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An initial boundary value problem of convection-diffusion type for a singularly per-
turbed quasilinear parabolic equation is considered on an interval. For this problem
we construct ε-uniformly convergent difference schemes (nonlinear iteration-free schemes
and their iterative variants) based on the domain decomposition method, which allow us
to implement sequential and parallel computations on decomposition subdomains. Such
schemes are obtained by domain decomposition applied to an ε-uniformly convergent non-
linear base scheme, which is a classic difference approximation of the differential problem
on piecewise uniform meshes condensing in a boundary layer. The decomposition schemes
constructed in this paper converge ε-uniformly at the rate of O(N−1 ln N + N−1

0 ), where
N and N0 denote respectively the number of mesh intervals in the space and time dis-
cretizations.
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1 Introduction

Special ε-uniformly convergent difference schemes for sufficiently wide classes of linear singu-
larly perturbed elliptic and parabolic equations were constructed, see e.g., [1]–[6]. Numerical
methods based on the domain decomposition technique were constructed and investigated for
a number of linear boundary value and initial boundary value problems. Such methods allows
us to apply sequential and parallel computations on the decomposition subdomains and, more-
over, the convergence rate of these methods does not depend on the value of the parameter ε
(see, e.g., [6]–[8]). Note that the use of parallel computations gives a possibility to accelerate
the process of the numerical solution of the problem. In [7] the conditions are determined
under which the parallelization of a difference scheme leads to the acceleration of the numerical
solution of the singularly perturbed parabolic equation, and also the ε-uniform accuracy for the
decomposition scheme is not less than the accuracy of the base scheme, i.e., a scheme subjected
to the decomposition.
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Attempts of developing ε-uniformly convergent numerical methods for nonlinear singularly
perturbed equations have a fragmentary character (see, e.g., [9]–[12]). Thus, the development
of ε-uniformly convergent numerical domain decomposition methods for nonlinear singularly
perturbed equations is indeed the actual problem.

In this paper special ε-uniformly convergent finite difference schemes of the domain decom-
position method are developed for an initial boundary value problem for a quasilinear singularly
perturbed parabolic convection-diffusion equation on an interval. Nonlinear domain decompo-
sition schemes and their iterative variants are constructed on the basis of a nonlinear difference
scheme that is a classic grid approximation of the problem on piecewise uniform meshes. The
constructed decomposition schemes allow us to use both sequential and parallel computations
on subdomains. The rate of ε-uniform convergence for such schemes is O(N−1 ln N + N−1

0 ),
i.e., the same as for schemes for linear equations; here N and N0 denote the number of mesh
intervals in the space and time discretizations respectively.

2 Problem formulation

In the domain

G = D × (0, T ], D = (0, d) (2.1)

with boundary S = G \ G we consider the following initial boundary value problem for a
singularly perturbed parabolic equation with Dirichlet boundary conditions 1

L(2.2)u(x, t) ≡
{

εa(x, t)
∂2

∂x2 + b(x, t)
∂
∂x

− c(x, t)− p(x, t)
∂
∂t

}

u(x, t) =

= F (x, t, u(x, t)), (x, t) ∈ G, (2.2a)

u(x, t) = ϕ(x, t), (x, t) ∈ S. (2.2b)

For S = S0 ∪ SL, we distinguish the initial boundary S0 = {(x, t) : x ∈ [0, 1], t = 0} and the
lateral boundary SL = {(x, t) : x = 0 or x = d, 0 < t ≤ T}. In (2.2) a(x, t), b(x, t), c(x, t),
p(x, t), (x, t) ∈ G, F (x, t, u), (x, t, u) ∈ H, and ϕ(x, t), (x, t) ∈ S are sufficiently smooth and
bounded functions which satisfy 2

a0 ≤ a(x, t) ≤ a0, b0 ≤ b(x, t) ≤ b0, p0 ≤ p(x, t) ≤ p0, (2.2c)

0 ≤ c(x, t) ≤ c0, (x, t) ∈ G, a0, b0, p0 > 0;

|ϕ(x, t)| ≤ M, (x, t) ∈ S; |F (x, t, u)| ≤ M, (x, t, u) ∈ H;

where H = G×R. The real parameter ε may take any positive value

ε ∈ (0, 1]. (2.2d)

For simplicity, the following condition is assumed to be fulfilled:

∂
∂u

F (x, t, u) + c(x, t) ≥ 0,
∂2

∂u2 F (x, t, u) ≤ M, (x, t, u) ∈ H. (2.3)
1 Throughout the paper, the notation L(j.k) (M(j.k), Gh(j.k)) means that these operators (constants, grids)

are introduced in equation (j.k).
2 Here and below M, Mi (or m) denote sufficiently large (small) positive constants which do not depend on

ε and on the discretization parameters.
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The solution of problem (2.2), (2.1) exists and is unique for all values of ε ∈ (0, 1].
Let the lateral boundary SL be represented as SL = S1∪S2, where S1 and S2 are respectively

the left and right sides of the boundary to the domain G. When the parameter ε tends to zero,
a regular boundary layer appears in a neighborhood of the boundary S1. This layer is described
by an ordinary differential equation.

Our aim is to construct ε-uniformly convergent finite difference schemes of the domain
decomposition method for problem (2.2), (2.1). In the case of iterative schemes we require that
the number of iterations should be also independent of ε.

