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Abstract

We consider an initial boundary value problem for singularly perturbed parabolic
reaction-diffusion equations on a semiaxis. The highest derivative in the equations is
multiplied by a small parameter €, ¢ € (0,1]. The solution of such a problem exhibits
multiple scales. Besides the usual (natural) scale, related to a variation of the problem
data, one can observe a resolution scale, which is specified by the width of the domain on
which the numerical solutions are being computed, and a boundary-layer scale controlled
by the parameter €. In this paper we solve the multiscale problem using the renormal-
ization method, that is, we construct the following (normalized and renormalized) finite
difference schemes:

(a) formal (nonconstructive) schemes, i.e., schemes on meshes with an infinite number
of nodes, which lead to approximate solutions converging e-uniformly at each node; and

(b) constructive schemes, i.e., schemes on meshes with a finite number of the nodes,
which lead to approximate solutions converging for fixed values of the parameter € at each
node of arbitrarily chosen bounded subdomains whose widths increase as the number of
nodes grows.

With standard constructive schemes, generally speaking, the accuracy of the approxi-
mate solutions deteriorates and the widths of the subdomains decrease when ¢ — 0. Here,
conditions are given under which the approximate solutions generated by the construc-
tive schemes converge e-uniformly, i.e. the accuracy of the numerical approximations and
the widths of the subdomains, on which the schemes converge, are independent of the
parameter ¢.

To construct the schemes, we use classical finite difference approximations on piecewise
uniform meshes which are refined in a neighbourhood of the boundary layer.
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Ireland Research Grant SC—2000—070 and by the Russian Foundation for Basic Research under grant No.
01-01-01022.



1. Introduction

The use of grid methods to solve a regular initial boundary value problem
in unbounded domains gives rise to difficulties arising from the following con-
tradiction. To solve the problem, it is possible to use numerical algorithms on
a grid set with a finite (however, large) number of nodes. On the other hand,
for an effective approximation of the solution of the problem on the whole do-
main, in general, it is necessary to use a grid set with an infinite number of
nodes. For this reason the following problem appears: to construct special nu-
merical methods (finite difference schemes) on finite grid sets that allow us to
approximate the solution of the problem on chosen bounded subdomains with
diameters that grow as the number of nodes in the corresponding set of grids
increases.

In the case of problems for singularly perturbed equations in unbounded
domains, the problem of constructing such special numerical methods is com-
plicated by additional singularities generated by the boundary (interior) layers
that arise for small values of the perturbation parameter €. Such difficulties
in the numerical solution of singularly perturbed boundary and initial bound-
ary value problems in bounded subdomains are quite well-known (see, e.g.,
[1-6]), [11]).

In this paper we construct finite difference schemes in the case of an initial
boundary value problem for a singularly perturbed parabolic reaction-diffusion
equation on a domain which is semi-infinite in the space variable. The highest
derivative in the equation is multiplied by a small parameter €2; the perturba-
tion parameter ¢ takes arbitrary values in the half-interval (0, 1]. In the case of
grids with an infinite number of nodes we construct special formal schemes, i.e.,
schemes with an infinite number of nodes, which converge uniformly with re-
spect to the parameter € on the whole (unbounded) grid set (or, more concisely,
converge e-uniformly). To construct the schemes, we use the condensing grid
method i.e. classical finite difference approximations of the initial boundary
value problem on piecewise uniform grids [7, 8] which are refined in a neigh-
bourhood of the boundary layer (for a description of this method for bounded
domains see, e.g., [1, 4, 5, 11]. Such schemes on grids with an infinite number
of nodes are nonconstructive, in the sense that they cannot, in general, be used
for computation.

For the initial boundary value problem we also construct special constructive
schemes, i.e. schemes on grids with a finite number of nodes, which lead to
approximate solutions, converging for fixed values of the parameter ¢, at all
nodes of arbitrarily chosen bounded subdomains, whose widths increase as the



number of nodes grows. The accuracy of the approximations and the widths of
the subdomains, on which the grid solutions converge, depend essentially on the
value of the parameter €. Moreover, the accuracy of the approximate solutions
deteriorates and the widths of the subdomains decrease when € — 0. In the
case of grids condensing in a neighbourhood of the boundary layer, conditions
are given under which the accuracy of the numerical approximations and the
widths of the subdomains, on which the schemes converge, are independent of
the parameter ¢ (we say that such schemes are really e-uniformly convergent).

