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Abstract

In a composed domain on an axis IR with the moving interface boundary between two subdo-
mains we consider an initial value problem for a singularly perturbed parabolic reaction-diffusion
equation in the presence of a concentrated source on the interface boundary. Monotone classical
difference schemes for problems from this class converge only when € > N~ + N 1 where ¢ is
the perturbation parameter, N and Ny define the number of mesh points with respect to z (on
segments of unit length) and ¢. Therefore, in the case of such problems with moving interior layers,
it is necessary to develop special numerical methods whose errors depend rather weakly on the
parameter € and, in particular, are independent of € (i.e. e-uniformly convergent methods).

In this paper we study schemes on adaptive meshes which are locally condensing in a neigh-
bourhood of the set v*, that is, the trajectory of the moving source. It turns out that in the class of
difference schemes consisting of a standard finite difference operator on rectangular meshes which
are (a priori or a posteriori) locally condensing in x and ¢ there are no schemes which converge
e-uniformly and, in particular, even under the condition e~ N~=2+ Ny 2 if the total number of the
mesh points between the cross-sections xg and xg + 1 for any xo € IR has order of N Ny. Thus, the
adaptive mesh refinement techniques used directly do not allow us to widen essentially the con-
vergence range of classical numerical methods. On the other hand, the use of condensing meshes
but in a local coordinate system fitted to the set v* makes it possible to construct schemes which
converge e-uniformly for N, Ny — oo; such a scheme converges with the rate O (N ' In N + N;!).

Introduction

Numerical analysis of heat and mass transfer with fixed concentrated sources in media
characterized by small coefficients of heat conductivity/diffusion often bring us to diffraction
boundary value problems for singularly perturbed partial differential equations. Here the singu-
lar perturbation parameter ¢ is a coefficient multiplying the highest derivatives of the equations.
The solutions of such problems for small values of the parameter € typically exhibit boundary
and transition (interior) layers, moreover, for fixed finite values of € their derivatives are dis-
continuous at the points where the concentrated sources act. The singular behaviour of the
solutions is complicated in the case of moving concentrated sources. So, the solutions of the
reduced (for ¢ = 0) problems have discontinuities of the first kind on the trajectories of the

moving sources.



In this paper we consider an initial value problem on an axis IR for a singularly perturbed
parabolic reaction-diffusion equation in a composed domain with a moving interface boundary
between two subdomains; the concentrated source acts on the interface boundary. Note that
the solution of such a problem, in contrast to boundary value problems, has no boundary-layer
singularities. However, singularities generated by the moving concentrated source still occur
that give rise to difficulties in the numerical solution (see, e.g., Theorem 1). Namely, classical
finite difference schemes for this problem converge only when ¢ > N—! 4+ N; ', where N and
Ny define the number of nodes in the grids with respect to = (on segments of unit length) and
1.

Therefore, in the case of problems with moving transition layers it it necessary to develop
special numerical methods whose errors depend rather weakly on the parameter £ and, in
particular, are independent of ¢ (i.e. e-uniformly convergent methods). To this end, it seems
expedient to apply the techniques based on locally condensing meshes that have been earlier
proposed (see, for example, [1-4] and the bibliography therein for several singularly perturbed
problems with stationary boundary or transition layers; for the case of a regular boundary
value problem with singularities in its solution see also [5]). So, in the case of regular problems
whose solutions have singularities, the effect of improving the accuracy of a numerical solution
can be achieved by apriori or aposteriori local grid refinement in those subregions where the
errors in the approximate solution are large (see, e.g., [6, 7, 5]). However, the direct use of
this approach in the case of singularly perturbed problems with moving concentrated sources
is not sufficiently effective.