3 The difference scheme

To solve problem (2.2), (2.1) we first consider a classical finite difference method. On the set
G we introduce the rectangular grid

Gh = ω × ω0, (3.1)

where ω is the (possibly) non-uniform grid of nodal points xi on [0, 1], ω0 is a uniform grid on
the interval [0, T ]; N and N0 are the numbers of intervals in the grids ω and ω0 respectively.
We define τ = T/N0, hi = xi+1 − xi, h = maxi hi, h ≤ M/N , Gh = G ∩Gh, Sh = S ∩Gh.

For problem (2.2), (2.1) we use the difference scheme [13]

Λ(3.2)z(x, t) = F (x, t, z(x, t)), (x, t) ∈ Gh, (3.2a)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh, (3.2b)

where

Λ(3.2) z(x, t) ≡ {ε a(x, t) δxbx + b(x, t) δx − c(x, t)− p(x, t) δt} z(x, t),

δxbx z(xi, t) = 2(hi−1 + hi)−1 [

δx z(xi, t)− δx z(xi, t)
]

,

δx z(xi, t) = (hi)−1 (

z(xi+1, t)− z(xi, t)
)

,

δx z(xi, t) = (hi−1)−1 (

z(xi, t)− z(xi−1, t)
)

,

δt z(xi, t) = τ−1 (

z(xi, t)− z(xi, t− τ)
)

,

δxz(x, t) and δxz(x, t), δtz(x, t) are the forward and backward differences, and the difference
δxbxz(x, t) is an approximation of the derivative (∂2/∂x2)u(x, t) on a non-uniform mesh.

The difference scheme (3.2), (3.1) is monotone [13]. It is convenient to introduce a nonlinear
operator associated with equation (3.2a):

Λ(3.3)(z(x, t)) ≡ Λ(3.2)z(x, t)− F (x, t, z(x, t)), (x, t) ∈ Gh. (3.3)

The following theorem is valid.

Theorem 3.1 Let the conditions

Λ(3.3)(z1(x, t)) ≤ Λ(3.3)(z2(x, t)), (x, t) ∈ Gh,

z1(x, t) ≥ z2(x, t), (x, t) ∈ Sh

be satisfied by the functions zi(x, t), (x, t) ∈ Gh, i = 1, 2. Then z1(x, t) ≥ z2(x, t), (x, t) ∈ Gh.
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Using the comparison theorem and taking into account a-priori estimates for the derivatives
(see Theorem 8.1 in Section 8), we find that the solution of the difference scheme (3.2), (3.1)
converges for a fixed value of the parameter ε:

| u(x, t)− z(x, t) | ≤ M
[

(ε−2 + N−1)−1 N−1 + N−1
0

]

, (x, t) ∈ Gh. (3.4)

On the mesh
Gh = ωu × ω0, (3.5)

which is uniform with respect to x and t, we have the estimate

| u(x, t)− z(x, t) | ≤ M
[

(ε−1 + N−1)−1 N−1 + N−1
0

]

, (x, t) ∈ Gh. (3.6)

The estimate (3.4), (3.6) are established according to the classical convergence proof for mono-
tone difference schemes [6], [13].

Theorem 3.2 Assume that estimate (8.2), where n = 0, holds for the solution of problem
(2.2). Then, for a fixed value of the parameter ε, the solution of scheme (3.2) on meshes
(3.1) and (3.5) converges to the solution of (2.2) with error bounds given by (3.4) and (3.6),
respectively.

4 The ε-uniformly convergent method

In this section we discuss an ε-uniformly convergent method for (2.2) by taking a special mesh
condensed in a neighborhood of the boundary layer. The distribution of the nodes is derived
from a priori estimates of the solution and its derivatives. We follow the approach described
in [2], [4], [6], [14], i.e., we take

G
∗
h = ω ∗(σ)× ω0 , (4.1)

where ω0 is the uniform mesh with step-size τ = TN−1
0 , and ω ∗ = ω ∗(σ) is a special piecewise

uniform mesh depending on the parameter σ. We take σ = σ(ε,N) = min[ 2−1, m ε ln N ],
where m = m−1

(8.7). The mesh ω ∗(σ) is constructed as follows. The interval [ 0, 1 ] is divided
in two parts [ 0, σ ], [ σ, 1 ]. In each part we use a uniform grid, with N/2 subintervals in each
interval [ 0, σ ] and [ σ, 1 ].

Using the maximum principle and taking into account a-priori estimates, similarly to [6],
[15] we find

| u(x, t)− z(x, t) | ≤ M
[

N−1 ln N + N−1
0

]

, (x, t) ∈ G
∗
h(4.1). (4.2)

Thus, the difference scheme (3.2), (4.1) converges ε-uniformly.

Theorem 4.1 If the solution of problem (2.2) satisfies the hypotheses of Theorem 8.1 (see
Section 8), where n = 0, then the solution of (3.2), (4.1) converges ε-uniformly to the solution
of (2.2) and the estimate (4.2) is valid.

5 Schwartz method for parabolic equations

In this section we introduce Schwartz’ domain decomposition method for the boundary value
problem (2.2), and for the solutions obtained we give the necessary and sufficient conditions
for ε-uniform convergence.
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5.1. We first describe Schwartz’ classical method for problem (2.2). Let the set of open
subdomains

Dk, k = 1, . . . , K (5.1a)

with boundaries Γ k, Γ k = Γ (Dk) = D
k \Dk, cover the domain D: D =

K
⋃

k=1

Dk , and let

Gk = Dk × (0, T ], k = 1, . . . , K. (5.1b)

We denote by D[k] the union of the subdomains D1, . . . , DK which does not include the set Dk:

D[k] =
K
⋃

i=1, i 6=k

Di . (5.1c)

We denote the minimal overlap of the sets Dk and D[k] by δk, and by δ the smallest value of
δk, i.e.,

min
k, x1, x2

ρ(x1, x2) = δ, (5.2)

x1 ∈ D
k
, x2 ∈ D

[k]
, x1, x2 6∈

{

Dk ∩D[k]
}

, k = 1, . . . , K,

where ρ(x1, x2) is the distance between the points x1, x2 ∈ D. In general, the value δ may
depend on the parameter ε.