The construction of special really e-uniformly convergent schemes for singu-
larly perturbed equations in unbounded domains were not examined previously.
We note the publications [4, 12] where, for singularly perturbed equations of
parabolic reaction-diffusion type [4] and of elliptic convection-diffusion type
[12] in unbounded domains, finite difference schemes convergent on bounded
subdomains were constructed.

2. Problem Formulation

1. On the set G, where

G=GUS, G=Dx(0,T], D=(0,00), (2.1)

we consider the Dirichlet problem for the parabolic equation !:

Logyu(z,t) = {6%(9:,75)% —c(z,t) — p(x,t)%} u(z,t) =
= f(z,t), (z,t) €G, (2.2a)
u(z,t) = ¢(z,t), (z,t)€S. (2.2b)

The functions a(z,t), c(z,t), p(z,t), f(z,t), and p(z,t) are sufficiently smooth
respectively on the sets G and Sy, 5" Here S = SoU ST, where Sy = D x {t =
0} is the initial boundary and S¥ is the lateral boundary of the set G. The
function ¢(z,t) is continuous on the set S. Moreover, the following conditions
are satisfied 2

0 <ag<a(z,t) <a’, 0<c(z,t) < 0<py<plz,t) <p (2.3)
@) <M, (0 €C: lp(@ )| <M, (@)eSs; T<M

! Throughout the paper, the notation L;.x) (M(j.r), Gn(j.r)) means that these operators (constants, grids)
are introduced in equation (j.k).

2 Here and below M, M; (or m) denote sufficiently large (small) positive constants which do not depend on
€ nor on the discretization parameters.




The parameter € takes arbitrary values in the half-interval (0, 1]. We consider
solutions of the boundary value problem which are bounded on the set G.

When ¢ tends to zero, a boundary layer appears in a neighbourhood of the
set SE. This layer is parabolic.

Problems of this type arise in the modelling of a diffusion process in a reacting
substance (heat and/or reactive components), if the diffusion coefficient is small
and/or the flow velocity is high, and if the effective diameter of the domain is
sufficiently large compared to sizes, with respect to x and ¢, of the domain on
which it is possible to solve /resolve the discrete problem with the computational
technique employed.

2. We now discuss specific properties of the problem (2.2) (2.1) and the aim
of this research.

The initial boundary value problem (2.2) in the unbounded domain (2.1) be-
longs to the class of singular problems, even for finite values of the parameter .
For example, a problem for a regular equation in a bounded domain, the width
of which may take arbitrarily large values, can be transformed, by a change
of the space variable, into a problem for a singularly perturbed equation in a
domain of unit width. Thus, problem (2.2) (2.1), in addition to a singularity of
boundary layer type, has a singularity generated by the unboundedness of the
domain.

In the numerical solution of problem (2.2), even in the finite domain

60 = b() X [O,T], D() = (O,do), d() S M, (24)

difficulties arise when classical methods are applied; the errors arising from the
use of such methods depend on the parameter € and become large (comparable
with the solution itself) for small values of the parameter . For problem (2.2),
(2.4), such schemes converge only under the condition

N*—l < £,

where N*+1 is the number of nodes corresponding to the variable z (on the set
@0(2_4), it is the number of nodes on the segment D). For the problem (2.2),
(2.4) in the case of the scheme (4.2), (6.14) see e.g. Remark 4 in Section 6.
For boundary and initial boundary value problems in unbounded domains,
the construction of numerical methods is essentially complicated. For such
problems,in general, even for regular equations, there do not exist numerical
methods on grids with a finite number of nodes, for which the numerical solu-
tions converge on the whole domain (see, for example, the statement of Lemma
6.1 in Section 6). Thus, the following computational problem seems to be nat-
ural: for the initial boundary value problem (2.2), (2.1) construct a numerical
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method that approximates the solution of the problem on a preliminary chosen
bounded set @0 from G where

G =G'US®, G°=D°x(0,T], (2.5)

DY is a simply connected set with a width d%; D° = (z° 2% + d°); 20 is an
arbitrary point from (0, 00). The width d° (the diameter with respect to z) of
the set @0, on which convergence of the solutions is achievable using a classical
scheme on a grid set with a finite number of nodes, essentially depends on the
value of the parameter €. This width becomes, in general, arbitrarily small

under the condition
N*=0(e™),

where N* + 1 is the number of nodes in the grid on the z-axis (see, e.g., the
estimates (6.9) and Remark 3 from Section 6).

