x, y) ∈ S0. Since we are not

including the leading edge, the techniques in [2] are applicable for the proof of the existence

and uniqueness of a solution of (2.2), (2.7), (2.1).

As ε → 0, the solution has a parabolic boundary layer in a neighbourhood of the set S0.

To solve problem (2.2), (2.7), (2.1) numerically, we will construct a finite difference scheme

which generates ε–uniformly convergent approximations.

3. DIFFERENCE SCHEME FOR PROBLEM (2.2), (2.7), (2.1)

Assume that we know the ”coefficients” multiplying the derivatives (∂/∂x)u(x, y) and

(∂/∂y)u(x, y) in the operator L1
(2.2); let these be some functions u0(x, y) and v0(x, y). In

this case the transport equation takes the form

Lu(x, y) ≡
{

ε
∂2

∂y2 − u0(x, y)
∂
∂x

− v0(x, y)
∂
∂y

}

u(x, y) = 0, (x, y) ∈ G. (3.1)

The function u0(x, y) outside an mε–neighbourhood of S0 satisfies the condition [1, Chap.7] 2

u0(x, y) ≥ m0, (x, y) ∈ G and r
(

(x, y), S0
)

≥ m ε1/2, (3.2a)

and also

u0(x, y) > 0, (x, y) ∈ G, y > 0, (3.2b)

where r
(

(x, y), S0
)

is the distance from the point (x, y) to the set S0. By virtue of condition

(3.2b) the operator L(3.1) is monotone [4] (i.e., a comparison principle is applicable).

For the function v0(x, y) the following estimate [1] is valid:

0 ≤ v0(x, y) ≤ Mε1/2, (x, y) ∈ G. (3.2c)

This means that the product ε−1/2v0(x, y) (i.e., the normalized component) is of order O(1),

that is, bounded ε–uniformly. Thus, by virtue of (3.2), the singular part of the solution of Eq.

(3.1) behaves similarly to the singular part for the singularly perturbed heat equation

1 Here and in what follows, the notation w(j.k) indicates that w is first defined in equation (j.k).
2 Throughout this paper, we denote by M (or m) sufficiently large (small) positive constants which are

independent of the parameter ε and of the discretization parameters.

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 00:1–27

Prepared using fldauth.cls



NUMERICAL TECHNIQUES FOR FLOW PROBLEMS WITH SINGULARITIES 7

Lu(x, y) ≡
{

ε
∂2

∂y2 −
∂
∂x

}

u(x, y) = 0. (3.3)

In the case of a boundary value problem for the singularly perturbed equation (3.3),

difference schemes on special piecewise uniform meshes are well known (see, e.g., [8, 9]). We

now use such meshes in the construction of ε–uniform schemes for problem (2.2), (2.7), (2.1).

To solve the boundary value problem (2.2), (2.7), (2.1) numerically, we use a classical finite

difference schemes. At first we introduce the rectangular grid on the set G:

Gh = ω1 × ω2, (3.4)

where ω1 and ω2 are meshes on the segments [d1, d2] and [0, d0], respectively; ω1 = {xi, i =

0, ..., N1, x0 = d1, xN1 = d2}, ω2 = {yj , j = 0, ..., N2, y0 = 0, yN2 = d0}; N1 + 1 and N2 + 1

are the number of nodes in the meshes ω1 and ω2. Define hi
1 = xi+1 − xi, xi, xi+1 ∈ ω1,

hj
2 = yj+1 − yj , yj , yj+1 ∈ ω2, h1 = maxi hi

1, h2 = maxj hj
2, h = max [ h1, h2 ]. We assume

that h ≤ MN−1, where N = min [ N1, N2 ].

We approximate the boundary value problem by the difference scheme

Λ1 (

Uh(x, y)
)

≡ εδy by uh(x, y)− uh(x, y)δx uh(x, y)−

−vh(x, y)δy uh(x, y) = 0, (x, y) ∈ Gh, (3.5a)

Λ2
1U

h(x, y) ≡ δx uh(x, y) + δy vh(x, y) = 0, (x, y) ∈ G0
h, x > d1,

(3.5b)
Λ2

2U
h(x, y) ≡ δx uh(x, y) + δy vh(x, y) = 0, (x, y) ∈ S1h;

uh(x, y) = ϕ(x, y), (x, y) ∈ Sh, (3.5c)

vh(x, y) = ψ(x, y), (x, y) ∈ S0
h. (3.5d)

Here δy by z(x, y) and δx z(x, y), ..., δy z(x, y) are the second and first difference derivatives (the

bar denotes the backward difference): δy by z(x, y) = 2
(

hj−1
2 + hj

2

)−1
(δy z(x, y)− δy z(x, y)),

δx z(x, y) =
(

hi
1

)−1 (

z(xi+1, y)− z(x, y)
)

, . . . , δy z(x, y) =
(

hj−1
2

)−1 (

z(x, y)− z(x, yj−1)
)

,

(x, y) = (xi, yj).

If the ”coefficients” multiplying the differences δx and δy in the operator Λ1 are known (let

these be the functions uh
0 (x, y) and vh

0 (x, y)) and satisfy the condition uh
0 (x, y), vh

0 (x, y) ≥ 0

for (x, y) ∈ Gh, the operator Λ1 is monotone [4].
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Let us introduce a piecewise uniform mesh refined in a neighbourhood of the set S0. On the

set G, we consider the grid
G
∗
h = ω1 × ω ∗

2 , (3.6)

where ω1 is a uniform mesh on [d1, d2], ω ∗
2 = ω ∗

2 (σ) is a special piecewise uniform mesh

depending on the parameter σ and on the value N2. The mesh ω ∗
2 is constructed as follows.

We divide the segment [0, d0] in two parts [0, σ] and [σ, d0]. The step-size of the mesh ω ∗
2 is

constant on the segments [0, σ] and [σ, d0], and equal to h(1)
2 = 2σN−1

2 and h(2)
2 = 2(d0−σ)N−1

2 ,

respectively. The value of σ is defined by

σ = min
[

2−1d0, m ε1/2 ln N2

]

,

where m is an arbitrary positive number.

In the case of the boundary value problem (2.2), (2.7), (2.1), it is required to study whether

the solutions of the difference scheme (3.5), (3.6) converge to the exact solution. The solution

of problem (2.2), (2.7) on the set G(2.1) is sufficiently smooth for fixed values of the parameter

ε, but its y-derivatives grow unboundedly in a neighbourhood of the boundary layer as ε → 0.

The difference scheme (3.5), (3.6) approximates problem (2.2), (2.7), (2.1) on its solution

with the first order of accuracy in x and y. In that case when the functions uh(x, y) and

vh(x, y) considered as the coefficients multiplying the derivatives δx uh(x, y) and δy uh(x, y)

are nonnegative, the difference scheme (3.5), (3.6) is monotone.