Let

u0(x, t), (x, t) ∈ G (5.3a)

be a given arbitrary function satisfying the condition (2.2b). We are to find the sequence of
the functions ur(x, t), (x, t) ∈ G, r = 1, 2, . . .. Let the function ur(x, t) be known. The function
ur+1(x, t) can be determined in the next way. First we find the functions ur+ k

K (x, t), that is,
the solutions of the following problems

L(5.4)(ur+ k
K (x, t)) = 0, (x, t) ∈ Gk, (5.3b)

ur+ k
K (x, t) = ur+ k−1

K (x, t), (x, t) ∈ G \Gk, k = 1, . . . , K.

The required function is defined by the relation

ur+1(x, t) = ur+ K
K (x, t), r = 0, 1, 2, . . . . (5.3c)

In the case of the boundary value problem (2.2) the operator L(5.4) in (5.3b) is defined

L(5.4)(u(x, t)) ≡ L(2.2)u(x, t)− F (x, t, u(x, t)), (x, t) ∈ G. (5.4)

Each function ur+ k
K (x, t), (x, t) ∈ G, is the solution of the Dirichlet problem on the set G

k
and

coincides with the function ur+ k−1
K (x, t) on the set G \ Gk. This process is a natural classical

Schwartz ‘alternating’ method.
In principle, we could give the conditions under which process (5.3), (5.4), (5.1) converges

to the solution of the boundary value problem (2.2) as r → ∞, where r is the number of
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iterations. However, in this paper we are interested in a non-iterative solver based on the
modified Schwartz method.

5.2. We now describe the modified Schwartz method. Let

ω0 (5.5a)

be a uniform grid, just like ω0(3.1), on [0,T] with stepsize τ. By G(t1) we denote the strip

G(t1) = { (x, t) : (x, t) ∈ G, t1 < t ≤ t1 + τ }, t1, t1 + τ ∈ ω0.

Let S(t1) = G(t1) \ G(t1) be the boundary of G(t1) and let v(x, t) = v(x, t; t1) be defined on
S(t1). We denote an extension of the function v(x, t) onto the whole set G(t1) by v(x, t; t1). The
function v(x, t; t1) is assumed to satisfy the Lipschitz condition with respect to t. We subdivide
the strip G(t1) into sections Gk(t1) = Gk ∩G(t1), Sk(t1) = G

k
(t1) \Gk(t1).

Suppose that the function u(x, t), (x, t) ∈ G, for tn ∈ ω0, t ≤ tn < T , n = 0, 1, . . . , N0−1,
has already been constructed. Now we construct the function u(x, t) for t ≤ tn+1, i.e., we find
the function u(x, t) on the strip G(tn). This is done in the following way. First we find the
functions u

k
K (x, t) on the sections G

k
(tn) for k = 1, . . . , K, solving the boundary value problems

(5.5b)L(5.4)(u
k
K (x, t)) = 0, (x, t) ∈ Gk(tn)

u
k
K (x, t) =

{

u(x, t; tn), k = 1

u
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ Sk(tn)















for (x, t) ∈ G
k
(tn),

k = 1, . . . , K; tn ∈ ω0, n ≤ N0 − 1.

Here having u
k
K (x, t) on G

k
(tn), we extend these functions for each value k onto the whole

strip G(tn) in the next way

(5.5c)

u
k
K (x, t) =















u
k
K (x, t), (x, t) ∈ G

k
(tn)

u(x, t; tn), k = 1

u
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ G(tn) \G
k
(tn)















for (x, t) ∈ G(tn),

k = 1, . . . , K, tn ∈ ω0.

Having u
k
K (x, t), for k = K we define the function u(x, t) on the whole strip G(tn) by

u(x, t) = u
K
K (x, t), (x, t) ∈ G(tn), tn ∈ ω0. (5.5d)

Thereby we have the function u(x, t) on the domain G for t ∈ [0, tn+1].
In the relations (5.5b), (5.5c) the function u(x, t; tn) is constructed on the base of the function

v(x, t; tn)

u(x, t; tn) = v(x, t; tn), (x, t) ∈ G(tn). (5.5e)

Using v(x, t; tn) which is defined on the boundary S(tn) in (5.5g), we find the function

v(x, t; tn), (x, t) ∈ G(tn), (5.5f)

supposing v(x, t; tn) = v (x, t ; tn) for (x, t) ∈ S(tn)

and v(x, t; tn) = v (x, tn; tn) for (x, t) ∈ G(tn).
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Here

(5.5g)

v(x, t; tn) =











ϕ(x, t), (x, t) ∈ S(tn), tn = t0 = 0,
ϕ(x, t), (x, t) ∈ S(tn) ∩ S, t ≥ tn

u(x, t), (x, t) ∈ S(tn) \ S, t = tn

}

, tn > 0, (x, t) ∈ S(tn),

n = 0, 1, . . . , N0 − 1.

