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Abstract

Splay trees, a form of self-adjusting binary tree, were introduced by Sleator and Tarjan
in the early 1980s. Their main use is to store ordered lists. The idea is to keep the trees
reasonably well balanced through a ‘splay heuristic.’ Sleator and Tarjan showed that if
amortised rather than worst-case times are considered, splay trees are optimal. Splay
trees have the advantage of simplicity: they are much easier to implement than 2-3 trees,
AVL trees, or red-black trees.

What if one uses splaying during an inorder traversal of the tree? Sleator and Tarjans’
analysis guarantees O(n log(n)) overall cost. On the other hand, the cost of ordinary
inorder traversal is linear, whether or not the tree is balanced.

We present some data which suggests that the traversal time is O(n), and demon-
strate an O(n log log(n)) upper bound. This upper bound is reached through a rather un-
usual unbounded-history recurrence and by using weaker bounds, such as the O(n log(n))
bound, along the way.

1 Splay trees

When a binary tree is used to store ordered lists, it is the inorder (symmetric order) of the
nodes which matters. A rotation (Figure 1) applied to a subtree at y preserves inorder, and
therefore rotations may be used freely.

A splay tree is a binary tree whose height is adjusted according to a certain splay heuristic.
The heuristic is as follows: in order to perform some operation on a tree, lookup, split, join, or
whatever, locate some significant node x and bring it to the root by a series of splay steps.

The three kinds of splay step are called ‘zig,’ ‘zigzig,’ and ‘zigzag.’ A ‘zig’ step makes a
child of the root the root by a single rotation. A ‘zigzig’ or ‘zigzag’ step moves x two places
closer to the root by two rotations. In the zigzig case, both x and its parent are left- or right
children; in the zigzag case, x is a left child and its parent a right child or vice-versa.

When a node is brought to the root by splaying, all nodes along the path are brought closer
to the root — their depth is halved.

As a result of these heuristics, the amortised cost (i.e., the cost averaged over a sequence
of operations) of lookup, split, join, and so on, is optimal (O(log(n)) per operation). These
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Figure 1: rotation, a reversible operation which preserves inorder.
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Figure 2: three splay steps.

operations are applied to an evolving forest of binary trees. If the operations begin with a
forest of n trivial trees then the total actual cost never exceeds the total amortised cost.

What if one uses the splay heuristic to traverse an entire tree in left-to-right order? Explic-
itly,

(1.1) Definition A traversal of a splay tree involves accessing the nodes in inorder, through
a sequence of fetch operations. In the first fetch operation the leftmost node is accessed and
brought to the root by splaying. Subsequently, a fetch operation means accessing the inorder
successor of the root, if it exists, and bringing it up to the root by splaying.

Figure 4 illustrates inorder traversal of the complete tree of height 3 (15 nodes) by repeated
splaying to root. The arrows are labelled with the number of rotations applied, which is
proportional to the work done. The total number of rotations is 27 for this example.

(1.2) Computer implementations produced the table below, giving data about the cost of
traversing complete trees of height h and size n = 2h+1 − 1, for h = 0 to 23 (the limit of
memory capacity), and ‘leftmost trees’ of the same size n — trees in which right children do
not exist. It is fairly clear that ‘rightmost trees’ in which left children don’t exist are optimal,
with overall traversal cost n− 1.
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Figure 3: A fetch operation (1.1).
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Figure 4: traversal of the complete tree of height 3. The spine, see (2.3) below, is shown with
heavy lines.

Kh − Ln

h n Kh Kh − 2Kh−1 ratio Ln ratio −2n
0 1 0 n/a 0.000000 0 0.000000 −2
1 3 3 3 1.000000 4 1.333333 −5
2 7 10 4 1.428571 16 2.285714 −8
3 15 27 7 1.800000 48 3.200000 −9
4 31 62 8 2.000000 114 3.677419 −10
5 63 135 11 2.142857 250 3.968254 −11
6 127 282 12 2.220472 528 4.157480 −8
7 255 589 25 2.309804 1090 4.274510 −9
8 511 1204 26 2.356164 2216 4.336595 −10
9 1023 2437 29 2.382209 4472 4.371457 −11

10 2047 4904 30 2.395701 9000 4.396678 2
11 4095 9847 39 2.404640 18038 4.404884 1
12 8191 19734 40 2.409230 36116 4.409230 0
13 16383 39511 43 2.411707 72276 4.411646 −1
14 32767 79066 44 2.412976 144598 4.412915 −2
15 65535 158187 55 2.413779 289254 4.413733 −3
16 131071 316430 56 2.414188 578568 4.414157 −4
17 262143 632919 59 2.414404 1157200 4.414385 −5
18 524287 1265898 60 2.414513 2314468 4.414506 −4
19 1048575 2531865 69 2.414577 4629010 4.414572 −5
20 2097151 5063800 70 2.414609 9258112 4.414614 10
21 4194303 10127673 73 2.414626 18516288 4.414628 9
22 8388607 20255420 74 2.414635 37032642 4.414635 8
23 16777215 40510931 91 2.414640 74065368 4.414640 7
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Figure 5: spine, all nodes from v to w.

The table lists h, n, the cost Kh of traversing the complete tree through splaying, a ‘dif-
ference column’ giving Kh − 2Kh−1, the ratio Kh/n, the cost Ln of traversing the ‘leftmost
tree’ through splaying, and the ratio Ln/n. The rightmost column in the table allows one to
compare Ln with Kh. The difference is very close to 2n, which is plausible, since after about
log2(n) iterations traversing the ‘leftmost tree,’ overall cost about 2n, the processed tree very
closely resembles the complete tree of size n.