Note that the main difference between the scheme suggested in the paper and standard well-

known schemes consists in using meshes whose stepsize, transversal to the boundary layer, in

a neighbourhood of the layer is small and is appropriate for the value of the parameter ε. It

is obvious from the structure of the mesh (3.6) that its stepsize in the y-direction changes

abruptly at the transition point y = σ when ε is small. This abrupt change of mesh size,

generally speaking, can lead to a loss in well conditioning of a scheme. Note that this question

requires a further theoretical study. Nevertheless, no loss in conditioning as compared to regular

problems was revealed in numerical experiments for the broad spectrum of the values of ε and

N for reaction-diffusion and convection-diffusion problems (see, e.g., results of a series of

numerical experiments in [12, 15, 16]). It is worth noting that the abrupt change in mesh size

has no adverse effect on the stability of the numerical scheme (see [16]). No stability difficulties

associated with the use of piecewise–uniform fitted meshes were encountered in these and other

numerical studies.
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We mention certain difficulties that arise in studying convergence properties. In the case of

ε–uniformly convergent difference schemes for linear problems, methods are well developed to

determine numerically the parameters in the error bounds (orders of convergence and error

constants for fixed values of ε and ε–uniformly), see, e.g., [12], where ε–uniform convergence

is known in advance from theoretical studies. Formally these methods are inapplicable for

problem (2.2), (2.7), (2.1) because the ε–uniform convergence of scheme (3.5), (3.6) has not

been established. Nevertheless, the results of such investigations of error bounds seem to be

interesting for practical use.

The pointwise comparison of the exact solutions of problem (2.2), (2.7), (2.1) with the

solutions of difference scheme (3.5), (3.6) gives us more detailed knowledge about the behaviour

of the error bounds. To find the exact solutions of Prandtl’s problem, we shall use the Blasius

solution of problem (2.6). Note that the numerical solution of the Blasius problem yields its

own additional errors. As for scheme (3.5), (3.6), it is of great interest to study errors for

computation of which we use the ”exact” solutions of the Prandtl problem obtained on the

basis of the discrete solutions of Blasius’ problem.

Note that the difference scheme (3.5), (3.6) is nonlinear. To find an approximate solution of

this scheme, we must construct a proper iterative method.

4. ITERATIVE DIFFERENCE SCHEME FOR THE PRANDTL PROBLEM

Note that (2.2a) is a parabolic equation in which the variable x plays the role of time. The

problem (3.5), (3.4) is solved on levels with respect to the variable xi ∈ ω1. To find the discrete

solution at the level xi0 > d1, we use an iterative method.

In order to define the iterative difference scheme we must specify the boundary function

ϕ(x, y), (x, y) ∈ Sh (ψ(x, y) = 0, (x, y) ∈ S0
h). The function ϕ(x, y) has no analytical

representation. Instead of the function ϕ(x, y), we use a function ϕh(x, y) which can be found

by using the grid solution of the Blasius problem.

Let us describe an iterative process used in the computation of the solution at the level xi0+1

for xi0 > d1. Assume that the solution of the discrete problem (or its approximation) is known

for x = xi0 . The function Uh(x, y) for x = xi0+1, y ∈ ω2 is the solution of the nonlinear system

of algebraic equations. To compute a new iteration for the component uh
k+1(x, y), x = xi0+1, we
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use (3.5a) in which we replace the coefficients multiplying the derivatives δx uh
k+1 and δy uh

k+1

by the known components uh
k and vh

k from the previous iteration. The component vh
k+1(x, y),

x = xi0+1 is computed from (3.5b) by using the known component uh
k+1. We continue these

iterations until the difference between the functions uh
k(x, y), ε−1/2vh

k (x, y) for x = xi0+1,

y ∈ ω2 at the neighbouring iterations becomes less than some prescribed sufficiently small

value δ > 0, which defines the required accuracy of the iterative solution. As an initial guess,

namely, for the function Uh
0 (x, y), x = xi0+1, we use the known solution at the level x = xi0 .

For x = xi0 = x0 = d1, to compute the grid solution at x = xi0+1 we use the above-

described iteration process in which we choose, as an initial guess Uh
0 (x, y), x = xi0+1, the

function Uh
0 (x, y) =

(

uh
0 (x, y) = ϕh(x, y), vh

0 (x, y) = ψ(x, y) = 0
)

, x = x1, y ∈ ω2.

The function uh(x, y) at the level x = x0 = d1 is known according to the problem

formulation; the function vh(x, y) is computed from (3.5b).

Thus, we obtain the following final iterative difference scheme

Λ1 (

uh
k(x, y); uh

k−1(x, y), vh
k−1(x, y)

)

≡ εδy by uh
k(x, y)− uh

k−1(x, y)δx uh
k(x, y)−

−vh
k−1(x, y)δy uh

k(x, y) = 0, y ∈ ω2,

Λ2
1

(

vh
k (x, y); uh

k(x, y), uh
K(xi−1)(x

i−1, y)
)

≡ (xi − xi−1)−1
[

uh
k(x, y)− uh

K(xi−1)(x
i−1, y)

]

+

+δy vh
k (x, y) = 0, y ∈ ω2, y 6= 0,

uh
k(x, y) = ϕh(x, y), y = 0, d0; vh

k (x, y) = 0, y = 0;

uh
0 (x, y) =











uh
K(xi−1)(x

i−1, y), xi ≥ x2,

ϕh(x = d1, y), xi = x1, y ∈ ω2;
(4.1)

vh
0 (x, y) =











vh
K(xi−1)(x

i−1, y), xi ≥ x2,

0, xi = x1, y ∈ ω2, y 6= 0;

max
y∈ω2

∣

∣uh
K(x, y)− uh

K−1(x, y)
∣

∣ , ε−1/2 max
y∈ω2

∣

∣vh
K(x, y)− vh

K−1(x, y)
∣

∣ ≤ δ,

max
k<K

[

max
y∈ω2

∣

∣uh
k(x, y)− uh

k−1(x, y)
∣

∣ , ε−1/2 max
y∈ω2

∣

∣vh
k (x, y)− vh

k−1(x, y)
∣

∣

]

> δ,

for x = xi, i = 1, . . . , N1, k = 1, . . . , K, K = K(xi);
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Λ2
2

(

vh(x, y); uh
K(x1)(x

1, y)
)

≡ (x1 − x0)−1
[

uh
K(x1)(x, y)− ϕh(x, y)

]

+

+δy vh(x, y) = 0, y ∈ ω2, y 6= 0,
for x = x0 = d1 .