Thus the function u(x, t; tn) on G(tn) have been constructed.
The function u

k
K (x, t) on each strip G(tn) is the solution of the Dirichlet problem on the

section G
k
(tn), whereas on the set G(tn) \ Gk(tn) it coincides with the function u(x, t; tn),

(x, t) ∈ G(tn) for k = 1, and with the function u
k−1
K (x, t), (x, t) ∈ G(tn) for k ≥ 2. Thus we

find the function u(x, t), (x, t) ∈ G, the solution of process (5.5), (5.4), (5.1), which we call the
modified Schwartz method.

Note that the process (5.5), (5.4), (5.1), “the modified Schwartz method” is not an iterative
process in the strict sense. The boundary value problems in (5.5), (5.4), (5.1) are solved only
once at those points of G which do not belong to the intersection of the subdomains. The
boundary value problem is solved twice only on the intersection of the subdomains.

In the continuous domain decomposition method (5.5), (5.4), (5.1) the intermediate prob-
lems on the subsets D

k
(5.1), k = 1, . . . , K are solved sequentially.

Using the comparison theorems [16], [17], we come to the estimate

|u(x, t)− u(5.5)(x, t)| ≤ Q(ε, δ)N−1
0 , (x, t) ∈ G,

where u(5.5)(x, t) is the solution of the process (5.5), (5.4), (5.1), δ = δ(5.2)(ε), i.e., the function
u(5.5)(x, t) converges, as N0 → ∞, to the solution of boundary value problem (2.2) for each
fixed value of the parameter ε. Note that the function u(5.5)(x, t) for δ = 0 does not converge
to the solution of boundary value problem (2.2) as N0 →∞. Under the condition

δ = δ(5.2)(ε) > 0, ε ∈ (0, 1], inf
ε∈(0,1]

[ ε−1δ(5.2)(ε) ] > 0 (5.6)

which is equivalent to the condition δ = δ(5.2)(ε) ≥ m(5.6)ε, ε ∈ (0, 1], the function u(5.5)(x, t)
converges ε-uniformly as N0 →∞:

|u(x, t)− u(5.5)(x, t)| ≤ MN−1
0 , (x, t) ∈ G. (5.7)

If condition (5.6) is violated and the value δ satisfies the condition

δ = δ(5.2)(ε) > 0, ε ∈ (0, 1], inf
ε∈(0,1]

[ε−1 δ(5.2)(ε)] = 0, (5.8)

the function u(5.5)(x, t) does not converge ε-uniformly.

5.3. Here we describe the continuous variant of the modified Schwartz method that allows
parallel computations on P ≥ 1 processors.

Let Dk, k = 1, . . . , K be the subdomains from (5.1a) and let each Dk be partitioned in P
disjoint (possibly empty) parts

Dk =
P
⋃

p=1

Dk
p , k = 1, . . . , K, D

k
i ∩D

k
j = 0, i 6= j. (5.9a)
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Here we assume that non-empty Dk
p do overlap, but generally Dk don’t. We set

Gk
p = Dk

p × (0, T ], p = 1, . . . , P, k = 1, . . . , K. (5.9b)

We find the function u(x, t) by solving the problems (5.10) similar to (5.5), but now on the set
G

k
p (tn) instead of G

k
(tn):

L(5.4)(u
k
K
p (x, t) = 0, (x, t) ∈ Gk

p(t
n), (5.10a)

u
k
K
p (x, t) =

{

u(x, t; tn), k = 1

u
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ Sk
p (tn), p = 1, . . . , P

for (x, t) ∈ G
k
p (tn), k = 1, . . . , K, tn ∈ ω0, n ≤ N0 − 1;

u
k
K (x, t) =















u
k
K
p (x, t), (x, t) ∈ G

k
p(t

n), p = 1, . . . , P

u(x, t; tn), k = 1

u
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ G(tn) \
⋃P

p=1 G
k
p (tn)















(5.10b)

for (x, t) ∈ G(tn), k = 1, . . . , K, tn ∈ ω0.

u(x, t) = u
K
K (x, t), (x, t) ∈ G(tn), tn ∈ ω0. (5.10c)

The function u(x, t; tn) = v(x, t; tn), (x, t) ∈ G(tn), tn ∈ ω0. The function v(x, t; tn), (x, t) ∈
G(tn) is determined as in (5.5f).

Stepwise, for n = 1, 2, · · · , we find the function u(5.10)(x, t), (x, t) ∈ G, i.e., the solution of
process (5.10), (5.9), which we call the modified continuous Schwartz method for P “processors”.

The scheme (5.10) on the decomposition (5.9) can be written in the “operator” form

Q(u(x, t); ω0, F (·), ϕ(·), ψ(·)) = 0, (x, t) ∈ G. (5.10d)

Here the function ψ(x, t; tn), (x, t) ∈ G(tn) defines the prolonged function u(x, t; tn):

u(x, t; tn) =

{

v(x, t; tn), (x, t) ∈ S(tn)

v(x, tn; tn) + ψ(x, t; tn), (x, t) ∈ G(tn)

}

, (x, t) ∈ G(tn), (5.10e)

so that in the case of the conditions (5.5e), (5.5f), simply, ψ(x, t; tn) ≡ 0. The problem (5.10),
(5.9) for P = 1 is identical with problem (5.5), (5.1).

In the continuous domain decomposition method (5.10), (5.9) the intermediate problems on
the subsets D

k
p(5.9), p = 1, . . . , P , k = 1, . . . , K can be solved independent of each other, for

all p = 1, . . . , P . For solutions of Schwartz method (5.10), (5.9) we have the estimate

|u(x, t)− u(5.10)(x, t)| ≤ M N−1
0 , (x, t) ∈ Gh. (5.11)

The following theorem which similar to the theorem in [7] is valid.