Thus, for classic approximations of problem (2.2), (2.1) on grids with a finite
number of nodes, (we refer to these as constructive methods), the width of the
set on which convergence of the schemes is achievable, and the error of the
discrete solution on this set, depend essentially on the value of the parameter
e. It seems attractive to develop constructive grid methods for which both
the error in their discrete solutions and the diameter d° of the subdomain 60,
where their discrete solutions are defined, are independent of the parameter .
Furthermore, the diameter d° and the error are to depend only on the number
of nodes in the corresponding grids. We refer to such methods as e-uniformly
convergent methods.

Our aim is to develop a constructive difference scheme for the initial bound-
ary value problem (2.2), (2.1) that converges e-uniformly on finite subdomains
of the set G. Note that, such an approach was not previously applied to the
construction of special numerical methods for singularly perturbed equations
in unbounded domains.

3. A-priori estimates

We now give a-priori estimates of the solutions of problem (2.2), (2.1) used
in our constructions; the technique from [4] is applied to derive estimates of the
solutions and their derivatives.

We assume that the problem data satisfy compatibility conditions on the
set S¢ = Sy N ?L, (i.e. at the set of corner points), so that the solution of the
problem is smooth on the set G for each fixed value of the parameter ¢ (see,

e.g., [10]).



By means of a comparison principle we establish the e-uniform boundedness
of the solution of problem (2.2), (2.1)

lu(z,t)| < M, (x,t) €G. (3.1)

In the variables £ = ez, ¢ the equation (2.2a) becomes regular; in order to
estimate the solution, and its derivatives, for the regular problem (which has a
bounded solution), we use interior a-priori estimates and estimates up to the
boundary [9, 10]. Returning to the variables z, ¢, we then obtain the estimate

ak+ko
Oxk Otko

u(m,t)‘ <Me™*, (2,t)€G, k+2k <K, (3.2)

where K is a sufficiently large number depending on the smoothness of the
problem data.

We now describe more accurate estimates obtained from asymptotic repre-
sentations. We represent the solution of the problem as a sum of functions

u(z,t) = U(z,t) + V(x,t), (z,t) € G, (3.3)

where U(z,t) and V(z,t) are the regular and singular parts of the problem
solution. The function U(z,t), (z,t) € G is the restriction to G of the function

Uz, t), (z,t) € 60, G =R x [0, 7]. The function U%(z,t) is the solution of
the Cauchy problem

LU%(z,t) = f(z,1), (2,8) €G°, U'(z,t) =¢(a,1), (z,t) €S

Here L° and f%(z,t) are smooth extensions of the operator L(3.9) and the func-

tion f(z,t) to the set @0, which preserve conditions (2.3); ¢%(z,t), z € R is a
smooth extension of the function p(z,t), (z,t) € Sp. The function V(z,t) is
the solution of the problem

L(QQ)V(QZ',t) = 0, (a:,t) € G,

V(1) = o(z,t) —U(z,t), (x,t) € ST,
T 0, (.SU,t) € So.

The function U(z,t) can be represented as the following sum of functions
Uz, t) =Y e*Up(x,t) + v (z,8) = UMz, 8) + o (2, 1),  (3.4)
k=0

(z,t) € G, n>0,
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where Uy(z,t) are the components of the regular part in the representation of

the solution of the problem and vgl](sc, t) is the remainder term. The functions

Ui(z,t), (z,t) € G are the solutions of the problems

L'Uy(z,t) = {—c(a:,t) —p(a:,t)%} Us(z,t) = f(z,t), (z,t) € G\ Sy,

Uo(w,t) = p(z,t), (z,t) € Sy;
82

L'Ui(z,t) = —a(:c,t)wUk_l(w,t), (z,t) € G\ Sp,

Up(z,t) =0, (z,t) €Sy, k>0.
Let the following condition be satisfied for the function u(z,t):
we Chtalte/2(@) ) >4, Ih>2, a>0. (3.5)

Then, for the components in the representations (3.3), (3.4) we obtain the
estimates

ak—l—ko
WU(IE, t) S M [1 + 62n+2_k], (36)
ak—l—ko
WV(a:, )| < MeFexp(—me™'z),
8k+k0
ool (x’t)‘ < M,
k+ko
aakwvg_l](x, t)‘ < M62n+2_k,
T 0

(x)t) E@a kSKla kOSK(%

where m is a constant, K1 = ly35), Ko = ly3.5)-
These results are stated formally in the following

Theorem 3.1. Assume that in equation (2.2) a, c, p, f € Chtalota/2(G),
NS Cl1+a(50) N Cl°+1+a/2(§L) N C(S), l1 > 2n + l1(3_5), lp = 10(3_5) —1,n>0,
a > 0, and let condition (3.5) be fulfilled. Then, for the solution of problem

(2.2), (2.1) and for its components in the representations (3.3), (3.4), the esti-
mates (3.1), (3.2), (3.6) are valid.