The scheme (4.1), (3.6) permits us to compute the function Uh(x, y) = (uh(x, y), vh(x, y)),

(x, y) ∈ Gh, namely, the components uh
K(xi)(x, y), vh

K(xi)(x, y) for xi ≥ x1, y ∈ ω2 and the

function vh(x, y) for xi = x0 = d1, y ∈ ω2. We call the function Uh(x, y), (x, y) ∈ Gh

satisfying (4.1) the solution of the iterative difference scheme (4.1), (3.6).

5. APPROXIMATION OF THE SELF–SIMILAR SOLUTION TO THE

PRANDTL PROBLEM BY USING THE BLASIUS EQUATION

In the case of scheme (4.1), (3.6), to analyse the approximation error for the solutions of

problem (2.2), (2.7), (2.1) and their derivatives, we use the self–similar solution (2.5) defined

by the solution of the Blasius’ problem (2.6).

For the boundary value problem (2.6) we must construct a finite difference scheme that

allows us to approximate both the Blasius solution and its derivatives on the semi-axis η ≥ 0.

It is required to find ”constructive” difference schemes, i.e., difference schemes on meshes with

a finite number of nodes.

We approximate problem (2.6) by the following differential problem on a finite interval. Let

f?(η), η ∈ [0, T ], where the length T of the interval is sufficiently large, be the solution of the

boundary value problem

L (f?(η)) ≡ f ′′′? (η) + f?(η)f ′′? (η) = 0, η ∈ (0, T ),

f?(0) = f ′?(0) = 0, f ′?(T ) = 1.
(5.1a)

We complete a definition of the function f?(η) on the infinite interval (T,∞) by setting

f?(η) = f?(T ) + (η − T ), for all η > T. (5.1b)

The continuous problem (5.1) is approximated by a discrete problem. For this we introduce

a uniform mesh on the interval [0, T ] as follows:

ω0 =
{

ηi = ih, i = 0, 1, . . . , N ; η0 = 0, ηN = T
}

(5.2)

with step-size h = TN−1, where N + 1 is the number of nodes in the mesh ω0. Assume

T = ln N . On the mesh ω0, we approximate problem (5.1a) by the grid problem
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Λ
(

fh(η)
)

≡ δηη η fh(η) + fh(η)δηη fh(η) = 0, η ∈ ω0, η 6= η0, η1, ηN ,

fh(0) = δη fh(0) = 0, δη fh(T ) = 1.
(5.3a)

Here δηη z(η) and δηη η z(η) are the second (centred) and third difference derivatives:

δηη z(η)= h−1(δη z(η)− δη z(η)) , δηη η z(η)= h−1(δηη z(η)− δηη z(ηi−1)
)

, η=ηi.

The function fh(η) on the interval (T,∞) is defined by

fh(η) = fh(T ) + (η − T ), η ∈ (T,∞). (5.3b)

Equations (5.3) allows us to find the function fh(η) for η ∈ ω0 and η ∈ (T,∞). To

determine the components of the solution and their derivatives for the Prandtl problem, we

need derivatives of the function fh(η). Let δk
η fh(η) = δη

(

δk−1
η fh(η)

)

, η ∈ ω0, η ≤ ηN−k,

k ≥ 1, be the k-th difference derivatives of fh(η) on ω0. Assume δk
η fh(η) = 1 for k = 1,

η = ηN and δk
η fh(η) = 0 for k ≥ 2, η ∈ ω0, ηN−k+1 ≤ η ≤ ηN . By f

h(k)
(η), η ∈ [0, T ], we

denote the linear interpolant constructed from the values of the functions δk
η fh(η), η ∈ ω0,

k ≥ 0; δ0
η fh(η) = fh(η). The function f

h(k)
(η) is extended to the interval (T,∞) by the

definitions: f
h(k)

(η) = fh(η) for k = 0, f
h(k)

(η) = 1 for k = 1, f
h(k)

(η) = 0 for k ≥ 2,

η ∈ (T,∞). We shall call the function f
h
(η) = f

h(k=0)
(η), η ∈ [0,∞), defined in such a way,

the solution of problem (5.3), (5.2), and the functions f
h(k)

(η), k ≥ 1, the derivatives (of order

k) from the solution of problem (5.3), (5.2).

The problem (5.3), (5.2) is nonlinear. Let us describe an iterative difference scheme for the

approximate solution of problem (5.3), (5.2).

On the mesh ω0(5.2), we find the function fh
R(η) by solving successively the problems

Λ
(

fh
r (η), fh

r−1(η)
)

≡ δηη η fh
r (η) + fh

r−1(η)δηη fh
r (η) = 0, η ∈ ω0, η 6=η0, η1, ηN ,

fh
r (0) = δη fh

r (0) = 0, δη fh
r (T ) = 1, r = 1, . . . , R,

(5.4a)

where fh
0 (η) = η, η ∈ ω0, R is a sufficiently large given number. For η ∈ (T,∞) we define the

function fh
R(η) by setting

fh
R(η) = fh

R(T ) + (η − T ), η ∈ (T,∞). (5.4b)

The problem (5.4a), (5.2) is linear with respect to the function fh
r (η), η ∈ ω.

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 00:1–27

Prepared using fldauth.cls



NUMERICAL TECHNIQUES FOR FLOW PROBLEMS WITH SINGULARITIES 13

From the values of the function fh
R(η), similarly to the function f

h(k)
(η), η ∈ [0,∞),

we construct the function f
h(k)
∗ (η) = f

h(k)
R (η), η ∈ [0,∞), k ≥ 0. We call the function

f
h
∗ (η) = f

h(k)
∗ (η), η ∈ [0,∞) for k = 0 the solution of problem (5.4), (5.2), and the

functions f
h(k)
∗ (η), k ≥ 1 the derivatives of the problem solution. Note that the derivatives

of the function f
h(k)
∗ (η) have a discontinuity of the first kind at η = ηN−k, k ≥ 2.

For
T = T (N) = M1 ln N, R = R(N) = M2 ln N, (5.5)

where M1, M2 are sufficiently large numbers, the solution of problem (5.4), (5.2), (5.5) together

with its derivatives up to order K (where K is fixed) converges, as N →∞, to the solution of

problem (2.6) and to the corresponding derivatives.

Note that the differential equation in (5.1a) is a reaction-diffusion equation with respect

to the function ˜f(η) = f ′∗(η), moreover, the problem (5.1a) is monotone with respect to the

function ˜f(η) (satisfies the maximum principle).

When the function fh(η) is nonnegative, the equation (5.3a) is monotone with respect to the

function ˜f h(η) = δη fh(η). The consideration of linear analogues of this equation shows that,

in order to achieve convergence of the iterates as N →∞, it suffices that the value T and the

number R of iterations satisfy the condition (5.5). For these linear analogues we obtain first

(up to a logarithmic factor) order accuracy. The parameter–uniform accuracy and stability

issues associated with scheme (5.4), (5.2), (5.5) are discussed also in [16, Chaps. 10, 11].