Theorem 5.1 The condition (5.6) is necessary and sufficient for the ε-uniform convergence
(as N0 → ∞) of the solution of problems (5.5), (5.1) and (5.10), (5.9) to the solution of
the boundary value problem (2.2), (2.1). In that case when conditions of Theorem 4.1 and
also condition (5.6) are fulfilled, the solutions of the continual Schwartz-like methods satisfy
estimates (5.7), (5.11).
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6 Difference schemes based on the Schwartz method

6.1. Here we construct a difference scheme based on the process (5.5), (5.1) and give the
necessary and sufficient conditions for ε-uniform convergence of this scheme. We introduce the
rectangular grids on each of the sets G

k
and G

k
p :

G
k
h = G

k ⋂

Gh(3.1), G
k
ph = G

k
p

⋂

Gh(3.1), (6.1)

or

G
k ∗
h = G

k ⋂

G
∗
h(4.1), G

k ∗
p h = G

k
p

⋂

G
∗
h(4.1). (6.2)

where G
k
ph = G

k
p,h. We assume that the boundaries of G

k
and G

k
p pass through the nodes of

the grid Gh and G
∗
h respectively.

Now we introduce the discrete function v(x, t) = v(x, t; t1) defined on the boundary of the
discrete strip Sh(t1) = S(t1) ∩ Gh, t1 ∈ ω0. By v(x, t; t1) we denote the extension of this
function v(x, t) to the discrete set Gh(t1) = G(t1)∩Gh. The function v(x, t; t1) is considered to
satisfy the Lipschitz condition with respect to t. The “strip” Gh(t1) consists of only two time
levels

Gh(t1) = {ω × [t = t1] }
⋃

{ω × [t = t1 + τ ] },
where ω was introduced in (3.1).

Now we find the discrete solutions z
k
K (x, t) by a procedure similar to (5.5). That is, assuming

that z(x, t), t ≤ tn, has been computed, we solve the following problems on the strip Gh(tn)

(6.3a)Λ(6.3)(z
k
K (x, t)) = 0, (x, t) ∈ Gk

h(t
n)

z
k
K (x, t) =

{

z(x, t; tn), k = 1

z
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ Sk
h(tn)















for (x, t) ∈ G
k
h (tn),

k = 1, . . . , K, tn ∈ ω0, n ≤ N0 − 1;

(6.3b)

z
k
K (x, t) =















z
k
K (x, t), (x, t) ∈ G

k
h (tn)

z(x, t; tn), k = 1

z
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ Gh(tn) \G
k
h (tn)















for (x, t) ∈ Gh(tn),

k = 1, . . . , K, tn ∈ ω0.

The required function z(x, t) on the strip Gh(tn) is defined by the relation

z(x, t) = z
K
K (x, t), (x, t) ∈ Gh(tn), tn ∈ ω0. (6.3c)

In the relations (6.3a), (6.3b)

z(x, t; tn) = v(x, t; tn), (x, t) ∈ Gh(tn), tn ∈ ω0. (6.3d)

The function v(x, t; tn), (x, t) ∈ Gh(tn) is found, using v(x, t; tn), (x, t) ∈ Sh(tn), as

v(x, t; tn) =

{

v(x, t ; tn), (x, t) ∈ Sh(tn)

v(x, tn; tn), (x, t) ∈ Gh(tn)

}

, (x, t) ∈ Gh(tn), (6.3e)
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where

(6.3f)
v(x, t; tn) =







ϕ(x, t), (x, t) ∈ Sh(tn), tn = t0 = 0
ϕ(x, t), (x, t) ∈ Sh(tn) ∩ Sh, t ≥ tn

z(x, t), (x, t) ∈ Sh(tn) \ Sh, t = tn

}

, tn > 0







,

(x, t) ∈ Sh(tn), n = 0, 1, . . . , N0 − 1.

On each strip Gh(tn) the function z
k
K (x, t) is the solution of the discrete Dirichlet problem on

the set G
k
h (tn). On the remaining part Gh(tn) \Gk

h(t
n), for k = 1 it coincides with the function

z(x, t; tn), (x, t) ∈ Gh(tn) and for k ≥ 2 with the function z
k−1
K (x, t), (x, t) ∈ Gh(tn). We define

the operator Λ(6.3) by the relation

Λ(6.3)(z(x, t)) = Λ(3.3)(z(x, t)), (x, t) ∈ Gh. (6.4)

It is required to find the function z(6.3)(x, t), (x, t) ∈ Gh, i.e., the solution of difference
scheme (6.3) either on the mesh (4.1) or on the mesh (3.1) . The difference scheme (6.3) can
be written symbolically in the operator form

Q(6.3)(z(x, t); Λ(3.3), F (·, z(·)), ϕ(·), ψ(·)) = 0, (x, t) ∈ Gh. (6.3g)

Similarly to (5.10e), here the function ψ(x, t; tn), (x, t) ∈ Gh(tn) defines the function z(x, t; tn):

z(x, t; tn) =

{

v(x, t; tn), (x, t) ∈ Sh(tn)

v(x, tn; tn) + ψ(x, t; tn), (x, t) ∈ Gh(tn)

}

, (x, t) ∈ Gh(tn). (6.3h)

In the above case of the conditions (6.3d), (6.3e) we have ψ(x, t; tn) ≡ 0.
In the discrete domain decomposition method (6.3), the intermediate problems on the sub-

sets D
k
h = D

k
(5.1)

⋂

Dh are solved sequentially. Thus, to solve boundary value problem (2.2),
here we used the difference scheme (6.3), (3.1), which is the discrete analog of (5.5), (5.1). In
the following section we extend this to the “parallel” case (5.10).