We study the class of difference schemes consisting of a standard finite difference operator
on adaptive meshes which are locally refined in a neighbourhood of the set v*, that is, the tra-
jectory of the moving source. At first sight, such adaptive grid refinement can resolve the layer
phenomena numerically in a completely satisfactory manner. Nevertheless, it turns out that in
the case of rectangular meshes which are (a priori or aposteriori) locally condensing in x and ¢
there are no schemes of the above class which converge e-uniformly and, in particular, even for
e'/22 N7'+ N, ! (see, e.g., the conclusion of Theorem 2) if the total number of the mesh points
between the cross-sections zy and x¢ + 1 for any x¢ € IR has order of NNy. Thus, the adaptive
mesh techniques used directly do not allow us to widen essentially the convergence range of
classical numerical methods. On the other hand, the use of condensing (in the nearest vicinity
of the singularity) meshes in a local coordinate system fitted to the set v* makes it possible to
construct schemes that converge e-uniformly for N, Ny — oo (see, e.g., Remark 3 in Section 4).

2. Problem formulation. The objective of research

1. In an infinite one-dimensional composed domain with the moving interface boundary
between its subdomains we consider an initial value problem for a singularly perturbed parabolic
equation in the presence of a concentrated source acting on the interface boundary.

Let the domain G with boundary S = G \ G, where G = R x (0,7], be decomposed into
non-overlapping subdomains

G=G |G, ¢'Nae*=9, (2.1)
in each of which we consider the equation
Lu(x,t) = {ea(m,t)a—2 —c(z,t) —p(:c,t)2 } u(z,t) = f(x,t),
o0x? ot
(z,t) € G, k=1,2, (2.2a)



where a(z,t) = d¥(z,1), ..., f(z,t) = f¥=,1), (2,t) €G",

G'={(z,t): z<p(t), te(0,T]},

(2.3)
G* ={(z,t): x> pB(t), te(0,T]},

the interface boundary between the subdomains ~+* = {(z,t) : = = p(¢), t € (0,T]} is
sufficiently smooth. On the set S the function u(x,t) satisfies the initial condition

u(z,t) =p(z), (z,1) €S, (2.2b)
and on the interface boundary v* it obeys the conjugation condition
0
[u(z,t)] =0, lu(z,t)=c|alx,t) £u(a:,t) =—q(t), (z,t) €. (2.2¢)

Here ¢ is a parameter taking arbitrary values from the half-interval (0,1); a*(z,t), cf(z,1),
pr(z,t), f¥(z,t), (z,t) € ék, k=1,2, o(z), z € R, B(t) and ¢(t), t € [0,T] are sufficiently
smooth functions, and also !

a < d¥(z,t) <a®, 0<F(a,t) <co po<piat) <9’ (2,1)€C,
vo < (d/dt)B(t) =v(t) <° te€[0,T], ao, po, vo > 0;

N (2.4)
|zt | <M, (x,t)€G', |p@)| <M, z€R,

lg®) [ <M, te[0,T]; k=12

The function 3(t) specifies the velocity of motion of the interface boundary, and ¢(t) defines
the power of the concentrated source. The symbol [v(z,t)]| denotes the jump of the function
v(z,t) when passing through v* from the set G' into the set G?, for example,
[v(z*,t)] = lm wo(z,t)— lim w(x,t), (z%t) €.
T—x*+0 T—x*—0

For simplicity, we assume that the compatibility conditions are fulfilled at the point v° =
(8(0),0) to ensure sufficient smoothness of the solution of problem (2.2) on each of the subsets
G" (for fixed values of the parameter ¢); suppose S* = G" \GF k=1,2.

As e — 0, in a neighbourhood of the set v* (on the right from it) there appears a transition
layer decreasing exponentially when the point (z,t) recedes away from ~* to the right. The
solution of the reduced problem is a function being sufficiently smooth outside the set v* and
having a discontinuity of the first kind at ~*.

2. The errors in the solutions of finite difference schemes based on classical difference
approximations to problem (2.2), (2.1) depend on the parameter £ and become small only for
those values of € that essentially exceed the ”effective” mesh widths with respect to z and . So,
by virtue of estimate (3.7), the classical difference scheme (3.4), (3.6) (see Section 3) converges
under the condition . 4

e> N+ N, (2.5)
where the values N 4+ 1 and Ny + 1 is the number of mesh points with respect to z (on a unit
interval) and ¢ respectively. If this condition is violated, the solutions of the difference scheme
do not converge to the solution of problem (2.2), (2.1).