It is easy to explain the even-odd periodicity in Kh−2Kh−1, though hardly worth the effort.
This quantity shows regularities in Kh. However, we have not derived an explicit formula for
Kh, and a query of the on-line version of Sloane’s Handbook of Integer Sequences [2] did not
produce any matches.

The ratio columns suggest O(n) behaviour for these trees. Sleator and Tarjan’s analysis
[1] guarantees that the overall cost of traversal is O(n log(n)) on a tree with n nodes (Lemma
2.2). Considering that iteration on a non-self-adjusting tree takes overall time O(n), this is
disappointing, but a more specialised analysis leads to the following stronger result:

(1.3) Theorem Suppose that a binary tree with n nodes is traversed in inorder by repeated
splaying as described above. Then the overall cost is O(n log log(n)).

The remainder of this paper is devoted to a proof of this theorem.

2 The spine and spine blocks

(2.1) The tree at ‘time’ t. A binary tree T of n nodes is subjected to inorder traversal
through a sequence of fetch operations which involve splaying to the root (see 1.1). Let T (0) =
T , and in general for 0 ≤ t ≤ n let T (t) be the tree as it is after t fetch operations. T (t) we
call the tree at time t.

We begin with Sleator and Tarjans’ analysis applied to the cost of traversing a binary tree.

(2.2) Lemma The cost of traversing T by repeated splaying is at most 5n log2(n).

Proof. For 0 ≤ s ≤ n and any node x in T (s), define its rank rs(x) as

log2

(
number of descendants of x

n

)
.

Thus − log2(n) ≤ rs(x) ≤ 0 always. Define the potential Φs of T (s) as the sum of node ranks
in T (s). Thus −n log2(n) ≤ Φs ≤ 0.
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Figure 6: result of fetching a node p1. Successive right subtrees Si and Si+1 are combined. The
effect is slightly different depending on whether the spine has (A) even or (B) odd cardinality.

The amortised cost of the s-th fetch operation, for 1 ≤ s ≤ n, is

cost of the fetch + Φs − Φs−1

For 1 ≤ s ≤ n let xs be the s-th node in inorder, so it is the s-th node fetched, and let x0

be the root of T (0).
By an analysis due to Sleator and Tarjan [1], the amortised cost of the s-th fetch operation

is at most 1 + 3rs(xs)− 3rs−1(xs) ≤ 1 + 3 log(n). Hence the overall amortised cost is at most
n(1 + 3 log(n)). Add Φ0 −Φn ≤ n log2(n) to get the actual cost, i.e., at most n + 4n log2(n) ≤
5n log2(n). Q.E.D.

Left branches, spine, and spine block. In any tree, a left branch is a nonempty sequence
v1, v2, . . . v` of nodes in the tree, where for 1 ≤ p ≤ `−1, vp is the left child of vp+1. The branch
is maximal if v1 has no left child and v` is not a left child.

(2.3) Definition For 0 ≤ t < n the spine at time t or spine(t) is the maximal left branch
containing the next node to be fetched. The spine at time n is empty.

A spine block is a pair (B, s) where B is a nonempty contiguous sequence of nodes in
spine(s). By abuse of notation B itself may be called a spine block, with s left implicit.

(2.4) Equivalently, the spine at time t is the maximal left branch in T (t) ending at the root
if t = 0 and the root’s right child if t > 0. At any time, a node either has already been fetched,
or is a spine node, or is descended from the right child of a spine node.

(2.5) Lemma The total traversal cost is
∑n−1

s=0 |spine(s)|. (Trivial.)

(2.6) Definition (i) Given a spine block (B, s), and any t ≥ s, let

c(t) =

{
0 if |B ∩ spine(t)| ≤ 1

|(B ∩ spine(t))| − 2 if |B ∩ spine(t)| ≥ 2

(ii) S(B) =
∑n−1

t=s c(t), and (iii) S(d) = max{S(B) : |B| ≤ d}.
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(2.7) In defining S(d), the maximum is calculated over all possible blocks of length ≤ d in
all possible trees of whatever size. For this reason, it is obvious that S(d) is monotonically
non-decreasing with d, but it is not obvious that S(d) is well-defined (finite). In fact it will be
shown that S(d) is O(d log log(d)) (Lemma 6.1) and this implies that S(d) is well-defined.

If the term −2 were omitted it would be impossible to relate S(B) to |B|: S(d) would be
undefined or infinite.

3 Fragments of a spine block

(3.1) Lemma Let (B, s) be a spine block where 0 ≤ s ≤ n− 1. The (s + 1)st fetch operation
affects the nodes in B, and the spine, as follows.

(i) If |B| is even then exactly |B|/2 nodes in B remain on the spine and, except for the
node fetched if that belongs to B, |B|/2 are ‘pushed down’ off the spine to become right children
of spine nodes. They will later rejoin the spine.

(ii) If |B| is odd then at least |B|/2 − 1 and at most |B|/2 + 1 nodes in B remain on the
spine (respectively, are pushed off the spine).

(iii) The leftmost node x in spine(s) is the node fetched and it leaves the spine forever.
(iv) If the node x had a right child z in the tree T (s) (2.1) then the maximal left branch

containing z gets ‘pulled up’ onto the spine, forming a leftmost interval in spine(s + 1). If x
had no right child then no new nodes are added to the spine. (Proof omitted. See Figures 3
and 6.)

(3.2) Corollary Let x be a descendant of the right child of a spine node at time r, and let y
be its leftmost descendant at the time. (i) Then y will remain as the leftmost descendant of x
until after x and y have together been pulled up onto the spine.
(ii) When they are pulled up onto the spine, the node fetched is the inorder predecessor of y.