The theoretical and numerical analyses given in [14] result in the estimate
∣

∣

∣f ′(η)− f
h(1)
∗ (η)

∣

∣

∣ ,
∣

∣

∣ηf ′(η)− f(η)−
(

ηf
h(1)
∗ (η)− f

h
∗ (η)

)∣

∣

∣ ,
(5.6)

∣

∣

∣ηk
(

f ′′(η)− f
h(2)
∗ (η)

)∣

∣

∣ ≤ MN−ν , η ∈ [0,∞), k = 0, 1, 2,

where ν is some number (0 < ν < 1). It follows from estimates (5.6) that the difference scheme

(5.4), (5.2), (5.5) in the case of Prandtl’s problem (2.2), (2.7), (2.1) allows us to find the

normalized components with the normalized (i.e., ε–uniformly bounded) derivatives, namely,

u(x, y), ε−1/2v(x, y), (∂/∂x)u(x, y), ε1/2(∂/∂y)u(x, y), ε−1/2(∂/∂x)v(x, y), (∂/∂y)v(x, y),

(x, y) ∈ G(2.1), with guaranteed (controllable) ε–uniform accuracy (see [16, Chap. 11] for

numerical results). Note that, by virtue of (5.6), the error estimate for the reference solution

obtained in this way is independent of the parameter ε and determined only by the value of
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N , that is, the number of mesh intervals into which we divided the interval [0, T ]. Because of

(5.5), the stepsize of the mesh (5.2) is defined by

h = TN−1 = M1N−1 ln N. (5.7)

Thus, in the case of Prandtl’s problem (2.2), (2.7), (2.1) the components of its solution

and the partial derivatives with respect to x and y, which are determined via the solutions of

scheme (5.4), (5.2), (5.5) for Blasius’ problem (2.6), permit us to form the boundary conditions

(with controllable ε–uniform accuracy) in the iterative difference scheme (4.1), (3.6). Besides,

the solutions of scheme (5.4), (5.2), (5.5) allow us to analyse the ε–uniform convergence of

special difference schemes, in particular, of schemes (4.1), (3.6) and (3.5), (3.6).

Note that this numerical method for Blasius’ problem generates global approximations (valid

for all η ∈ [0,∞)) to the solution and its derivatives, whose accuracy is determined solely by

N ( the number of nodes in the interval [0, M1 ln N ] ). The efficiency of such a method can be

contrasted with the infinite-series representation for the “semi-analytic” solution to the Blasius

problem given in [17], for which the accuracy of the truncated (with specific non-evident choices

of two auxiliary parameters) series is unknown for all η ∈ [0,∞).

By numerical experiments, implemented according to the above techniques, in [16, Chap. 12]

we show the ε–uniform convergence of schemes (4.1), (3.6) and (3.5), (3.6) of the direct method;

also therein we find the convergence orders for the numerical approximations to the solutions

and derivatives for Prandtl’s problem (2.2), (2.7), (2.1). In Section 7, for the convenience of

the reader, we repeat some minimal numerical results from [16] confirming the efficiency of

the numerical method based on Blasius’ approach, thus making our exposition self-contained

and complete.

6. ON FITTED OPERATOR SCHEMES FOR THE PRANDTL PROBLEM

As was shown in [8, 18] (see also [7, 9]) for a singularly perturbed parabolic equation with

parabolic boundary layers, there do not exist fitted operator schemes on uniform meshes that

converge ε–uniformly. Note that the coefficients in the terms with first-order derivatives in

time and second-order derivatives in space do not vanish in the equations considered in [8, 18].

Note also that, in the Prandtl problem, the coefficient multiplying the first derivative with

respect to the variable x, which plays the role of the time variable, vanishes on the domain
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boundary for y = 0. Unlike the problem studied in [8], where the boundary conditions do not

obey any restriction, besides the requirement of sufficient smoothness, problem (2.2), (2.7),

(2.1) is essentially simpler. The data of this problem, i.e., the zero right-hand sides of equations

(2.2a), (2.2b) and the boundary conditions (2.2c), (2.2d), and therefore the solution itself are

defined only by the one parameter u∞. We are interested whether or not one variant of a

fitted operator method, in which the fitting coefficients (depending on ε) are independent of

the value u∞, is applicable to construct ε-uniformly convergent schemes.

In [19] an ε–uniform fitted operator method was constructed for a linear parabolic equation

with a discontinuous initial condition in the presence of a parabolic (transient) layer. Such a

fitted operator scheme was successfully constructed because all of the singular components of

the solution (their main parts) are defined, up to some multiplier, by just one function. In

view of the simple (depending on the one parameter u∞) representation of the solution for

the Prandtl problem, it is not obvious that for this problem there are no fitted schemes on

uniform meshes which converge ε–uniformly.

We will try to construct a fitted operator scheme starting from (3.5a) under the assumption

that the function vh(x, y) is known, where vh(x, y) = v(x, y). Let us consider a fitted operator

scheme of the form

Λ1∗ (

uh(x, y)
)

≡ εγ(2)δy y uh(x, y)− uh(x, y)δx uh(x, y)−

−γ(1)v(x, y)δy uh(x, y) = 0, (x, y) ∈ Gh, (6.1a)

uh(x, y) = ϕ(x, y), (x, y) ∈ Sh,

where
Gh (6.2)

is a uniform rectangular grid, with steps h1 and h2 in x and y respectively; the parameters

γ(i) = γ(i)(x, y; ε, h1, h2), i = 1, 2 (6.1b)

are fitting coefficients.

The difference scheme (6.1), (6.2) is a fitted scheme for the following boundary value problem

L1∗ (u(x, y)) ≡ ε
∂2

∂y2 u(x, y)− u(x, y)
∂
∂x

u(x, y)− v(x, y)
∂
∂y

u(x, y) = 0, (x, y) ∈ G,

(6.3)
u(x, y) = ϕ(x, y), (x, y) ∈ S,

where the function v(x, y) = v(2.5)(x, y) is considered to be known.
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The derivatives of the function u(x, y) can be represented as follows:

∂
∂x

u(x, y) = −2−1u∞x−1f ′′(η)η,
∂2

∂x2 u(x, y) = 4−1u∞x−2 [

f ′′′(η)η2 + 3f ′′(η)η
]

,

(6.4)
∂k2

∂yk2
u(x, y) = 2−k2/2u1+k2/2

∞ ε−k2/2x−k2/2f (k2+1)(η), k2 ≤ 4, η = η(2.5)(x, y; ε),

and for the function v(x, y) we have the representation (2.5). Taking into account the last

representations in (6.4) and also the estimates for the derivatives of the function f(η), we find
∣

∣

∣

∣

u(x, y)
(

∂
∂x

− δx

)

u(x, y)
∣

∣

∣

∣

≤ Mh1, (x, y) ∈ Gh;

ε
(

δy y −
∂2

∂y2

)

u(x, y) ≥ mh2
2

(

ε1/2 + h2

)−2
, (6.5)

mη2h2

(

ε1/2 + h2

)−1
≤ −v(x, y)

(

δy −
∂
∂y

)

u(x, y) ≤ Mη2h2

(

ε1/2 + h2

)−1
,

(x, y) ∈ Gh, η ≤ M0, η = η(x, y; ε).