1 Here and below M, M; (or m) denote sufficiently large (small) positive constants which do not depend on
¢ and on the discretization parameters. Throughout the paper, the notation L; )y (M k), Gr(j.k)) means that
these operators (constants, grids) are introduced in equation (j.k).
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By this argument, we are interested in constructing special difference schemes whose errors
do not depend on the value of the parameter £. In particular, it is of interest to develop such
schemes that converge under a weaker condition than condition (2.5).

For the initial value problem (2.2), (2.1), by using the condensing mesh method we are thus
to construct e-uniformly convergent schemes and also nearly such schemes, namely, schemes
convergent for the values of € much less than in (2.5), which is our purpose in this paper.

3. Classical difference schemes

Let us give a classical difference scheme for problem (2.2), (2.1) and show some difficulties
arising in the numerical solution of the problem for small values of the parameter ¢.

1. We consider a difference scheme based on ”direct” approximation of the conjugation
condition (2.2c). For this we need meshes which contain nodes on the set v* at each time level
t = tJ of the difference scheme. Let us construct such meshes.

On the domain G, we introduce rectangular base meshes, on the basis of which we will
construct the required grid sets. Let

éh = w1 X Wy, (31)

where w; and @y are grids on the axis z and the segment [0, 7] respectively; w; and Wy are
grids with any distribution of the nodes satisfying only the condition h < MN~', h; < MN; ',
where h = max; hi, hi= 2! — gt zf gt e wy, hy =max; hl, bl =ttt — 1 1, tit! € @,
Here N + 1 and Ny + 1 are the maximal number of nodes on a segment of unit length on the
axis z and the number of nodes in the grid wy respectively. It is of great interest to consider
also difference schemes on the simplest meshes, which are uniform with respect to both x and
t:
Gh = Gh3a), (3.2)

where w; and @y are uniform grids with step-sizes h = N~ and hy = TNy L

On the set G we construct the mesh G, = G, (Gx.1)) generated by the base mesh G.1).
On the time level ¢t = t" € Wy we introduce the grid set

Gy ' =GmuSgr, Gir=Gim Uy

. Here v;" = {z = B(t"), 1"}; the set G\”™ is formed by those nodes (z', ") € Ghsa), (24,17) ¢

v for which the segments zi x [t"~!, "] entirely belongs to either G or G ; the set S7

consists of the nodes (z°,¢""!) € Gp.1) for which (z%,¢") € @S)n. We define the mesh G, by

No
G,=J G (3.3)
n=1

We approximate problem (2.2), (2.1) by the implicit difference scheme [8]
Az(z,t) = {ea(z, 1)0zz — c(x,t) — p(z, )8} 2(x,1) = f(x,1), (z,t) € G, (3.4a)
" 2(z,t) = e{a®(,t) 6, 2(2, 1) — a'(z,1) 6z 2(z, ) } = —q(t), (z,t) €7}, (3.4b)

z" Yz, t), "1 >0,
t) = 3.4
@0={ 7 o e o (340)
(z,t) € G}y, n=1,...,N,. (3.4d)



Here 2"(z,t) =z(z,t) for (z,t) € G}"*; z"(z,t), x€ R, t=t"€ W, is the linear, in z, interpolant
constructed from the values of 2"(z,t), (z,t) € G} 0zz 2(x,t), 0z 2(x,1), 0z 2(x,t), 07 2(x,1)
are the second and first difference derivatives; 6z 2(x,t) = 2 (h' + hi™Y) {8, — 05 } 2(x, 1),
z = z', h"! and A’ are the left and right ”arms” of the three-point stencil on Gj (for the
operator 6,5 ) with center at the node (zf,#) € G, The function