Proof. (i) Until that time, x can acquire new ancestors but cannot acquire new descendants.
(ii) This follows from the above lemma, part (iv). Q.E.D.

(3.3) Corollary If (B, s) is a block, then for every t ≥ s, B ∩ spine(t) is either empty or is a
block of spine(t).

Proof. Otherwise, for some t > s, spine(t) contains three nodes u, v, w in left-to-right order
(not necessarily consecutive) where u, w ∈ B but v /∈ B.

Both u and w are in spine(s), and u precedes w in inorder, so u is to the left of w in spine(s).
Let y be the leftmost descendant of v in T (s) (2.1).

The node v comes between u and w in inorder, and is not on spine(s), so there exists a
node v′ on spine(s) between u and w such that v is in the right subtree of v′. Possibly u = v′

but v′ 6= w. Since y is in the same subtree, v′ and hence u precedes y in inorder. See Figure 7.
But v doesn’t rejoin the spine until v′ has been fetched, and u = v or u precedes v in inorder.

Therefore, when v rejoins the spine, u has already been fetched, a contradiction. Q.E.D.
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(3.4) Different generations. Let u be a node in a block (B, s). It can be pushed off the
spine and rejoin it many times. From the time s until it is first pushed off the spine, it is
‘first generation’ (relative to the block (B, s)). Then it becomes second-generation, remaining
so after it rejoins the spine, until it is again pushed off the spine, when it becomes third
generation relative to (B, s), and so on, until it is fetched.

(3.5) Definition Given a block (B, s), for any t > s, an offline branch is the intersection of
B with a maximal left branch in the right subtree of a spine node, providing that intersection
is nonempty.

(3.6) Lemma An offline branch is a contiguous interval of nodes (in a left branch).

Proof. A left branch L will rejoin the spine when the inorder predecessor of its leftmost
node is fetched at time t, say. If L ∩ B involved more than one contiguous interval, then
B ∩ spine(t) would not be a block, contradicting Corollary 3.3. Q.E.D.

(3.7) Definition A child fragment of (B, s) is either an offline branch containing at least one
second-generation node, or a spine block (M, r) where M was an (offline) child fragment at
time r − 1, pulled up onto the spine at time r.

The descendant fragments of (B, s) consist of (B, s) itself, its child fragments (M, r), and
(recursively) their descendant fragments.

(3.8) Properties of child fragments. A child fragment (offline) must coincide with an
offline branch, but otherwise an offline branch (and B ∩ spine(t)) can be the union of several
descendant fragments.

Since a child fragment can contain higher-generation nodes, child fragments need not be
disjoint.

By definition, if (M, t) is a descendant of the fragment (F, r), then M ⊆ F .
It is possible for all the nodes in a fragment (M, r) to recur in a descendant fragment (M, t):

(3.9) Definition A fragment (M, t) of (B, s) is exceptional if it is a proper descendant of
another fragment (M, r) containing exactly the same nodes. If |M | = 1 (respectively, 2) then
it is called an exceptional single (respectively, double) fragment.

(3.10) Lemma Let (M, t) be exceptional. Then it is either a single or a double fragment, and
its parent is another fragment (M, p).

7



Proof. Suppose M contains three consecutive nodes u, v, w, and M ⊆ spine(r) where
r < t. The (r + 1)-st fetch operation either makes u the parent of v, and v cannot rejoin the
spine before u is fetched, or makes v the parent of w, and w cannot rejoin the spine before v
is fetched. In any case u, v, w cannot again occur together on the spine, and therefore there
could be no descendant fragment (M, t), and M would not be exceptional.

Let (F, p) be the parent of (M, t). Since it is a descendant of (M, r), F ⊆ M , and since
(M, t) is its child, M ⊆ F . Hence M = F as asserted. Q.E.D.

4 There are O(|B|) non-exceptional descendant fragments

(4.1) Definition Let T be a tree possibly containing some nodes from a set B. The B-prefix
of T is the tree formed from those nodes of T which are in B, together with all the ancestors
in T of such nodes. It may be empty.

The B-depth or prefix depth of T is the depth of its B-prefix.
T is B-balanced if in its B-prefix, the left and right subtrees of any node have the same

height. It is right-favoured (for B) if, in its B-prefix, the left subtree of any node is no higher
than the right subtree.

Similarly, one can define ‘left-favoured.’

(4.2) When during a fetch operation two successive spine nodes p and q have right subtrees
A and A′, and after the operation these two subtrees are the left and right subtrees of q which
is the right child of p, we speak of the subtrees A and A′ as being combined.

(4.3) Lemma Let (B, s) be a spine block, and suppose that after r further fetch operations
spine(s + r) still contains at least one first-generation node from B. Let p1, . . . , p`−1, p`, . . . ph

be the nodes in B ∩ spine(s + r), where p` is the lowest first-generation node and ph the highest
(possibly ` = 1 or ` = h). Finally, if p1 is not the lowest spine node, let p0 be the node below
it, and let b = 0, otherwise let b = 1. Then

(i) The right subtree at ph is left-favoured of prefix depth ≤ r − 1. (ii) The right subtrees
at p`, . . . , ph−1 are B-balanced of prefix depth r− 1. (iii) The left subtree at p` has prefix depth
at most r− 1. (iv) The right subtrees of all nodes from pb to p`−1 are right-favoured of strictly
increasing prefix depth up to a maximum of r− 2. (v) All nodes in B which are not yet fetched
are among pb, . . . , ph and their right subtrees.