From the estimates (6.5) it follows that under the condition

γ(1) = γ(2) = 1 (6.6)

the error in the approximation of the solution of the boundary value problem is of order 1 for

the terms of the equation which contain the y–derivatives, when η ≤ M0 and the step-size h2 is

commensurable with ε1/2. The error for the term involving the derivatives in x is ε–uniformly

small for small values of h1 on the whole domain G.

Note that under condition (6.6) and for η ≤ m0, the main term of the truncation error is

generated by errors caused by the numerical approximation of the second derivatives. These

satisfy the bounds

48−1 u3
∞ ε−1 h2

2 x−2 min
η1

f (5)(η1) ≤ ε
(

δy y −
∂2

∂y2

)

u(x, y) ≤

≤ 48−1 u3
∞ ε−1 h2

2 x−2 max
η2

f (5)(η2), η(x, y) ≤ m0, (6.7)

where η1, η2 ∈
[

η(x, yj−1), η(x, yj+1)
]

, (x, yj) ∈ Gh.

In the variables x, ξ, where ξ = ε−1/2y, the domain G transforms into the domain Gξ, and

the first equation from (6.3) takes the form

L1∗0 (

u0(x, ξ)
)

≡ ∂2

∂ξ2 u0(x, ξ)− u0(x, ξ)
∂
∂x

u0(x, ξ)−

−ṽ 0(x, ξ)
∂
∂ξ

u0(x, ξ) = 0, (x, ξ) ∈ Gξ, (6.8)
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where u0(x, ξ) = u(x, y(ξ)), v0(x, ξ) = v(x, y(ξ)), ṽ 0(x, ξ) = ε−1/2 v0(x, ξ); u0(x, ξ) =

u∞ f ′(η0), ṽ 0(x, ξ) = (2−1u∞ x−1)1/2
(

η0f ′(η0) − f(η0)
)

, η0 = η0(x, ξ) = (2−1u∞ x−1)1/2 ξ.

The differential equation (6.8) in the variables x, ξ does not depend on ε. The discrete equation

(6.1a) in these new variables takes the form

Λ1∗0 (

uh0(x, ξ)
)

≡ γ0
(2)δξ ξ uh0(x, ξ)− uh0(x, ξ)δx uh0(x, ξ)−

−γ0
(1)ṽ

0(x, ξ)δξ uh0(x, ξ) = 0, (x, ξ) ∈ Ghξ, (6.9)

where uh0(x, ξ) = uh(x, y(ξ)), γ0
(i) = γ0

(i)(x, ξ; ε, h1, h2ξ) = γ(i)(x, y(ξ); ε, h1, h2 = h2(h2ξ)),

i = 1, 2, h2ξ = ε−1/2h2. The coefficient ṽ 0(x, ξ) from the grid equation (6.9) is independent

of ε, and also the parameter ε does not influence the mesh Ghξ, which is defined only by its

step-sizes h1 and h2ξ with respect to the variables x, ξ. Because (6.8) and the mesh Ghξ do

not depend on the value of the parameter ε, it is natural to seek a numerical approximation

of (6.8) on the mesh Ghξ in the form (6.9), based on a fitted operator method, where the

coefficients, in particular, the fitting coefficients γ0
(i), are independent of the parameter ε:

γ0
(i) = γ0

(i)(x, ξ; h1, h2ξ), i = 1, 2. (6.10)

The fitting coefficients are assumed to be bounded (the monotonicity of the scheme is not

used) ∣

∣

∣ γ0
(i)(x, ξ; h1, h2ξ)

∣

∣

∣ ≤ M, (x, ξ) ∈ Ghξ, i = 1, 2. (6.11)

In this class of difference schemes we seek to construct fitted operator schemes.

Note that the largest contribution to the error of the solution of (6.9) is the term

γ0
(2) δξ ξ uh0(x, ξ). The fitting coefficient γ0

(2) for fixed values of x, ξ essentially depends on

the quantity f (5)(η0) with η0 = η0(x, ξ; u∞), which is a nonlinear function of u∞.

Taking into account the estimates (6.5) and (6.7), we establish, similarly to [8, 20], that in

the case of the Prandtl problem (2.2), (2.7), (2.1) there are no fitted operator schemes (6.1),

(6.2) approximating problem (6.3), for which the functions uh(x, y) converge to the function

u(x, y) ε–uniformly.

Theorem 1. Assume that for the boundary value problem (6.3) we have constructed the finite

difference fitted scheme (6.1) on the mesh Gh(6.2), and let the grid equations have the form

(6.1a) and (6.9), (6.10) on the meshes Gh and Ghξ, respectively. In the class of finite difference

schemes under consideration (satisfying (6.11)) there does not exist a scheme, whose solutions

converge ε–uniformly as h1, h2 → 0.
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Let us sketch the proof of Theorem 1. For more details we refer the reader to [20], where a

similar statement was proved for linear problems with a parabolic boundary layer.

The proof is performed by the contradiction method. Assume that on the grid Gh(6.2) there

exists a finite difference scheme which converge ε-uniformly. Let us study this scheme.

By Uj(x, y) = (uj(x, y), vj(x, y)), j = 1, 2, . . . , J we denote the solution of problem

(2.4) for u∞ = j. Let uh
j (x, y), (x, y) ∈ Gh be the solution of the difference scheme

(6.1), (6.2), which approximates problem (6.3) related to the function Uj(x, y). We denote

ωj(x, y) = uh
j (x, y)− uj(x, y), (x, y) ∈ Gh, j = 1, . . . , J .

Assume ξ0 = 2h2ξ, h2ξ = m1. We consider equation (6.8) on the set

G0
ξ = (x0, x0]× (0, ξ0] =

{

(x, ξ) : x0 < x ≤ x0, 0 < ξ < 2h2ξ
}

.