4. Classical formal difference schemes

On the set G we introduce the grid
@h = w7 X Wy, (41)

where w; and wy are grids on D and [0, T] respectively; the grids wy, wy are,
in general, non-uniform. Define b = zi*! — 2t 2' 2+ € @, h{ = it — ¢,
.t € @y, h = max; h!, hy = max; h{. We denote by N + 1 the maximal
number of nodes in the grid w; on any unit interval of D and by Ny + 1 the
number of nodes in the grid wy. We suppose that the condition h < M N1,
hy < M Ny is satisfied.

On the grid G}, we associate with (2.2) the finite difference scheme

Augyz(z,t) = {%a(z,t) 05 — c(z,t) — p(z, )8} 2(z, t) = f(z,t), (4.2)
(:E,t) € Gh,
z(z,t) = p(z,t), (z,t) € Sh.

Here G, = G NGy, Sy = SN Gy and dz52(x,t), d72(z,t) are respectively
the second (central), first (backward) differences on the non-uniform grids, for
example,
6zz2(z,t) = 2(A'1 + B Y (0p2(, t) — 8z2(z, 1)), © = 2.

The difference scheme (4.2), (4.1) is monotone (see [8]) on grids with an
arbitrary distribution of nodes.

2. We now consider the scheme (4.2), (4.1). Taking into account the a-priori
estimates of the solution of problem (2.2), (2.1), we find the following bounds

lu(z,t) — 2(z, )| < M [(e + NHTIN 4+ NGY,  (z,t) € Gy (4.3)

In the case of the mesh
Gh, (4.4)

which is uniform w.r.t. z, we have the estimate
lu(z,t) — 2(z,t)| < M[(e+ N H2N2+ Ny Y, (z,t) € Gy (4.5)

Definition. Let the function 2(z,t), (z,t) € Gy, be the solution of some
difference scheme. An estimate of the following form

u(e,t) — 2(2,8)] < M (N, NgYse),  (2,1) € G
is said to be unimprovable with respect to the values of N, Ny, ¢ if the estimate
|’U,(a’,‘,t)—Z($,t)| SMHO(N_17N61;€)7 (CB,t) Eah
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fails for some values of N, Ny and e, where N, Ny > M, ¢ € (0, 1].
The estimate (4.5) is unimprovable with respect to the values of N, Ny, e.

The condition
N7t =o(e) (4.6)

is necessary and sufficient for the convergence (for N, Ny — o) of the solutions
of the difference scheme (4.2), (4.4).

Definition. We say that the solutions z(z,t), (z,t) € G} of a difference
scheme converge with respect to the parameter € with a defect v (or, shortly,
converges with the defect v) if, for a constant v > 0, there exists a function
pr(N7HL NG Y, m (N7 NgY) — 0 e-uniformly for N, Ng — oo, such that the
following estimate holds:

lu(z,t) — 2(z,t)| < M (e N"HL NG Y, (z,t) € Gy

If v =0 the scheme converges e-uniformly.
The convergence defect of both of the schemes (4.2), (4.1) and (4.2), (4.4) is
equal to one (this defect is unimprovable).

Theorem 4.1. Suppose that, for the components of the representations
(3.3), (3.4) of the solution of the initial boundary value problem (2.2), (2.1), the
a-priori estimates (3.6) with K1 = 4, Ko = 2 hold. For the difference schemes
(4.2), (4.1) and (4.2), (4.4) the condition (4.6) is necessary and sufficient for
the convergence of the discrete solutions, for N, Ng — oo and € € (0,1], to the
solution of problem (2.2), (2.1). For the grid solutions the estimates (4.3), (4.5)
hold; the estimate (4.5) is unimprovable with respect to the values of N, Ny, €.

5. Special formal difference scheme

Note that a maximum of the error in the solution of the difference scheme
(4.2) on the grids (4.1), (4.4) is achievable in a neighbourhood of a boundary
layer. In the construction of special schemes, convergent e-uniformly, we use a
grid condensing in the boundary layer region (similar to the case of singularly
perturbed problems in bounded domains; see, e.g., [4, 5, 11]).