Proof. (v) is proved by induction. Initially, r = 0, and B consists of all the nodes pj.
Going from r to r + 1, right subtrees of pi and pi+1 are combined to form a right subtree of pi,
containing the same nodes from B. If ph a node above ph on the spine acquires a new right
subtree, the extra nodes come from a higher right subtree and do not come from B. If pb

remains on the spine, then no node below pb on the spine acquires descendants from B. If pb

is pushed off the spine, then pb+1 is not, and the node below pb may acquire descendants from
B, but it will take on the role of pb at the next stage.

Note also that if pb is pushed off the spine, having been the lowest node either from B
or whose right subtree intersects B, then pb becomes part of a left branch, and either (a) pb

remains a right child, (b) it becomes a left child of pb+1, or (c) h = b. (c) is excluded since then
no first-generation node remains on the spine. In any case, it is impossible that a node pushed

8



off the spine, and outside B, but whose right subtree intersects B, become the left child of
another node from outside B.

Finally suppose that pb is fetched. If pb had no right child then no new nodes are added
to the spine. Otherwise, let q be the right child of pb. If the subtree at q does not intersect B
then we are finished. Otherwise let q′ be the highest node on the left branch ending at q such
that q′ ∈ B or its right subtree intersects B. By the above remarks, if q′ /∈ B then its new
parent on the spine belongs to B, and we are done.

(i)–(ii) follow by induction on r, since when combining two trees A and A′, (i) if A is B-
balanced of prefix depth r−1 and A′ is left-favoured of prefix depth ≤ r−1 then the combined
tree is left-favoured of prefix depth r. (ii) If A and A′ are B-balanced of the same prefix depth
r − 1, then the combined tree is B-balanced of prefix depth r.

(iv) The left subtree at p` is altered in two ways, first by combining pairs of successive
right subtrees from pb . . . p`−1, and p` if it is pushed off the spine. The property that they are
right-favoured with strictly increasing prefix depth is preserved by combining.

Apart from the effects of combining, the right subtree D of the node fetched may contain
nodes from B. In this case the node fetched was pb and D is right-favoured, and its prefix depth
d is less than that of the right subtree of pb+1. Suppose qk is the root of D and q1, . . . , qk are the
nodes along the left branch ending at qk whose right subtrees contain nodes from B. Then these
right subtrees are right-favoured with strictly increasing prefix depth, and the prefix depth of
qk is less than d. These are the nodes in B which rejoin the spine. Thus (iv) is preserved.
Since (iv) holds, and the highest right subtree below the lowest first-generation node (after the
fetch) has prefix depth at most r − 1, (iii) holds also. Q.E.D.

(4.4) Remark. In the above lemma, part (iv), after the fetch, the right subtree of qk has
prefix depth d− 1 and the right subtree of pb+1, which is next to qk, has prefix depth at least
d + 1. The right subtree of prefix depth d is ‘missing.’

(4.5) The bottom tree. The bottom tree is the B-prefix of the subtree rooted at the lowest
first-generation node from B on the spine.

Intuitively the child offline fragments should fit into a forest of complete trees of suitable
height, but the difficulty is that some child fragments may have already been consumed, no
longer in the bottom tree.

We view the complete tree of height r from the left branch ending at its root, a sequence
of nodes and right subtrees. Each of the r + 1 nodes on this branch can be viewed as a slot in
which one can fit a right subtree: so long as the right subtree fitted into place at the j-th slot
has height at most j, the overall arrangement groups the subtrees into a prefix of the complete
tree.

(4.6) Definition An r-arrangement of subtrees is a sequence T0, T1, . . . , Tr−1 of trees where
the j-th has prefix depth at most j.

Tj we call the subtree in the j-th slot, and if Tj contains no nodes from B we say that the
j-th slot is vacant. (Slots are counted beginning at 0.)

(4.7) Lemma Under the condition of Lemma 4.3 all child fragments in the bottom tree, to-
gether with the child fragments which have been consumed up to time s + r, can be fitted into
an r-arrangement.
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Proof. Induction on r, assuming that an r-arrangement exists for time s+r: it is converted
into an (r + 1)-arrangement at time s + r + 1. The highest slot contains the right subtree of q,
where q is the lowest first-generation node in B ∩ spine(s + r).

The bottom tree (at time s + r) is a prefix of the complete tree of height r. In the next
fetch operation either (a) the right subtree at q will be combined with a right subtree above
it, and the resulting tree will be in the r-th slot, leaving the (r − 1)-st vacant, (b) it will be
combined with a right subtree below it, leaving the (r − 2)-nd slot vacant, or (c) the node q
itself is fetched, its parent q′ becomes the root of the new bottom tree, and the right subtree of
q, which is B-balanced of prefix depth r − 1, becomes the left subtree of q′. The right subtree
of q′ in T (s + r + 1) will occupy the r-th slot, and the (r − 1)-st slot becomes vacant. Leave
case (c) to the last.

Let p be the node fetched at time s + r + 1, where p 6= q. Let A be the subtree at p,
C ′ and D′ its left and right subtrees, when p last rejoined the spine — since p 6= q, p is not
first-generation. A is right-favoured (4.3 (iv)), so the prefix depth of C ′ is no greater than that
of D′.

At time s + r + 1 the right child x of p (if x exists), and the left branch containing x, join
the spine. Let D be the right subtree of p, i.e., the subtree at x. D contains D′ as a subtree,
so its prefix depth is at least that of D′.

It follows from the remarks in (4.4) that the d-th slot is empty after the fetch, where d is
the prefix depth of D, and since C ′ has prefix depth ≤ d, it can be put in the dth slot. The
subtree C ′ is not part of the current tree, since all its nodes have been fetched. We consider it
a ‘virtual tree.’