6.2. To describe the difference scheme which approximates process (5.10), (5.9) with P parallel
processors, we assume that z(x, t) is known for t ≤ tn. Then we solve the problems

Λ(6.3)(z
k
K
p (x, t)) = 0, (x, t) ∈ Gk

p h(t
n), (6.5a)

z
k
K
p (x, t) =

{

z(x, t; tn), k = 1

z
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ Sk
p h(t

n), p = 1, . . . , P

for (x, t) ∈ G
k
p h(t

n), k = 1, . . . , K, tn ∈ ω0, n ≤ N0 − 1;

z
k
K (x, t) =















z
k
K
p (x, t), (x, t) ∈ G

k
ph(t

n), p = 1, . . . , P

z(x, t; tn), k = 1

z
k−1
K (x, t), k ≥ 2

}

, (x, t) ∈ G(tn) \
P
⋃

p=1

G
k
p (tn)















for (x, t) ∈ Gh(tn), k = 1, . . . , K, tn ∈ ω0.

We define the function z(6.5)(x, t) on the strip Gh(tn) by the relation

z(6.5)(x, t) = z
K
K (x, t), (x, t) ∈ Gh(tn), tn ∈ ω0. (6.5b)
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In (6.5a) z(x, t; tn) = v(x, t; tn), (x, t) ∈ Gh(tn). The function v(x, t; tn), (x, t) ∈ Gh(tn) is
found, using v(x, t; tn), (x, t) ∈ Sh(tn), which is determined by (6.3e). Thus, the function
z(6.5)(x, t), (x, t) ∈ Gh, i.e., the solution of the difference scheme (6.5), (3.1), is found.

The difference scheme (6.5) can be written in the operator form

Q(6.5)(z(x, t); Λ(3.3), F (·, z(·)), ϕ(·), ψ(·)) = 0, (x, t) ∈ Gh, (6.5c)

with ψ(x, t; tn) ≡ 0.
In the discrete domain decomposition method (6.5), (3.1) the intermediate problems on

the subsets D
k
ph = D

k
p(5.9)

⋂

Dh are solved independent of each other (“in parallel”) for all
p = 1, . . . , P . For P = 1 the difference scheme (6.5), (3.1) transforms into (6.3), (3.1).

Under condition (5.6), using a standard technique of the comparison theorems, we get the
estimate

| z(3.2)(x, t)− z(6.5)(x, t) |≤ MN−1
0 , (x, t) ∈ Gh, (6.6)

where z(3.2)(x, t) and z(6.5)(x, t) are the solutions of the difference schemes (3.2), (3.1) and (6.5),
(3.1), respectively.

6.3. A technique similar to the one explained in [2], [3] gives us errors bounds for the discrete
solutions which are obtained by the difference schemes described above. Under condition (5.6),
using the difference schemes (6.3), (3.1) and (6.3), (4.1) (schemes (6.5), (3.1) and (6.5), (4.1)),
we obtain the following error estimates for the solution of the boundary value problem (2.2)

|u(x, t)− zd(x, t)| ≤ M
[

(ε + N−1)−1 N−1 + N−1
0

]

, (x, t) ∈ Gh(3.5), (6.7a)

|u(x, t)− zd(x, t)| ≤ M
[

N−1 ln N + N−1
0

]

, (x, t) ∈ G
∗
h(4.1). (6.7b)

Here zd(x, t), (x, t) ∈ Gh is the solution of the domain decomposition scheme (schemes (6.3) and
(6.5) in the case of the sequential and parallel methods respectively). The above formulation
allows us to summarize briefly a result similar to [7] as follows:

Theorem 6.1 Let the hypotheses of Theorem 4.1 hold for the data of the boundary value
problem (2.2) and its solution. Then, under condition (5.6) and for N, N0 →∞, the solutions
of the difference schemes (6.3), (6.4) and (6.5), (6.4) on the mesh (4.1) (mesh (3.1)) converge
to the solution of (2.2) ε-uniformly (for a fixed value of ε). The estimates (6.6), (6.7) hold for
the solutions of these difference schemes.

7 Iterative schemes based on approximations of nonlin-
ear schemes

The difference scheme (3.2), (3.1) and also domain decomposition schemes (6.3), (6.4), (3.1) and
(6.5), (6.4), (3.1) are nonlinear. We now give some variants of difference schemes that allow
us to find approximations to solutions of nonlinear schemes and solutions of the differential
problem (2.2), (2.1).

On mesh (3.1) we consider the difference scheme

Λ(7.1)(z(x, t)) ≡ Λ(3.2)z(x, t)− F (x, t, z̆(x, t)) = 0, (x, t) ∈ Gh, (7.1)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.
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Here z̆(x, t) = z(x, t − τ), (x, t) ∈ Gh. In the “linear” difference scheme (7.1), (3.1) numerical
solutions at each time level are the solutions of linear equations.

The difference scheme (7.1), (3.1) is ε-uniformly monotone in the case of the condition

N0 ≥ T max
H

[

p−1(x, t)
∂
∂u

F (x, t, u)
]

. (7.2)

Theorem 7.1 Let the condition (7.2) hold and the functions zi(x, t), (x, t) ∈ Gh, i = 1, 2
satisfy the inequalities

Λ(7.1)(z1(x, t)) ≤ Λ(7.1)(z2(x, t)), (x, t) ∈ Gh,

z1(x, t) ≥ z2(x, t), (x, t) ∈ Sh.