We consider the difference scheme (4.2) on the following special grid con-
densing in the boundary layer

- _ _ -5
Grp=w; X Wy = Gh5.1)- (5.1a)

Here @h(5_1) = éh(4.1), where w; = wW; (o) is a piecewise uniform grid, o is a

parameter depending on € and N. The grid wj is constructed as follows. The
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set D is divided in two subsets [0,0] and [o,00). Then, in each subset, the
step-size of the grid is taken to be constant and equal to hn) = 20N —1 and
h) = 2(1 — o) N~! respectively, o < 27!, The value of ¢ is chosen to satisfy
the relation

oc=0(e,N)=min[27 ,em ' InN], (5.1b)

where m = m3¢).
On the grid (5.1) we have the estimate

lu(z,t) — 2(z,t)| < M {min® [e "/, In NI N2+ N;'}, (z,t) € G, (5.2)
and also the following e-uniform estimate
lu(z,t) — 2(z,t)| < M[N2In* N + N; '], (z,t) € G (5.3)

Estimates (5.2) and (5.3) are unimprovable with respect to the values of N, Ny,
e and N, Ny respectively.
A formal statement of these results is contained in

Theorem 5.1. Let the condition of Theorem 4.1 be fulfilled. Then the solu-
tions of the scheme (4.2), (5.1) converge to the solution of the boundary value
problem (2.2), (2.1) e-uniformly. For the discrete solutions the estimates (5.2)

and (5.3) are valid. These estimates are unimprovable with respect to the values
of N, Ny, € and N, Ny respectively.

Remark 1. Taking into account the a-prior: estimates of the solutions of
problem (2.2), (2.1), we obtain the following estimates for the solutions of the
difference scheme (4.2), (5.1)

lu(z,t) — Z(z,t)| < M {min®*[e ', nN] N>+ N; '}, (z,t) €G,
lu(z,t) —Z2(z,t)| < M[N2In® N+ N;'], (z,t) €G,
where Z(z,t), (z,t) € G is the bilinear interpolant, which is constructed from

the values of the function z(z,t), (z,t) € Gj. Thus, the difference scheme (4.2),
(5.1) allows us to construct approximations of the solution on the whole set G.

6. Constructive difference schemes

The difference schemes (4.2) on the grids (4.1), (5.1) are formal; they are
unfit for numerical computation, since the number of nodes in such grids is
infinite. To solve problem (2.2), (2.1), it is of interest to develop constructive
difference schemes, i.e., schemes on grids with a finite number of the nodes. We
now discuss such schemes.

The following lemma holds
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Lemma 6.1. For the initial boundary value problem (2.2), (2.1), there do
not exist constructive difference schemes, that allow us to approximate the so-
lution of the problem on the set G, even for fixed values of the parameter €.

1. Now we consider constructive schemes, which allow us to approximate
the solution of problem (2.2), (2.1) in bounded subdomains of G.

Suppose that, for the solution of the initial boundary value problem (2.2),
(2.1), it is required to construct a grid approximation in the bounded subdomain

6?2_5) of G. Let G! = D' x (0, T] where the set D' = D'(n) = (2°—n, 2°+d"+n)
contains ﬁo together with its p-neighbourhood. Assume that

GO =Gl =Gc*m)nG; DY =D'NnD. (6.1)

To find the solution of (2.2) on the set @0, we can use the solution of an
auxiliary problem, which is the ”restriction” to G" of problem (2.2), (2.1).
Let ul¥(z,t) = ul(z, t;n), (z,t) € @[O](n) be the solution of the problem

Lipayu(z,t) = f(z,t), (z,t) € G, (6.2a)
uNz, 1) = p(z,1), (z,t) € SUNS,

where S = G\ GIVl. Note that, if in (6.2b) ul)(z, t) = u(z, t), (z,t) € S\ S,
then u¥(z,1) = u(z,1), (z,1) € G
(2.2), (2.1).

The solution of problem (6.2), (6.1) satisfies the estimate

where u(z,t) is the solution of problem

u(z, t) — ul(z,t)| < \#), (z,t) €G,

where A(n) — 0 e-uniformly for 7 — oco. Thus, the function u%(z,t), which is

defined on @[0], approximates the solution of problem (2.1), (2.2) on the set G’
e-uniformly as n — oo.
Using a comparison principle, we obtain

u(z,t) — ul(z,8)] < M exp (~me™'n), (z,t)€q, (6.3)
where m = m3¢).

Lemma 6.2. For n — oo the solution of the initial boundary value problem

(6.2), (6.1) converges on G to the solution of the original initial boundary value
problem (2.2), (2.1) e-uniformly; for the solution of (6.2), (6.1) the estimate
(6.3) holds.