We consider the slots, and right subtrees, in descending order down the spine. When two
(real) subtrees S and S ′, in the i-th and j-th slots, i < j, are combined according to Lemma
4.3 (iv), the combined subtree fits into the (j + 1)-st slot, and the i-th slot becomes vacant. It
is necessary that the (j + 1)-st slot have been made vacant.

We may assume by induction that there always exists a vacant slot above the slot being
considered: the vacancy is left by the lower of two real subtrees which are combined, or exists
initially in cases (a), (b), and (c).

If the (j + 1)-st slot contained a real tree S ′′, then that tree has been combined with a
higher and its slot became free. If it contained a virtual tree, then there exists a vacant slot
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above it. Let v be the lowest vacant slot above it. For j + 1 ≤ u ≤ v − 1, move the tree in the
u-th slot to the (u + 1)-st. This leaves the (j + 1)-st slot free, as desired. See Figure 8.

Finally we consider case (c). In this case, a new first-generation node q′ replaces q, and no
right subtrees below q are combined. All the virtual trees fitted into slots 0 to r − 2 of the
r-arrangement, so they (or rather, their B-prefixes) can be fitted into a complete tree of height
r − 1, which can occupy the vacant (r − 1)-st slot in the (r + 1)-arrangement. Q.E.D.

(4.8) Definition For r ≥ 0 an r-group is a sequence of numbers in descending order, bounded
above by the corresponding terms in the sequence

r + 1, r, r − 1, r − 1, r − 2, r − 2, r − 2, r − 2, . . . 1, 1

(4.9) Explanation. This sequence gives the sizes of all maximal left branches, in descending
order, from the complete tree of height r. For 1 ≤ j ≤ r, j occurs 2r−j times in the sequence,
and r + 1 occurs once. There are exactly as many terms as there are leaves in this tree — 2r

— and their sum is the number of nodes, 2r+1 − 1.

(4.10) Corollary Assuming that after r fetch operations the spine contains exactly one first-
generation node q. Then r ≤ 1 + dlog2(|B|)e (Lemma 5.1), and the child fragments of B form
an r-group.

Proof. From Lemma 4.3 all the fragments are in the bottom tree, rooted at q. Lemma
4.7 shows that the bottom tree fragments and those child fragments which have already been
processed can be fitted into a complete tree of depth r. Hence the lengths of all child fragments
form an r-group. Q.E.D.

(4.11) Corollary The total length of non-exceptional descendant fragments is O(|B|).

Proof. First, a weak bound. For any node u in B, the non-exceptional fragments containing
u form a contracting sequence B = S1 ⊇ S2 . . . of distinct sets containing u. They are distinct
because the fragments are non-exceptional (definition 3.9). Hence their sizes are decreasing
and there are at most |B| containing u, and. the total length of the non-exceptional fragments
is at most |B|2.

From the above Lemma, if r = 1+ dlog2(|B|)e, then the lengths of the child fragments of B
are bounded above by the terms in an r-group. The total length of child fragments is bounded
by the number of nodes in a complete tree of height r, that is, 2r+1 − 1. Ignoring the term −1,
we study a sequence f satisfying the recurrence

f(d) = 2r+1 + f(r + 1) + 2f(r) + 4r(r − 1) + 8f(r − 2) . . .

where r = 1 + dlog2 de, f(0) = 0 and f(1) = 1. Moreover, we can assume that f(b) ≤ b2 since
B has at most |B|2 non-exceptional descendant fragments — the weak bound. Replace r by
r + 1:

f(2d) = 2r+2 + f(r + 2) + 2f(r + 1) + 4r(r) + 8f(r − 1) . . .

Subtract twice the first from the second

11



f(2d)− 2f(d) = f(r + 2)− f(r + 1) ≤ (r + 2)2.

Hence we consider yr = f(2r) and study the recurrence

yr+1 − 2yr = (r + 2)2

Substitute zr = yr/2
r to get

2r+1(zr+1 − zr) = (r + 2)2, so zr+1 − zr =
(r + 2)2

2r+1
.

Hence zr ≤ z0 +
∑r−1

k=0(k +2)2/2k+1. This sum is bounded because the infinite series converges.
Therefore yr is O(2r). Therefore f(|B|) is O(2r), where r ≤ 1 + dlog2(|B|)e, so B has O(|B|)
non-exceptional descendant fragments. Q.E.D.

The constants involved. The infinite series mentioned above is quite easily summed,
though we have omitted the calculations for simplicity. One can show that there are at most
44|B| exceptional fragments.

5 There are O(n(log log(n))2) exceptional fragments

Recall that an exceptional fragment is one whose parent fragment contains the same nodes
(3.9), and an exceptional fragment has one or two nodes (3.10). We begin by considering the
generation count (3.4) of nodes in a block B.

(5.1) Lemma Suppose that (B, s) is a block. Then it takes at most 1 + dlog2(|B|)e fetch
operations to reduce the number of first-generation nodes in B ∩ spine(t) to exactly one.

Proof. If |B| > 2 then a single fetch operation will reduce the size of its intersection with
the spine to at most 1 + |B|/2 (Lemma 3.1). Fetch operations may return nodes in B to the
spine, but they are not first-generation.

After k fetch operations the number of first-generation nodes on the spine is reduced to at
most 2− (1/2)k−1 + |B|/2k. After dlog2(|B|)e fetches there are at most 2, and after one more,
at most 1. Hence by that time, or earlier, the number of first-generation nodes on the spine
has been reduced to exactly one. Q.E.D.

(5.2) Lemma Suppose that q is the only first-generation node from B remaining on the spine
at time s + r. Then all unfetched nodes u ∈ B are descendants of q (Lemma 4.3 (v)), and for
every descendant u ∈ B, let A be the set of all nodes on the path from u to q at that time,
except those whose right children are on the path.