(2.0 2"z, 1), (x,t)€ G,
2\, = — *n — %
2" Nw,t), (z,t)e Sy (x,t) €G, , n=1,...,Ny; (z,t) € G,

will be called the solution of scheme (3.4), (3.3).
For the difference scheme (3.4), (3.3) the maximum principle is valid [8].
By using the majorant function technique we find the estimate

| 2(z,t)| < M [14e71], (z,t) € G,. (3.5)
In the case of the mesh

Gy, = G, (Gh) (3.6)

the solution of problem (3.4) is bounded under the (unimprovable) condition N~! N, ' =
O (¢). Under this condition we obtain the (unimprovable) estimate

|u(a,t) — z(z,t) | < Me™ [N+ N7'],  (2,1) € G (3.7)
thus, scheme (3.4), (3.6) converges under the (unimprovable) condition

Nt Nyt = ofe). (3.8)

Theorem 1. Let a,c,p,f € CY*(G"), ¢ € CHo(Sk), ¢ € C*2([0,T]), B €
C3+e/2([0,T)), and also u € C4+a’2+"/2(§k), a >0, k= 1,2, and let the condition (2.4)
hold. Then the condition (3.8) is necessary and sufficient for the convergence of the difference
scheme (3.4), (3.6) as N, Ny — oco. For the discrete solutions the estimates (3.5) and (3.7) are
valid.

4. On the construction of e-uniformly convergent schemes on locally
condensing meshes

Note that the singularity inherent in the initial value problem (2.2), (2.1) does not extend
to the set G and exponentially decreases on G? when the point (z,t) recedes away from the
set v*. The singular component W (z,t) for x > 3(t) + o does not exceed the value M§, where
§ is a sufficiently small number, when o = m;'elné~", with 0 < my < my,

mo = min [(a*(z,)) " p*(,1)(d/dt)B(1)]

. The residual of the difference scheme on the solution of the original problem is large but only
in this neighbourhood, which is sufficiently narrow for small values of ¢.

1. Bearing in mind the possible use of schemes on sufficiently arbitrary locally condensing
meshes for solving the initial value problem, it would be convenient to introduce into consid-
eration balanced meshes, that is, meshes with any distribution of their nodes (in xz and ¢) but
having the total number of the mesh points of order O (NNp) in a unit vicinity of the set v*,
which is the same order as that in the case of uniform meshes with respect to x and ¢. Thus,
the amount of computational work (proportional to the number on the mesh points in which
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it is necessary to find the solution of the grid problem) for balanced meshes is of the same
order just as for uniform meshes. Balanced meshes are not in general the tensor product of
one-dimensional meshes with respect to x and ¢.

2. We consider a class of difference schemes composed of classical approximations of the ini-
tial value problem (2.2), (2.1) and "piecewise uniform” locally condensing meshes, i.e., meshes
which are uniform both in the nearest neighbourhood of the curve v* and outside its somewhat
greater neighbourhood.

2.1. For simplicity, assume that 3(t) = t. Let the following mesh have been constructed in
some way: . .
Gp = Gh(m), (4.1)
where p; > 0 is a parameter chosen below, which defines the distribution of the mesh points.
This mesh is uniform on each of the sets G2 = G2(p;) and G2 = G2\ G, (Mp,), where

Gi(p1) = {(z,1): =€ (B(t),B(t)+p), t € (0,T]}

is the right p;—neighbourhood of the set v*. The meshes G3 = G? ﬂ@,f(4_1) have step-sizes h;
and h; in x and ¢ respectively, ¢« = 1,2. We consider for simplicity that the stencils of four-point
implicit schemes having, as a center, the nodes from G} are regular, i.e., their left, right and
"lower” arms equal h; and h;; respectively.