11



Definition. When, for a chosen set G and an arbitrary value 8 € (0, M],

there exists a set G such that, for the solution of problem (2.2), (2.1), the
following estimate holds

lu(z,t) — ul¥(z,t) < MB, (2,0) €T,

we say that the set @[O]

the initial boundary value problem on the set G" with a threshold of disturbance
B (or, for short, the domain of dependence with a threshold ).

From the estimate (6.3) it follows that for problem (2.2), (2.1) the domain
of dependence with a fixed threshold (8 is e-uniformly bounded; in general, this
domain increases as § — 0 (as the threshold 5 decreases).

is the domain of dependence of the data on the solution of

To approximate the problem (6.2), (6.1), we introduce on G" the grid
G =c"na, c"=a"m), (6.4)

where G, is the basic grid on G (we can use the grid (4.1) or the grid (4.4) or
another grid as the basic grid G,). Let n > 1. We denote by N*+ 1 the number

of nodes in the grid on the segment D The value N* can be estimated from
N* < M(d" + n)N.1), where d° is the diameter of the set D’ (the number of

nodes in the grid @,50] is finite).
On the grid @,EO] we consider the discrete problem
A2z, t) = f(2,1), (2,1) € G, (6.5)
Dz, t) = o(z,1), (z,8) € SINS, 2,t)=0, (z,t)es\s

The difference scheme (6.5), (6.4) is constructive.
2. We now deduce estimates for the solutions of the scheme (6.5), (6.4).
The following estimate holds for solutions of the scheme (6.5), (6.4) in the
case of the basic grid (4.1):

u(z,t) — 2, )| < M [exp(—mn) + (e + h*)"'R* + N;'|, (6.6a)
(z,t) € 62,

where h* = (d° + 1 + min[z°, 5]) N*™!, m = M(6.3), 62 —G'n Gh.
In the case of the basic grid (4.4) we find the following estimate

lu(z, t) — 20z, t)| < M lexp(—mn) + (e + [ I A N;'], (6.6b)
(z,t) € é,?,

12



where h* = h’("ﬁ_6 0); this estimate is unimprovable with respect to the value of
h*, Ny, € and the value of n up to a constant factor.
The conditions

n=n(N*) =00, nN*t =0 for N*— oo; (6.7a)
d*=d'(N*) = 00, d°N*!' =50 for N*— oo;
h* = o(e), h* = hig g (d°n, N¥) (6.7D)

are necessary and sufficient for the convergence of the solutions of the difference
scheme (6.5), (6.4) on the grids (4.1), (4.4) for N*, Ny — oo and ¢ € (0, 1].
Under the condition

n=Im InN*, m= m(6.3) (6.8)

where [ = 1 for the grid (4.1) and [ = 2 for the grid (4.4), we have the following
estimate for the grid (4.1)

lu(z, t) — 20z, )| < M [e71d’ N ' e !N T InN* + Ni'l,  (6.9a)
(2,1) € Gp;
and the following estimate for the grid (4.4)
u(z,t) — 2%z, 8)| < M [ d" N + (e ' N* " In N*)2 + Ny'],  (6.9b)
(2,1) € Gy;
However, if the set @[0] is separated from the boundary ?L, then under the
condition

rG", 5"

we obtain, for the grid (4.1), the estimate

) > (6.10)

u(z,t) — 20z, )| < M [exp(—mn) + h* + Ng''], (a,t) € 62, (6.11a)
and, for the grid (4.4), the estimate
u(z,t) — 2%z, t)| < M [exp(—mn) + B2+ N;'], (z,t) € G,. (6.11b)

The estimate (6.11b) is unimprovable with respect to the value of h*, Nj.

Under condition (6.10) and the additional condition (6.7a) the constructive
schemes converge e-uniformly. On the grid (4.1), under condition (6.8), we have
the estimate

u(z, t) — 20z, )| < M [d° N1 4 N T InN* + Ny'l, (6.12a)
(2,1) € G,
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and, for the grid (4.4), the estimate
u(z, t) — 20z, 1)) < M [( d” N*72) 4+ N*2 In2 N* 4 No—l] . (6.12b)
(z,t) € Gp;

Theorem 6.1. Let the condition of Theorem 4.1 be fulfilled and let the
boundary value problem (2.2), (2.1) be approzimated by the difference scheme
(6.5), (6.4) on the grids (4.1), (4.4). The condition (6.7) is necessary and suf-
ficient for the convergence of the grid solutions to the solution of the problem
(2.2), (2.1) on the set @(()2_5) for N*, Ny — oo and ¢ — 0; for the discrete
solutions the estimates (6.6) and also the estimates (6.9) under the condition
(6.8) are valid. However, if the condition (6.10) holds, the estimates (6.11)
are satisfied, and under the additional condition (6.7a) the schemes converge
e-uniformly and the estimates (6.12) are satisfied.