This set corresponds to the set G0 in the variables x, y. On the set G
0

the grid G
0
h = G

0∩Gh

is defined. We shall consider the functions ωj(x, y) for (x, y) ∈ G
0
h . The functions ωj(x, y) and

ω0
j (x, ξ) are solutions of the following problems

Λ(6.12) (ωj(x, y)) = F j
(6.12)(x, y), (x, y) ∈ G0

h ,
(6.12)

ωj(x, y) = ϕj
(6.12)(x, y), (x, y) ∈ S0

h ;

Λ0
(6.13)

(

ω0
j (x, ξ)

)

= F j
(6.13)(x, ξ), (x, ξ) ∈ G0

hξ ,
(6.13)

ω0
j (x, ξ) = ϕj

(6.13)(x, ξ), (x, ξ) ∈ S0
hξ , j = 1, . . . , J.

Here

Λ(6.12)

(

ωj(x, y)
)

≡ Λ1∗
(6.1)

(

ωj(x, y)
)

−
[

uj(x, y)δx + δxuj(x, y)
]

ωj(x, y),

F j
(6.12)(x, y) = −Λ1∗

(6.1)

(

uj(x, y)
)

, (x, y) ∈ G0
h ,

ϕj
(6.12)(x, y) = uh

j (x, y)− uj(x, y), (x, y) ∈ S0
h ,

Λ0
(6.13)

(

ω0
j (x, ξ)

)

≡ Λ1∗0
(6.9)

(

ω0
j (x, ξ)

)

−
[

u0
j (x, ξ)δx + δxu0

j (x, ξ)
]

ω0
j (x, ξ),

F j
(6.13)(x, ξ) = −Λ1∗0

(6.9)

(

u0
j (x, ξ)

)

, (x, ξ) ∈ G0
hξ ,

ϕj
(6.13)(x, ξ) = uh0

j (x, ξ)− u0
j (x, ξ), (x, ξ) ∈ S0

hξ ,

the operators Λ(6.12)

(

ωj(x, y)
)

, Λ1∗
(6.1)

(

uj(x, y)
)

(operators Λ0
(6.13)

(

ω0
j (x, ξ)

)

, Λ1∗0
(6.9)

(

u0
j (x, ξ)

)

)

contain the functions vj(x, y) (functions ṽ 0
j (x, ξ) = ε−1/2v0

j (x, ξ)).
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It is convenient to introduce auxiliary ”fitting” coefficients γj
(i) by setting

γj
(1) (x, y; h2, uj(·)) =

∂
∂y

uj(x, y)
[

δy uj(x, y)
]−1

,

γj
(2) (x, y; h2, uj(·)) =

∂2

∂y2 uj(x, y)
[

δy y uj(x, y)
]−1

, j = 1, . . . , J.

Taking into account these coefficients, we obtain the relations

F j
(6.12)(x, y) = ε

(

γ(2) − γj
(2)

)

δy y uj(x, y)−

−
(

γ(1) − γj
(1)

)

vj(x, y) δy uj(x, y) + uj(x, y)
(

∂
∂x

− δx

)

uj(x, y),

F j
(6.13)(x, ξ) =

(

γ0
(2) − γj 0

(2)

)

δξ ξ u0
j (x, ξ)−

−
(

γ0
(1) − γj 0

(1)

)

ṽ 0
j (x, ξ) δξ u0

j (x, ξ) + u0
j (x, ξ)

(

∂
∂x

− δx

)

u0
j (x, ξ),

where γj 0
(i)(x, ξ; h2ξ, u0

j (·)) = γj
(i)(x, y(ξ); h2 = h2(h2ξ), uj(·)).

Instead of problem (6.12) we consider the auxiliary problem

Λ(6.12)

(

ωj(x, y)
)

= F j
(6.12)(x, y), (x, y) ∈ G0

h,
(6.14)

ωj(x, y) = 0, (x, y) ∈ S0
h, j = 1, . . . , J.

To compute the function ωj(x, y), i.e., the solution of problem (6.14), we must solve the

boundary value problem

L1∗
(6.3)

(

u(x, y)
)

= 0, (x, y) ∈ G0,
(6.15)

u(x, y) = uj(x, t), (x, y) ∈ S0, j = 1, . . . , J

and the corresponding difference scheme

Λ1∗
(6.1)

(

uh(x, y)
)

= 0, (x, y) ∈ G0
h,

(6.16)
uh(x, y) = uj(x, y), (x, y) ∈ S0

h, j = 1, . . . , J.

Here L1∗ = L1∗
(

vj(·)
)

, Λ1∗ = Λ1∗
(

vj(·)
)

; ωj(x, y) = uh
j (x, y)−uj(x, y), uj(x, y) and uh

j (x, y)

are the solutions of problems (6.15) and (6.16).

Assuming that the solution of problem (6.16) converges ε-uniformly to the solution of

problem (6.15), we come to a contradiction. By the assumption, we have

|ωj(x, y) | ≤ λ1(h1, h2), (x, y) ∈ G
0
h , j = 1, . . . , J, (6.17)

where λ1(h1, h2) → 0 for h1, h2 → 0.
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In the variables x, ξ the problem (6.14) takes the form

Λ0
(6.13)

(

ω0
j (x, ξ)

)

= F j
(6.13)(x, ξ), (x, ξ) ∈ G0

hξ ,
(6.18)

ω0
j (x, ξ) = 0, (x, ξ) ∈ S0

hξ , j = 1, . . . , J.

Let us introduce the function wj(x) = ω0
j (x, h2ξ). This function is the solution of the discrete

Cauchy problem

Λ(6.19)wj(x) ≡ (1 + β(x)) δx wj(x) = F(6.19)(x), x ∈ ω1,
(6.19)

wj(x) = 0, x = x0, j = 1, . . . , J.

Here ω1 is a uniform mesh on
[

x0, x0
]

with step-size h1, F(6.19)(x) =
4

∑

k=1

Fk(x),

F1(x) = −
(

γ0
(1) − γj 0

(1)

)

(

u0
j (x, ξ)

)−1
ṽ 0

j (x, ξ) δξ u0
j (x, ξ),

F2(x) =
(

γ0
(2) − γj 0

(2)

)

(

u0
j (x, ξ)

)−1
δξ ξ u0

j (x, ξ),

F3(x) =
(

∂
∂x

− δx

)

u0
j (x, ξ),

F4(x) = −
(

u0
j (x, ξ)

)−1
ω0

j (x, ξ)
[

δx u0
j (x, ξ) + γ0

(1) h−1
2ξ ṽ 0

j (x, ξ) + γ0
(2) h−2

2ξ

]

,

β(x) =
(

u0
j (x, ξ)

)−1
ω0

j (x, ξ), ξ = h2ξ, j = 1, . . . , J.