Let us consider fragments of the grid problem from the class of difference schemes on the
meshes (4.1), namely, the fragments on the sets @fh and @;h. Let 22(z,t), (z,t) € @Z?h be the
solution of the grid problem

A(3.4) Z,?(J),t) = f(l',t), (iL',t) € Gz2h7

(4.2)
22(z,t) = u(z,t), (z,t) € S3, i=1,2,
where u(z,t), (z,t) € G is the solution of problem (2.2), (2.1).
For the functions z2?(z,t), (z,t) € @fh we have the estimates

lu(z,t) — 27 (z,t)| < M[(e + h1)7°h+ (e + hie) 'hue], (,1) E@fh; (4.3a)

ule.8) = .01 < M { e+ ha) 208 + (e + o) ]
x max |[W(z,t)| + h3 + hay } , (x,t) 6@22,” (4.3b)

2h

where W (x,t) is the singular component of the solution u(x,t); estimates (4.3a) and (4.3b) are
unimprovable with respect to the entering values of hi, his,€ and hg, hoy, € Tespectively.
In order that the function z3(x,t) converges e-uniformly, it is necessary that the value p;
satisfies the condition p; > ¢ or
e =o(py). (4.4)

The following estimate for the function 2?(z,t), which is the same with respect to the conver-
gence order as the optimal estimate relatively to hy, hy; for the fixed, equal to M N Ny, number
of nodes of the mesh G,,, can be obtained under the condition (¢ + k1) *hy; = (€ + hy) 2h2 :
-1
u(e,t) = 2 (@,1)] < Me™B gl (NNo) 2% [ 14 7P (NNo) 22 |,

(#,1) € Gpp; (4.5)



this estimate is unimprovable with respect to the entering values of p;, (N Np)=!, e. It
follows from estimate (4.5) under condition (4.4) that the function z?(x,t) does not converge
e-uniformly for N, Ny — oc.

Thus, the error analysis demonstrates that there are no piecewise uniform meshes 52(4.1)
on which the solutions of problems (4.2) for i = 1,2 converge e-uniformly to the solution of
problem (2.2), (2.1). In the case of the auxiliary problems (4.2) on meshes (4.1), similarly to
the above considerations we make sure of the fact that there exist no meshes on which the
solutions of these problems converge even under the condition

N7L 4 Nyt > el/2 (4.6)

2.2. From here it follows that this non-existence result remains valid also in the case of
classical difference approximations of the problem and the family of meshes (4.1) as well as the
family of meshes .

G, (4.7)

which are uniform in the right p-neighbourhood of the set v*, where me < p < M e.

Theorem 2. For the initial value problem (2.2), (2.1), in the class of balanced difference
schemes composed of standard finite difference operators on locally condensing grids (4.7) there
are no schemes convergent under condition (4.6).

Remark 1. If we use the grid equations (3.4b) in order to approximate the conjugation con-
ditions (2.2c), in the case of meshes (4.1) and (4.7) there exist no balanced schemes convergent
under the condition N7!+ Nyt > g2/3,

Remark 2. It follows from the given considerations that the use of locally condensing
meshes for problem (2.2), (2.1) does not allow us to weaken essentially the convergence condition
(3.8) for classical difference schemes; it is impossible to reduce the order of the parameter ¢ in
condition (2.5) more than twice on a class of sufficiently common locally condensing meshes,
unless the stencil used is non-rectangular.

Remark 3 (Schemes on a stencil fitted to the transition layer). To construct
schemes with an improved condition of convergence in comparison with (3.8), one can reformu-
late the initial value problem (2.2), (2.1) by transforming to variables connected with the moving
source, in which the source already become fixed. For the problem in these new variables one
can construct a difference scheme on rectangular meshes (in particular, a scheme convergent
g-uniformly) and then return to the old variables. The resulting meshes (i.e. meshes moving in
agreement with the source) is no longer rectangular in the original variables. This, generally
speaking, implies certain inconveniences for the construction of grid domains and the numeri-
cal solution of the problem under consideration. However, it is possible to construct a similar
scheme only in a sufficiently small neighbourhood of the source; outside this neighbourhood one
can use standard (e.g., uniform) meshes and finite difference operators. This approach leads to
a scheme which converges e-uniformly with the rate O (N~! In N + N;').
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