3. We now deduce some properties of the solutions of the scheme (6.5), (6.4).

Remark 1. In the case of the nonconstructive schemes (4.2) on the grids
(4.1), (4.4), by virtue of condition (4.6), the convergence defect is equal to one.
However, for the constructive schemes (6.5), (6.4) on the grids (4.1), (4.4), even
for d° ~ m, by virtue of condition (6.7), a more restrictive condition, compared
to the condition e ' N* 1 — 0 as N* — oo, is required for their convergence.
This condition is given in the following lemma.

Lemma 6.3. Under the condition d° > m, in the class of constructive
schemes (6.5), (6.4) on the basic grids (4.1), (4.4), there do not exist schemes

with convergence defect (on @0) equal to one.

Note that, by virtue of the estimates (6.9), under the condition (6.8) and

the condition
m < d’ < M InN*,

the convergence defect of the schemes (6.5), (6.4) on the grids (4.1), (4.4) is
equal to one up to the logarithmic factor M In N*, which could be considered
as an error constant. Here the error constant means a constant Mj in the case
when the error estimate has the following form

u(, t) — 2Nz, t)] < My [ NP 4+ N7, (a,8) € Gy,

(see, e.g., [11], p.157). The convergence defect grows without bound as d° tends
to infinity.
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Remark 2. For constructive schemes it is attractive, for a fixed number of
nodes in the grid domains where the problem is to be solved, to find a solution
on a domain with a possibly larger diameter and a discrete solution with a
possibly smaller error. However, for the schemes (6.5), (6.4) such a task is
contradictory. This follows from the unimprovability of the estimate (6.6b) of
the error 4; on @0, where §; denotes the error due to the discretization of the
problem with respect to z. In the case of condition (6.8) on the grid (4.4) for
d? > m In N*, we have the estimate

§;/%(d%)™' < M minfe™! N*71,1); (6.13)
this estimate is unimprovable.
In the case of the grid (4.1) the estimate, in general, is no better.

Lemma 6.4. For the difference schemes (6.5), (6.4) on the grid (4.4) under
the conditionn, d° > M In N*, for the value 81, i.e. the component of the error
of the grid solution which is due to the discretization of the problem (6.2), (6.1)

with respect to x on the set @0, the estimate (6.13) is valid. This estimate is
unimprovable with respect to the values of N*, e, d°.

Remark 3. We denote by d° the largest size of the set G’ w.r.t = on which
convergence of the scheme (6.5), (6.4) on the grids (4.1), (4.4) for N*, Ny — o0

is achievable. Under the condition G N ? # (), we derive the condition d0 =
o(e N*). But if (6.10) holds, then we get d = o(N*), moreover, in this case the
scheme converges e-uniformly.

Remark 4. We give an estimate for the solutions of the classic difference
scheme for problem (2.2), (2.4). The basic grids (4.1), (4.4) generate the grid
on @0 o o o

Gon = Go N Gy, (6.14)
where G}, is either the grid (4.1) or the grid (4.4); N*+1 is the number of nodes
in the grid on the segment Dy. For the solutions of the difference scheme (4.2),
(6.14) in the case of the grid (4.1), we obtain the estimate

uo(z,t) — 20(z,t)| < M [e ' N* T+ N;Y],  (x,t) € Gon, (6.15a)
and for the grid (4.4) the estimate
uo(z,t) — 20(z, )| < M [(e ' N* )2+ Ny, (2,t) € Gon.  (6.15b)

Here uo(z,t) and zo(z,t) are the solutions of the problem (2.2), (2.4) and the
scheme (4.2), (6.14) respectively. From the estimates (6.9) and (6.15), it follows
that, under the condition d° = dy, the convergence rate of the scheme (4.2),

(6.14) is the same as that for the scheme (6.5), (6.4) on the set G’ up to a
logarithmic factor.
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7. Special constructive difference schemes

In this section we consider approximations of problem (6.2), (6.1) on con-
structive grids condensing in the boundary layer region. We assume that the

following condition holds
d°>M, M>1. (7.1)

On the set @[O], using the grid (5.1) as a basic grid, we introduce the grid

=0 =0, = —0] =
Gy =Gy (Chisp) = GO N G (7.2)