Let h1, h2 → 0. Note that the value of h2ξ = ε−1/2 h2 = m1 is sufficiently small and bounded

away from zero (by the choice of ε), and also u0
j (x, ξ) ≥ m2 for ξ = h2ξ, x ∈

[

x0, x0
]

. By

virtue of condition (6.17) and also because the functions u0
j (x, ξ), ṽ 0

j (x, ξ) are smooth with

respect to x, the functions β(x), F3(x) and F4(x) become arbitrarily small for sufficiently small

values of h1, h2. Thus, the functions F1(x) and F2(x) are the main terms of the right-hand

side of equation (6.19).

Let us consider the functions F1(x), F2(x). These functions vanish for γ0
(i) = γj 0

(i) , i = 1, 2.

Note that the function f(η), i.e., the solution of problem (2.6), can be decomposed (in virtue

of the differential equation) as follows

f(η) = 2−1f ′′(0) η2
[

1− 2 (5!)−1f ′′(0) η3 + 22 (8!)−1 (f ′′(0))2 η6 +O
(

η9)
]

.

Taking account of (2.5), we find

γj 0
(1) = 1− 8−1 f ′′(0) j 3/2 η3

1 +O
(

h6
2ξ

)

,

γj 0
(2) = 6 · 7−1

(

1− 420−1 112 f ′′(0) j 3/2 η3
1

)

+O
(

h6
2ξ

)

,
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(

u0
j (x, ξ)

)−1
δξ ξ u0

j (x, ξ) = −7 · 24−1 f ′′(0) x−1 j 3/2 η1

[

1− 46 · 105−1 f ′′(0) j 3/2 η3
1+

+O
(

h6
2ξ

)]

,
(

u0
j (x, ξ)

)−1
ṽ 0

j (x, ξ) δξ u0
j (x, ξ) = 4−1 f ′′(0)x−1 j 1/2 (η1)

−1 ×

×
[

1− 15−1 f ′′(0) j 3/2 η3
1 +O

(

h6
2ξ

)

]

, j = 1, . . . , J,

where η1 = (2x)−1/2 h2ξ. Since the coefficients γ0
(1), γ0

(2) do not depend on u∞ (and on the

value j), by choosing j we can alter the function F(6.19)(x) (and the integral, with respect to

x, from this function on the segment
[

x0, x0
]

) by a quantity of the order h−1
2ξ (of the order

(x0 − x0) h−1
2ξ ). Under suitable choice of the value j, the variation of the function wj(x) on

the interval
[

x0, x0
]

reaches a quantity of the order (x0 − x0)h−1
2ξ for h1, h2 → 0, which

contradicts condition (6.17). Consequently, the solution of problem (6.16) does not converge

to the solution of problem (6.15) ε-uniformly.

It is easily seen that the solution of problem (6.1), (6.2) (where the coefficients γ(i)(6.1b)

are independent of u∞) do not converge ε-uniformly as well. This completes the proof of

Theorem 1.

Remark 1. The statement of Theorem 1 remains valid also if condition (6.10) is violated,

that is, the coefficients γ0
(i) depend on ε, and also condition (6.11) is replaced by the condition

∣

∣

∣ γ0
(i)(x, ξ; h1, h2ξ, ε)

∣

∣

∣ ≤ M, (x, ξ) ∈ Ghξ, i = 1, 2.

Remark 2. By a similar way it can be shown that in the case of difference schemes on

stencils with a finite number of nodes there do not exist fitted operator schemes convergent

ε-uniformly, if the fitting coefficients are independent of the value u∞.

Remark 3. But if the fitting coefficients in the difference scheme (6.1), (6.2) depend on

u∞, we have the following representation for these coefficients γ(i):

γ(1) (x, y; ε, u∞, h1, h2) =
f ′′(η)

δη f ′(η)
, γ(2) (x, y; ε, u∞, h1, h2) =

f ′′′(η)
δη η f ′(η)

,

where η = η(2.5)(x, y; ε, u∞), δη η υ(η) = (hη)−1
[

δη υ(η)− δη υ(η)
]

, δη υ(η) = (hη)−1
[

υ(η +

hη)− υ(η)
]

, hη =
(

2−1 ε−1 u∞ x−1
)1/2

h2.

Remark 4. If we look at the difference schemes in question, namely, the classical scheme

(6.1a), (6.7) and the fitted scheme (6.1a), (6.1b) on the mesh (6.2), their fitting coefficients γ(i)
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determined by (6.7) and (6.1b) do not depend on the value of u∞, which defines the solution

of problem (6.3). We call these coefficients γ(i) the generalized fitting coefficients. It follows

from the above considerations that in order to construct ε–uniformly convergent schemes (both

truly fitted operator schemes and schemes consisting of a standard difference operator) whose

generalized fitting coefficients are independent of u∞, the use of piecewise–uniform meshes

condensing in the parabolic boundary layer region is necessary. A similar conclusion is valid

also in the case of the Prandtl problem (2.2), (2.1), for which (6.3) is a model problem.

7. NUMERICAL EXPERIMENTS FOR THE PRANDTL PROBLEM

It is well known that, in the case of linear problems with parabolic boundary layers, standard

finite difference schemes on piecewise–uniform fitted meshes yield numerical solutions that

converge ε-uniformly (for the convergence proof and supporting numerical results we refer the

reader, e.g., to [8, 9, 16, 15]).

In the case of the nonlinear problem (2.2), (2.1), (2.7) having the self-similar solution, the

efficiency of scheme (3.5), (3.6) (scheme (4.1), (3.6)) is demonstrated (see the error tables I–IV)

by comparing the numerical solutions to the reference solution generated from the computed

solution to Blasius’ problem (2.6). The Blasius problem was numerically solved by scheme (5.4),

(5.2) on a sufficiently fine mesh, namely with the number of mesh intervals N = 8192, which

provided the required accuracy in the reference solution (2.5). The parameters T , R of scheme

(5.4) and the mesh size h are defined by (5.5) and (5.7) respectively, where M1 = 1, M2 = 8

were taken for all values of ε.

Graphs of the numerical approximations Uh(x, y) =
(

uh(x, y), vh(x, y)
)

to the velocity

components U(x, y) = (u(x, y), v(x, y)) with N = 32 are shown in Figs. 1 and 2 for ε = 0.01

and ε = 0.00001 respectively. We see from these graphs that the velocity components u(x, y),

v(x, y) contain the boundary layer in a neighbourhood of the boundary at y = 0, moreover,

the second component v(x, y) unboundedly grows as x → 0.