Then whenever u ∈ spine(t), all nodes above u in B ∩ spine(t) are from A ∪ {q}.

Proof. When a node rejoins the spine through a fetch operation, its ancestors (in B) after
the fetch were ancestors before the fetch. For a node to acquire a new ancestor from B, it must
be in the right subtree of a spine node p, and either p acquires a new parent, or a new right
child. In the first case p becomes a right child and the parent is not counted. In the second
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case the new right child was the parent of p, already an ancestor of u, and its left child p was
on the path.

Finally, whenever u rejoins the spine all its ancestors are from A ∪ {q}, since those whose
left children were on the path had to be fetched before u could join the spine. Q.E.D.

(5.3) Lemma Let (B, s) be a spine block. Suppose that at time s+r there remains exactly one
first-generation node on B ∩ spine(s + r). Thenceforth, for any node u ∈ B not yet fetched, if
u achieves a generation count of O(log log(|B|)) it will be the highest, or second-highest, node
in B ∩ spine(t) whenever it is on the spine.

Proof. By the above Lemma, r ≤ 1 + dlog2(|B|)e. Let q be the first-generation node
remaining on the spine.

Suppose u = q. Then it will be the highest node in B ∩ spine(t), whenever it is in spine(t),
until it is fetched.

Let u be any other node and let A be the set of ancestors of u in B, the earliest time
r′ ≥ s + r when u is on the spine. By Lemma 5.2, |A| ≤ 1 + r. Treating (A, r′) as a block,
we can apply the above lemma: within f ≤ 1 + dlog2(1 + r)e fetches, all but one node from A
have been pushed off the spine. But by that time u can have acquired at most f ancestors off
the spine. Let F be its ancestors from B at the time; according to Lemma 5.2, thereafter all
its ancestors in B will come from F .

By the reasoning in Lemma 3.10, if F1 and F2 are the ancestors of u in B at two successive
times when u rejoins the spine, and |F1| > 2, then |F2| < |F1|. Therefore within at most |F |
fetches, u will be at the top of B or second from top whenever it is on the spine. This gives a
total of 2f fetches until that time, or O(log log(|B|)). Q.E.D.

(5.4) Corollary Given a block (B, s), there are O(|B| log log(|B|)) exceptional fragments which
are not at the top of B ∩ spine(t) or next to the top.

Proof. Let u be the unique, or the higher, node in occurring in an exceptional fragment S
(Lemma 3.10).

Suppose as in the above Lemma that after r further fetches exactly one first-generation node
remains on the spine. Within this time, whenever an offline branch (Definition 3.5) rejoins the
spine, its length is less than r, so the overall number of times a node u can rejoin the spine is
less than r2, i.e., O((log(|B|))2) (Lemma 5.1), which is O(|B| log log(|B|))..

The number of times u rejoins the spine after time s + r, until it reaches the top or second
from top, is O(log log(|B|)) from the above lemma. This gives O(|B| log log(|B|)) recurrences
overall,

The same applies to the exceptional fragment containing u. Q.E.D.

(5.5) Lemma Given n variables x0, . . . , xn−1, and constant M , consider the problem of max-
imising

∑
i(log2(x))2 subject to xi ≥ 1 and

∑
xi = M . Then if M > (4.9215536348)n, the

maximum is n(log2(M/n))2.

Proof. Make the n-th variable xn−1 dependent and leave the others as independent, so
xn−1 = M −

∑n−2
i=0 xi. Let f(x0, . . . , xn−2) =

∑n−1
i=0 (ln(xi))

2. Since this is directly proportional
to

∑
(log2(xi))

2, it is enough to maximise f , subject to xi ≥ 1 (i ≤ n−2) and
∑n−2

i=0 xi ≤ M−1.
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Since xn−1 depends on the other variables, ∂xn−1/∂xi = −1 for i ≤ n−2. Looking for local
maxima, we equate partial derivatives to zero.

∂f

∂xi

= 2
ln(xi)

xi

− 2
ln(xn−1)

xn−1

= 0

One solution is that all the xi are equal, to M/n, and f is n(ln(M/n))2 in this case.
However, the function ln(x)/x is not monotonic. It has a single stationary point at x = e

(the maximum), is zero at x = 1, and the x-axis is a horizontal asymptote. For any positive
h < 1/e, the graph has two points at height h. Thus in general, if the partial derivatives are
all zero, let x = xn−1, and let y be the other point such that ln(x)/x = ln(y)/y. Then some
of the xi will equal x and some others will equal y. There exist integers r ≥ 1 and s ≥ 0 with
r + s = n such that f(x0, . . . , xn−2) = r ln(x)2 + s ln(y)2, and rx + sy = M . Let us consider
the possibility that r 6= n, so s ≥ 1 and y = (M − rx)/s

Thus we should consider the behaviour of the function

r(ln(x))2 + s(ln(y))2 (∗)

where r, s ≥ 1, r + s = n, and y = (M − rx)/s. Therefore dy/dx = −r/s. Differentiating with
respect to x we get

2r

(
ln(x)

x
− ln(y)

y

)
This derivative is negative at x = 1 and positive at y = 1.
Differentiating again we get

2
r

s

(
s
1− ln(x)

x2
+ r

1− ln(y)

y2

)
The function (1 − ln(x))/x2 crosses the x-axis once at x = e, from positive to negative.