Then z1(x, t) ≥ z2(x, t), (x, t) ∈ Gh.

In the nonlinear scheme (3.2), (3.1) it is possible to compute its solution at the time level
t ∈ ω0 using the method of successive approximations, where the values of z(x, t) in the function
F (x, t, z(x, t)) are taken from the previous iteration

Λ(7.3)(z(s)(x, t)) ≡
{

ε a(x, t) δxbx + b(x, t) δx − c(x, t)− τ−1 p(x, t)
}

z(s)(x, t) +

+τ−1 p(x, t) z̆(x, t)− F (x, t, z(s−1)(x, t)) = 0, (x, t) ∈ Gh, (7.3)

z(s)(x, t) = ϕ(x, t), (x, t) ∈ Sh ∩ SL,

z (x, t) = ϕ(x, t), (x, t) ∈ Sh ∩ S0;

z(0)(x, t) = z̆(x, t), (x, t) ∈ Gh, t > 0; s = 1, 2, . . . , s0.

We take the value of z from the known level t− τ as the initial guess z(0)(x, t); assume z(x, t) =
z(s0)(x, t).

It is possible to realize the computational process with fixed numbers of iterations s0. For
s0 = 1 in (7.3) this scheme coincides with a linear variant of scheme (7.1).

For s0 → ∞ the solution of problem (7.3) converges to the solution of problem (3.2).
However, errors in the numerical solution can increase, in general, as s0 grows. In the case of
the condition

∂
∂u

F (x, t, u) ≤ 0, (x, t, u) ∈ H (7.4)

scheme (7.3), (3.1) is monotone. The following theorem is valid.

Theorem 7.2 Let the conditions (7.2), (7.4) hold and the functions z(s)i(x, t), (x, t) ∈ Gh,
s = 1, 2, . . . , s0, i = 1, 2 satisfy the inequalities

Λ(7.3)(z(s)1(x, t)) ≤ Λ(7.3)(z(s)2(x, t)), (x, t) ∈ Gh,

z(s)1(x, t) ≥ z(s)2(x, t), (x, t) ∈ Sh, s = 1, 2, . . . , s0.

Then z(s)1(x, t) ≥ z(s)2(x, t), (x, t) ∈ Gh, s = 1, 2, . . . , s0.
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When we decompose the difference scheme (7.1), (3.1) as above, we obtain the scheme for
sequential computations (sequential scheme)

Q(6.3)
(

z(x, t); Λ(7.1), F (·, z̆(·)), ϕ(·), ψ(·) = 0
)

= 0, (x, t) ∈ Gh (7.5)

and the scheme for parallel computations (parallel scheme)

Q(6.5)
(

z(x, t); Λ(7.1), F (·, z̆(·)), ϕ(·), ψ(·) = 0
)

= 0, (x, t) ∈ Gh (7.6)

When we decompose the difference scheme (7.3), (3.1), we obtain the (sequential and par-
allel) schemes

Q(6.3)
(

z(s)(x, t); Λ(7.3), F (·, z(s−1)(·)), ϕ(·), ψ(s−1)(·)
)

= 0, (7.7)

(x, t) ∈ Gh, s = 1, 2, . . . , s0;

Q(6.5)
(

z(s)(x, t); Λ(7.3), F (·, z(s−1)(·)), ϕ(·), ψ(s−1)(·)
)

= 0, (7.8)

(x, t) ∈ Gh, s = 1, 2, . . . , s0;

Here ψ(s−1)(x, t; tn) ≡ 0 for s = 1, ψ(s−1)(x, t; tn) = z(s−1)(x, tn) for s = 2, 3, . . . , s0; the
function z(s)(x, t), (x, t) ∈ Gh(tn), tn ∈ ω0 is the solution of the decomposition scheme on the
s-th iteration. We assume that z(x, t) = z(s0)(x, t), (x, t) ∈ Gh.

Using the majorant function technique, in the case of decomposition schemes (7.5)–(7.8) on
meshes (3.5) and (4.1) we obtain the estimates

|u(x, t)− zd(x, t)| ≤ M
[

(ε + N−1)−1 N−1 + N−1
0

]

, (x, t) ∈ Gh(3.5), (7.9a)

|u(x, t)− zd(x, t)| ≤ M
[

N−1 ln N + N−1
0

]

, (x, t) ∈ G
∗
h(4.1). (7.9b)

Here the error constants for the sequential and parallel schemes are, in general, different but
independent of the value s0 (in the case of schemes (7.7), (7.8)). The convergence rate for
sequential and parallel schemes (7.5)–(7.8), and also for nonlinear schemes (6.3), (6.5) is the
same as that for scheme (3.2) subjected to the decomposition.

Theorem 7.3 Let the hypotheses of Theorem 4.1 be fulfilled. Then, under condition (5.6) and
additional condition (7.2) (condition (7.4)) the solutions of the difference schemes (7.5) and
(7.6) (schemes (7.7) and (7.8)) on the mesh (4.1) converge to the solution of problem (2.2),
(2.1) ε-uniformly. The estimates (7.9) are valid for the solutions of these difference schemes.