The computed maximum pointwise errors for the normalized velocity components u(x, y)

and ε−1/2 v(x, y) are given in Tables I and II respectively for various values of ε and N . Tables

III and IV list the computed maximum pointwise errors for the normalized partial derivatives

(∂/∂x)u(x, y) and ε1/2 (∂/∂y) u(x, y) respectively.
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We observe from the above error tables that the maximum nodal errors decrease as N

increases for each value of the parameter ε and that the maximum global error for a particular

N and all available values of ε, the ε-uniform error, also decreases with increasing N . These

results show experimentally that the difference scheme (3.5), (3.6) allows us to approximate

ε-uniformly (with controllable accuracy for arbitrary values of the Reynolds number) the

functions u(x, t), ε−1/2 v(x, y) and the partial derivatives (∂/∂x)u(x, y), ε1/2 (∂/∂y) u(x, y) ;

the order of ε-uniform convergence is close to 1. Analogous results are obtained for the

numerical approximations to the partial derivatives ε−1/2 (∂/∂x) v(x, y), and (∂/∂y) v(x, y).

CONCLUSION

In this paper, numerical approximations to the solution of Prandtl’s boundary value problem

for the boundary layer equations on a flat plate are given in a region including the boundary

layer, but outside a neighbourhood of its leading edge. A finite difference scheme based on

a monotone finite difference operator and piecewise-uniform meshes, which are refined in the

vicinity of the parabolic boundary layer, is constructed. The Blasius problem is numerically

solved to obtain a self-similar solution and this was used as a reference solution to determine

the accuracy of the numerical approximations. It is shown that the numerical approximations

converge independently of the Reynolds number. Thus, the direct numerical method based on

the fitted mesh method suggested in the paper allows us to approximate both the components

of the solution and their derivatives with controllable ε-uniform accuracy; ε = Re−1.

The applicability of fitted operator methods for Prandtl’s problem is also discussed. As is

shown, the technique based on fitted operator methods does not allow us to obtain ε-uniform

numerical approximations for flow problems with a parabolic boundary layer, in particular,

for Prandtl’s problem for flow past a plate. Thus, the use of meshes refined in the parabolic

layer region is necessary to construct ε-uniform direct numerical methods for flow problems.

The technique presented in the paper may be also applicable to the construction and study

of ε-uniform direct numerical methods for more complicated problems of flow past a wedge or

a body of revolution, stagnation flow and laminar flow in converging/diverging channels.
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Table I. Computed maximum nodal errors for u(x, y) for various values of ε and N

ε 8 16 32 64 128 256 512

20 0.420D−2 0.459D−2 0.287D−2 0.166D−2 0.898D−3 0.450D−3 0.211D−3

2−2 0.509D−1 0.248D−1 0.124D−1 0.622D−2 0.312D−2 0.157D−2 0.792D−3

2−4 0.207D+0 0.787D−1 0.352D−1 0.167D−1 0.817D−2 0.404D−2 0.202D−2

2−6 0.220D+0 0.115D+0 0.616D−1 0.326D−1 0.156D−1 0.762D−2 0.378D−2

2−8 0.213D+0 0.114D+0 0.616D−1 0.340D−1 0.189D−1 0.105D−1 0.581D−2

2−10 0.211D+0 0.114D+0 0.616D−1 0.340D−1 0.189D−1 0.105D−1 0.581D−2

. . . . . . . .

. . . . . . . .

. . . . . . . .

2−20 0.208D+0 0.113D+0 0.616D−1 0.340D−1 0.189D−1 0.105D−1 0.581D−2

Table II. Computed maximum nodal errors for ε−1/2 v(x, y) for various values of ε and N

ε 8 16 32 64 128 256 512

20 0.533D+0 0.374D+0 0.213D+0 0.108D+0 0.536D−1 0.268D−1 0.142D−1

2−2 0.106D+1 0.677D+0 0.371D+0 0.194D+0 0.101D+0 0.531D−1 0.287D−1

2−4 0.396D+1 0.163D+1 0.763D+0 0.382D+0 0.197D+0 0.104D+0 0.562D−1

2−6 0.457D+1 0.271D+1 0.154D+1 0.849D+0 0.416D+0 0.215D+0 0.114D+0

2−8 0.448D+1 0.269D+1 0.154D+1 0.893D+0 0.523D+0 0.309D+0 0.183D+0

2−10 0.437D+1 0.268D+1 0.154D+1 0.893D+0 0.523D+0 0.309D+0 0.183D+0

. . . . . . . .

. . . . . . . .

. . . . . . . .

2−20 0.424D+1 0.267D+1 0.154D+1 0.893D+0 0.523D+0 0.309D+0 0.183D+0
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Table III. Computed maximum nodal errors for
∂
∂x

u(x, y) for various values of ε and N

ε 8 16 32 64 128 256 512

20 0.614D+0 0.444D+0 0.256D+0 0.130D+0 0.668D−1 0.344D−1 0.178D−1

2−2 0.900D+0 0.633D+0 0.372D+0 0.201D+0 0.105D+0 0.556D−1 0.307D−1

2−4 0.189D+1 0.114D+1 0.650D+0 0.360D+0 0.194D+0 0.105D+0 0.573D−1

2−6 0.198D+1 0.167D+1 0.121D+1 0.759D+0 0.397D+0 0.210D+0 0.113D+0

2−8 0.197D+1 0.167D+1 0.121D+1 0.798D+0 0.496D+0 0.300D+0 0.180D+0

2−10 0.196D+1 0.167D+1 0.121D+1 0.798D+0 0.496D+0 0.300D+0 0.180D+0

. . . . . . . .

. . . . . . . .

. . . . . . . .

2−20 0.195D+1 0.167D+1 0.121D+1 0.798D+0 0.496D+0 0.300D+0 0.180D+0

Table IV. Computed maximum nodal errors for ε1/2 ∂
∂y

u(x, y) for various values of ε and N

ε 8 16 32 64 128 256 512

20 0.703D−1 0.357D−1 0.180D−1 0.914D−2 0.471D−2 0.249D−2 0.139D−2

2−2 0.193D+0 0.111D+0 0.603D−1 0.315D−1 0.162D−1 0.819D−2 0.414D−2

2−4 0.266D+0 0.140D+0 0.703D−1 0.357D−1 0.180D−1 0.914D−2 0.471D−2

2−6 0.279D+0 0.192D+0 0.118D+0 0.703D−1 0.357D−1 0.180D−1 0.914D−2

2−8 0.279D+0 0.192D+0 0.118D+0 0.733D−1 0.432D−1 0.248D−1 0.141D−1

. . . . . . . .

. . . . . . . .

. . . . . . . .

2−20 0.279D+0 0.192D+0 0.118D+0 0.733D−1 0.432D−1 0.248D−1 0.141D−1
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Figure 1. Graph of Uh(x, y) for ε = 0.01 and N = 32
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Figure 2. Graph of Uh(x, y) for ε = 0.00001 and N = 32
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