The function (1 − ln(y)/y2, with y = (M − rx)/s, crosses the x-axis from above at y = e,
x = (M − se)/r. As a function of x it crosses the x-axis from below at this point. In order for
them to add to zero, one must be positive and the other negative. This can happen at most
twice. In other words: the function (∗) has at most two points of inflection, so it has at most
three stationary points. One of them is given by x = y = M/n.

At this point the second derivative is 2n(r/s)(1 − ln(M/n))/(M/n)2, which is negative if
M/n > e. Since M/n > 4.9215536348 > e, this is a local maximum. Since at x = 1 the
derivative is negative, the leftmost stationary point is a local minimum. Since at y = 1 (i.e.,
x = (M − s)/r) the derivative is positive, the rightmost stationary point is a local maximum.
Therefore the only local maximum is where x = M/n.

This gives three candidates for the maximum: at x = 1, s(ln((M − r)/s))2, at x = y,
n(ln(M/n))2, and at y = 1, r(ln((M − s)/r))2.

Returning to the original problem, either the maximum is at the interior point xi = M/n,
0 ≤ i ≤ n− 1, or it is on the boundary of the feasible region. Suppose that r of the xi’s are 1,
but not the remaining xi’s, at the true maximum.

By symmetry we can assume that the first r variables and only those are 1 at the true
maximum. We are therefore considering the function
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Figure 9: graph of g(x) = x(ln((1 + x)/x))2.

n−1∑
i=r

(ln(xi))
2

subject to
∑n−1

i=r xi = M − r. This is the original problem with fewer degrees of freedom, and
the local-maximum solution for this problem is a true maximum. The true maximum must
therefore be (n− r)(ln(M − r)/(n− r)))2 for some r, 0 ≤ r ≤ n− 1.

We claim that if M > (4.9215536348)n then the maximum is given by r = 0. To see this,
we consider the function g(x) = x(ln((1 + x)/x))2. At x = (n − r)/(M − n), (M − n)g(x) =
(n− r)(ln((M − r)/(n− r)))2. See Figure 9.

dg

dx
=

(
ln

(
1 + x

x

))2

+ 2x ln

(
1 + x

x

) (
x

1 + x

) (
−1

x2

)
= ln

(
1 + x

x

)
h(x),

where h(x) = ln((1 + x)/x)− 2/(1 + x). The zeroes of h give the stationary points of g. Since

dh

dx
=

(
x

1 + x

) (
−1

x2

)
+

2

(1 + x)2
=

1

1 + x

(
2

1 + x
− 1

x

)
h has a stationary point only at x = 1, so it is monotonic for 0 < x < 1 and can cross
the x-axis at most once. Therefore g has at most one stationary point. Also, h(1/20) =
(20/21)(ln(21) − 40/21) > 0, and h(1) = (1/2)(ln(2) − 1) < 0. Therefore h, and dg/dx,
crosses the x-axis from positive to negative at exactly one point, a local maximum for g. This
maximum occurs at x = 0.2550009749.1 The constraint on M and n ensures that the maximum
is to the right of n/(M − n), so g(x) is monotonically increasing for 0 ≤ x ≤ n/(M − n), and
hence n(log2(M/n))2 is maximal. Q.E.D.

(5.6) Lemma Suppose that the overall traversal time is bounded by nf(n), where f(n) >
4.9215536348. Then there are O(n(log log(n) + (log(f(n)))2) exceptional fragments overall.

Proof. Much the same as in Lemma 5.3. A node u is first introduced to the spine at time
s, say. Let bs be the total number of nodes on spine(s): bn = 0. By the above arguments,
either (i) u is fetched before the nodes above it have been reduced to 1, or (ii) it rejoins the

1This was calculated using Maple.
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spine at most log2 log2(bs) times until it reaches the top of the spine, or becomes second from
top, and remains so every time it rejoins the spine, until it is fetched.

Thus overall, under case (ii), for each node u, there are log log(n) events until it reaches
the top or second from top. The top few nodes on the spine contribute O(n) to the estimate.

It remains to account for case (i). The overall cost is O(
∑

s(log(bs)
2)). Since

∑
bs ≤ nf(n),

by maximising the sum according to Lemma 5.5 we get O(n(log(f(n)))2). Hence the overall
count is O(n(log log(n) + (log(f(n)))2)). Q.E.D.

(5.7) Corollary There are O(n(log log(n))2) exceptional fragments overall.

Proof. From Lemma 2.2 the total spine length (i.e., the total traversal cost) is ≤ nf(n) =
n(5 log2(n)). Q.E.D.

6 Proof of Theorem 1.3

Recall that S(B) is defined as the sum of |B ∩ spine(t)| − 2, where t is any time ≥ s ((B, s)
is the spine block in question) such that the intersection contains more than one node. Also,
S(d) is the maximum of S(B) for all spine blocks B of size ≤ d, in all possible trees. It has yet
to be verified that S(d) is well-defined (finite).

(6.1) Lemma S(d) is O(d log log(d)).

Proof. Let (B, s) be a block with |B| ≤ d: we want to show that S(B) is O(|B|). We con-
sider the O(|B|) non-exceptional descendant fragments, together with those O(|B| log log(|B|)
exceptional fragments which do not contain the highest nor second-highest node in B∩spine(t)
(Corollary 5.4).

If at time t, a fragment F contains the highest node in B ∩ spine(t), or the second from
highest, we say it is ‘too high.’

(a) Consider a fragment (F, r) where |F | ≥ 2. So long as |F ∩ spine(t)| ≥ 3, a single fetch
operation will reduce its intersection with the spine to at most 1 + |F |/2 ≤ 2|F |/3 (Lemma
3.1) Thus the contribution to S(B) is at most |F |

∑
(2/3)i < 3|F |. One more fetch will reduce

the intersection to 1, so the overall contribution is at most 3|F |+ 2, until |F ∩ spine(t)| ≤ 1.
Since the total length of all non-exceptional descendant fragments is O(|B|), the overall

contribution of all non-exceptional fragments F , until their intersection with the spine is at
most one node, is O(|B|). This estimate counts the contribution of all such fragments F ,
without the −2 term specified for S(B).