N* +1 is the number of nodes in the grid w[lo] on the set E[O],
For the solution of the difference scheme (6.5), (7.2), taking into account the
a-priort estimates, we obtain the estimate

lu(z,t) — 20(z, )| < (7.3)
x \— * * - =0
< M [exp(=mmn) + (e + b)) 72 (B)* + (By)* + Ny ', (2,) € Gy,

*

where h(l) = h(i)(5.1)7 1= 1, 2, m = m(6.3);

m () N1 < by <M (d0 ) N*,
m {minfe In((d° +7)~" N*), 1] (d°+n) N} < by, <
< M {min[e In((d® + n)~"' N*),1] (d° + ) N*"'};

estimate (7.3) is unimprovable with respect to the values of h{1ys Mgy No, € and
it is also unimprovable up to a constant-factor with respect to the value of 7.
From the estimate (7.3) it follows that the condition (6.7a) is necessary and

sufficient for the e-uniform convergence on G of the solutions of the difference
scheme (6.5), (7.2) for N*, Ny — oc.
Under the condition

n=2m"InN* m= m(6.3) (7.4)
we have the estimate
lu(z, t) — 20z, ¢)] < (7.5a)
< M {[minfe™, In((d° + In N*) P N9)] (d° + In N*) N* 72 + N1}
(z,t) € E‘;,
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and also the e-uniform estimate
lu(z, t) — 20z, ¢)] < (7.5b)
< M {[In((@d°+In N*) ' N (d°+ In N ) N Y2+ N}, (2,t) € Gy

Assume that the condition (7.4) is satisfied. Then, under the condition

d® < M In N* (7.6a)
we have the estimate
u(z,t) — 20z, )| < M [N N*+ NoY], (2,8)€G,,  (7.7a)
and under the condition
d’ > m In N* (7.6b)
we have the estimate
lu(z, t) — 20z, )| < M {[dON*_1 In((d*)"' N*)PP+ No~ '}, (7.7b)
(z,t) € @2.

A formal statement of these results is contained in

Theorem 7.1. Let the condition of Theorem 4.1 and also the condition (7.1)
be fulfilled. For the difference scheme (6.5), (7.2) the condition (6.7a) is nec-
essary and sufficient for the e-uniform convergence of the grid solutions of the
solution of the problem (2.2), (2.1) on the set @(()2'5) for N*, Ny — oo. For the

solutions of the difference scheme the estimate (7.3) holds, and also estimates
(7.5) and (7.7), respectively, are valid under the conditions (7.4) and (7.4), (7.6).

Remark 1. Under condition (7.4) and the additional condition (7.6a), the
e-uniform convergence rate of the scheme (6.5), (7.2) with respect to the variable
z (i.e., the value é;, the component of the error caused by the discretization
of the problem with respect to z) is equal to 2, up to a logarithmic factor.
However, under condition (7.6b), the convergence order decreases as the value
of d° grows exponentially ; for the value §; we have the unimprovable estimate
(5i/2 < M(d°/N*)In(N*/d®). The largest width d° of the set GO, on which the
scheme converges e-uniformly, satisfies the condition d° = o(N*).

Remark 2. If condition (6.10) holds, when solving a grid problem, it is con-
venient to use the scheme (6.5), (6.4), (6.8) on the uniform grid (4.4). However,
if the condition (6.10) is not satisfied, then we use the scheme (6.5), (7.2), (7.4),
i.e., the scheme on the piecewise uniform grid with respect to z. For the grid
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solutions, under condition (6.10), the estimate (6.12b) holds, and the estimate
(7.6b) is valid when the condition (6.10) is not fulfilled.

Remark 3. Taking into account the a-prior: estimates of the solutions for
the initial boundary value problem, and the estimates (7.7) for the solutions of
the difference scheme (6.5), (7.2), we find the following estimate under condi-
tion (7.6a)

u(z,t) — 2z, )| < M [N* 2 N* + N, (2,8) € @
and, under condition (7.6b), the estimate

u(z,t) — 2%z, ¢)] < M {[d° N* "V In((d) NP+ No 'Y, (28) € G

where E[O](:E, t), z € G is the bilinear interpolant, which is constructed from the
values of the function 2(%(z, t), (z,t) € Gj. Under conditions (6.10), (6.7a) for
the solutions of the difference scheme (6.5), (6.4) on the grid (4.4), the following
estimate holds

u(z,t) — 2%z, 8)| < M [(d°?N*72 + N* 2 In® N* + No Y], (z,t) € G

Thus, the schemes (6.5), (7.2) and (6.5), (6.4), (4.4) allow us to construct
approximations of the solution of the problem (2.1), (2.1) on the set G’ with
exactly the same estimate as on the mesh @2.
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