Remark 1. The nonlinear scheme (3.2) can be linearized by the Newton method [13]

Λ(7.10)(z(s)(x, t)) ≡
{

εa(x, t)δxbx + b(x, t)δx − c(x, t)− τ−1p(x, t)
}

z(s)(x, t) +

+ τ−1 p(x, t) z̆(x, t)− ∂
∂u

F (x, t, z(s−1)(x, t)) z(s)(x, t)− (7.10)

−F (x, t, z(s−1)(x, t))− ∂
∂u

F (x, t, z(s−1)(x, t)) z(s−1)(x, t) = 0, (x, t) ∈ Gh,

z(0)(x, t) = ϕ(x, t), (x, t) ∈ Sh ∩ SL,

z (x, t) = ϕ(x, t), (x, t) ∈ Sh ∩ S0; s = 1, 2, . . . , s0.

Here z(0)(x, t) = z̆(x, t), (x, t) ∈ Gh, t > 0; assume z(x, t) = z(s0)(x, t). Using scheme (7.10)
as a base scheme, one can construct sequential and parallel decomposition schemes similar to
schemes (7.7) and (7.8), which converge ε-uniformly.
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8 Estimates of the solution and its derivatives

Here we rely on the a-priori estimates for the solution of problem (2.2) and its derivatives as
derived for elliptic and parabolic equations in [6], [14].

We denote by C (α)(G) = C α,α/2(G) the Hölder space, where α is an arbitrary positive
number [17]. We suppose that the functions F (x, t, u(x, t)) and ϕ(x, t) satisfy compatibility
conditions at the corner points so that the solution of the boundary value problem is smooth
for every fixed value of the parameter ε.

For simplicity, we assume that at the corner points S0 ∩ S
L

the following conditions hold

∂k

∂xk ϕ(x, t) =
∂k0

∂tk0
ϕ(x, t) = 0, k + 2k0 ≤ [ α ] + 2n, (8.1)

∂k+k0

∂xk ∂tk0
F (x, t, 0) = 0, k + 2k0 ≤ [ α ] + 2n− 2,

where [ α ] is the integer part of a number α , α > 0 , n ≥ 0 is an integer number. We also
suppose that [ α ] + 2n ≥ 2.

Using interior a-priori estimates and estimates up to the boundary for the regular function
ũ(ξ, t) , [17], where ũ(ξ, t) = u(x(ξ), t), ξ = x/ε, we find for (x, t) ∈ G the estimate

∣

∣

∣

∣

∂k+k0

∂xk ∂tk0
u(x, t)

∣

∣

∣

∣

≤ M ε−k, k + 2k0 ≤ 2n + 4, n ≥ 0. (8.2)

This estimate holds, for example, for

u ∈ C (2n+4+ν)(G), ν > 0, (8.3)

where ν is some small number.
For example, (8.3) is guaranteed for the solution of (2.2) if the coefficients satisfy a, b, c,

p ∈ C (α+2n−2)(G), F ∈ C (α+2n)(H), ϕ ∈ C (α+2n)(G), α > 4, n ≥ 0 and condition (8.1) is
fulfilled.

In fact we need a more accurate estimate than (8.2). Therefore, we represent the solution
of the boundary value problem (2.2) in the form of the sum

u(x, t) = U(x, t) + W (x, t), (x, t) ∈ G, (8.4)

where U(x, t) represents the regular part, and W (x, t) the singular part. The function U(x, t)
is the smooth solution of equation (2.2a) satisfying condition (2.2b) on S2 ∪ S0. For example,
under suitable assumptions for the data of the problem, we can consider the solution of the
Dirichlet boundary value problem for equation (2.2a) smoothly extended to the domain G

∗
(G

∗

is a sufficiently large neighbourhood of G). On the domains G, H and S2∪S0, respectively, the
coefficients, the right-hand side F (x, t, u) and the boundary function ϕ(x, t) of the extended
problem are the same as for (2.2). Then the function U(x, t) is the restriction (on G) of the
solution to the extended problem, and U ∈ C(2n+4+ν)(G), ν > 0. The function W (x, t) is the
solution of a boundary value problem for the parabolic equation

L(2.2)W (x, t) = F (x, t, u(x, t))− F (x, t, U(x, t)), (x, t) ∈ G, (8.5)

W (x, t) = u(x, t)− U(x, t), (x, t) ∈ S.
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If (8.3) is true then W ∈ C(4+2n+ν)(G). We suppose that a, b, c, p ∈ C (α+6n)(G), F ∈
C (α+6n)(H), ϕ ∈ C (α+6n)(G), α > 6, n ≥ 0. Now, for the functions U(x, t) and W (x, t) we
derive the estimates

∣

∣

∣

∣

∂k+k0

∂xk ∂tk0
U(x, t)

∣

∣

∣

∣

≤ M [1 + ε2n+2−k], (8.6)

∣

∣

∣

∣

∂k+k0

∂xk ∂tk0
W (x, t)

∣

∣

∣

∣

≤ M ε−k exp(−m(8.7) ε−1 x) ), (8.7)

(x, t) ∈ G, k + 2k0 ≤ 2n + 4,

where m(8.7) is an arbitrary number from the interval (0,m0), m0 = minG [a−1(x, t) b(x, t)]. For
example, the similar estimates are deduced in [8] for the case when F (x, t, u(x, t)) = f(x, t).

Theorem 8.1 Assume in equation (2.2) that a, b, c, p ∈ C (α+6n)(G), F ∈ C (α+6n)(H),
ϕ ∈ C (α+6n)(G), α > 6, n ≥ 0 and let condition (8.3) be fulfilled. Then, for the solution u(x, t)
of problem (2.2) and for its components in representation (8.4), it follows that u, U, W ∈
C (4+2n)(G) and that the estimates (8.2), (8.6), (8.7) hold.
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