(b) When a double exceptional fragment, one containing two nodes, joins the spine, the
next fetch operation moves one of these nodes off the spine, and one remains. This contribution
from these fragments (unless they are too high) is O(|B| log log(|B|).

(c) If E is an exceptional fragment, or a fragment with just one node remaining on the spine,
directly above or directly below a non-exceptional fragment F at time t, with |F ∩spine(t)| ≥ 2,
then the contribution of E to S(B) (at most 2, Lemma 3.10) can be absorbed in that of F , by
quadrupling the contribution of F in (a). The contribution is still O(|B|) overall.

(d) Likewise if E is directly above or directly below a double exceptional fragment F , not
too high, with both nodes on the spine, then the contribution of E can be accounted for by
quadrupling that of F in (b), O(|B| log log(|B|)) overall.
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(e) The contribution of the top two nodes in B ∩ spine(t) can be ignored because of the −2
term in the definition of S(B).

(f) All that remains to be considered is when we have a fragment F intersecting the spine
in just one node, not too high, and not next to a fragment coming under case (a) or (b). If it
is adjacent to another fragment G which is not too high, then G must also intersect the spine
in just one node. The next fetch operation will move either F or G off the spine, so their joint
contribution at time t can be accounted for by allocating 2 units to every fragment of B.

Otherwise, F is lowest in B∩spine(t), and not too high, so there are at least two other nodes
in the intersection, and the fragment G above F must be too high. The next fetch operation
will either move F off the spine, an event which can be charged to F (O(|B| log log(|B|))), or
remove a node in G, and the node u in F will become too high, an event which can be charged
to the node u (O(|B|)). Q.E.D.

It follows that S(d) is a well-defined function.

(6.2) From now on, Bs will be the set of nodes on spine(s) not ever previously on the spine.

(6.3) Lemma Bs is a contiguous sequence of nodes leftmost on the spine.

Proof. True for s = 0, when Bs consists of all nodes on the spine. Thereafter, Bs must
consist of nodes added to the spine, contained in the maximal left branch L ending at the
right child of the node fetched. If v and w are nodes in L and v is left of w and v was on the
spine previously, then so was w, because it must have been pushed off the spine to become a
right ancestor of v. Therefore if L contains a node not previously on the spine, let u he the
rightmost: Bs then consists of u and all nodes left of u. Q.E.D.

In other words, either Bs is empty or (Bs, s) is a block in spine(s). Clearly the sets Bs are
disjoint and their union is the entire set of nodes in T .

From now on, we have a division of the nodes of T into blocks (Bs, s) with disjoint sets Bs

(ignore those s for which Bs = ∅, since the empty set is not regarded as a block). Having fixed
the list of blocks Bs, we now mean by exceptional fragment an exceptional fragment of one of
these blocks (Bs, s).

(6.4) Lemma Suppose that nf(n) is an upper bound for the number of exceptional fragments.
Then the overall cost of traversal is O(n(log log(n) + f(n))).

Proof. The overall cost of traversal is
∑n−1

t=0 |spine(t)|.
(a) The sum

∑n−1
s=0 S(Bs), which is O(n log log(n)) (Lemma 6.1), accounts for the total cost

except for the top two nodes in Bs∩spine(t) for each t, or where the intersection is just a single
node.

(b) We can compensate very crudely for the two nodes discounted in |Bs ∩ spine(t)| − 2, if
the intersection contains more than two nodes, by adding 2S(|Bs|) to the estimate.

(c) Where B ∩ spine(t) contains two nodes, then the intersection consists of one or two
fragments. If one, it is reduced; if two, one of them is removed from the spine. The contribution
to the traversal cost can be charged to these fragments.

(d) Where B ∩ spine(t) contains exactly one node u, it comes from a single fragment F .
If it is adjacent to another node which has been counted under (a–c), its contribution can be
absorbed by trebling the estimate for (a–c). Otherwise either u is the only node on the spine,
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an event occurring at most n times, or there is an adjacent node v, the only node remaining on
the spine from another fragment G. The next fetch operation removes u or v from the spine,
so the cost can be charged to F or to G.

Hence the overall traversal cost is O(n(f(n) + log log(n))). Q.E.D.

(6.5) Corollary The overall traversal cost is O(n(log log(n))2).

Proof. According to Corollary 5.7 there are O(n(log log(n))2) exceptional fragments.
Q.E.D.

The proof of our main theorem comes from the above, using a kind of bootstrapping argu-
ment.

Proof of Theorem 1.3.
From the above Corollary, the overall traversal time is O(n(log log(n))2).

From Lemma 5.6 it follows that there are O(n(log log(n) + log((log log(n))2) exceptional
fragments, which is O(n log log(n)). Therefore the overall traversal cost is O(n log log(n)).
Q.E.D.

7 Conclusions

We have established that traversal costs O(n log log(n)) by a very laborious analysis. Our
analysis shows that if exceptional fragments are ignored, the overall cost is O(n), and that
there are O(n log log(n)) exceptional fragments.

It seems unlikely that the O(n log log(n)) bound is tight. Despite the experimental data
which suggests an O(n) bound for some trees, or even for most trees, we cannot be confident
that the bound is O(n).

It remains to find a linear upper bound or a nonlinear lower bound, or at least to strengthen
Lemma 5.3.
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