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Abstract

A new method to extract the density of partition function zeroes (a continuous function) from their distribution
for finite lattices (a discrete data set) is presented. This allows direct determination of the order and strength
of phase transitions numerically. Furthermore, it enables efficient distinguishing between first and second order
transitions, elucidates crossover between them and illuminates the origins of finite-size scaling. The efficiacy of the
technique is demonstrated by its application to a number of models in the case of Fisher zeroes and to the XY

model in the case of Lee-Yang zeroes.
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1. Introduction

Phase transitions are phenomena common to
a wide range of disciplines, from physics to biol-
ogy, economics and even sociology. Examples in-
clude neural networks, protein folding, melting,
magnetism, stock market crashes and the decon-
finement transition in the early universe.

In statistical physics, in particular, one is in-
terested in the determination of the location, or-
der and strength of phase transitions. First order
transitions involve the coexistence of two distinct
phases and are characterised by a discontinuity in
the first derivative of the free energy correspond-
ing to the finite amount of energy needed to trans-
form from one phase to the other. For temperature
driven transitions, this discontinuity is the latent
heat ∆e and is a measure of the transition strength.
For second order transitions there is no such co-

existence. Instead, thermodynamic quantities such
as the correlation length and specific heat diverge.
Such divergences are characterised by critical ex-
ponents ν and α, which is a measure of the strength
of the transition.

The computational approach to the study of
phase transitions consists of two steps - the gath-
ering of data in the form of a Monte Carlo simu-
lation followed by a numerical analysis of appro-
priate quantities. The first of these is restricted to
systems of finite size. Phase transitions, however,
require an infinite number of available states for
their occurence. The second step in the numerical
approach is an extrapolation to infinite volume.
Traditional techniques involve the finite-size scal-
ing [FSS] study of thermodynamic functions. An
increasingly popular approach is, however, the use
of zeroes of the partition function.

Let t = T/Tc − 1 be the reduced temperature
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and h the external field. For a d-dimensional sys-
tem of linear extent L, the FSS of the jth complex
partition function zero (for large j) is given by [1]

tj(L) ∼
(

j/Ld
)1/νd

, (1)

or

hj(L) ∼
(

j/Ld
)(d+2−η)/2d

. (2)

Here η is the anomalous dimension and h = 0 in
the first formula (where the zeroes are called Fisher
zeros) while t = 0 in the second (where the zeroes
are Lee-Yang zeroes). The standard approach to
FSS of zeroes is to fix the index to j = 1 and ex-
tract an estimate for the critical exponents from
a range of lattice sizes. It has, however, long been
known that using more than one index could pro-
vide more information. However, since (1) and (2)
are inexact, this has been prohibitive. In particu-
lar, the extraction of the density of zeroes (a con-
tinuous function) from their (discrete) distribution
for a finite and numerically accessible lattice has
been considered prohibitively difficult or even im-
possible [2]. In recent years, however, there have
been some attempts to overcome the difficulties in-
volved [3]. In view of the increasing importance at-
tached to this approach, we suggest an appropriate
way this should be done [4].

2. Density of Zeroes

The partition function for finite L is ZL(z) ∝
∏

j (z − zj(L)), where z is an appropriate function
of temperature or field. We assume the zeroes, zj ,
are on a line impacting on to the real axis at the
critical point, zc. Parameterising zeroes on this line
by zj = zc + rj exp (iϕ) we may define the den-
sity of zeroes as gL(r) = L−d

∑

j δ(r− rj(L)). The
cumulative distribution function of zeroes is then
GL(r) =

∫ r

0 gL(s)ds which is j/Ld if r ∈ (rj , rj+1).
At a zero we assume the cumulative density is given
by the average [5,6]

GL(rj) = (2j − 1)/2Ld . (3)

In the thermodynamic limit and for a phase tran-
sition of first order this integrated density of zeroes
is, in fact [5],

G∞(r) = g∞(0)r , (4)

so that the density is non-vanishing at the real axis.
The slope at the origin in (4) is related to the latent
heat in the Fisher case (or magnetization in the
Lee-Yang case) via [5]

g∞(0) ∝ ∆e . (5)

For a second order transition the corresponding
expressions for Fisher and Lee-Yang zeroes are [7]

G∞(r) ∝ r2−α or G∞(r) ∝ r2d/(d+2−η) , (6)

respectively.
Thus while the scaling behaviour of the position

of the first few zeroes in the complex temperature
plane can be used to identify ν via (1), the density
of zeroes gives the strength of the transition. A plot
of GL(rj) against rj(L) should (i) go through the
origin, (ii) display L– and j– collapse and (iii) re-
veal the order and strength of the phase transition
by its slope near the origin.

In (3), rj may be taken to be the imaginary
part of the position of the jth zero. Equating
(3) to (6) in the second order Fisher case, gives
rj(L) ∼ L−1/ν . This is the usual FSS formula
for fixed index Fisher zeroes. Similarly, in the
Lee-Yang case, one recovers the fixed index FSS
formula hj(L) ∼ L−(d+2−η)/2. Also, equating (3)
to (4) gives rj(L) ∼ L−d, explaining the usual
identification of ν with 1/d for a first order tem-
perature driven phase transition. Therefore, tra-
ditional FSS emerges quite naturally from this
density approach.

3. Applications

To demonstrate our approach, we perform fits
to the cumulative density of zeroes for a number of
different models in statistical physics and in lattice
field theory [4]. Here we summarize the results for
the Fisher zeroes for two models, one from each
field. Furthermore, we discuss the Lee-Yang zeroes
of the two dimensional XY model.

Allowing for first or second order behaviour, the
cumulative density should behave as

G(r) = a1r
a2 + a3 , (7)
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Fig. 1. Distribution of zeroes for the d = 2, q = 10 Potts
model (for L = 16–64) which has a first order phase tran-
sition. The symbols ×, +,4,3, 2, and d, correspond to
j = 1, 2, 3, 4, 5, and 6.

where we also allow for an additional parameter a3

which should be zero for a good fit. In fact, a non-
zero value of a3 indicates the absence of a phase
transition, for, a3 > 0 means the zeroes have al-
ready crossed the real axis (the situation in the bro-
ken phase) while a3 < 0 means the zeroes have not
yet reached the real axis (the symmetric phase).
For Fisher zeroes, a first order phase transition is
indicated if a2 ∼ 1 for small r, in which case the
latent heat is proportional to the slope a1. A value
of a2 larger than 1 signals a second order transi-
tion whose strength is given by α = 2 − a2. Note
that α can be measured directly using this method
while traditional FSS only allows the measurement
of the ratio α/ν.

The d = 2, q = 10 Potts Model: The first six Fisher
zeroes for the two-dimensional 10–state Potts
model for lattice sizes L = 4–64 are listed in [8]. A
traditional FSS analysis applied to the first zero
for large lattices provides evidence for ν = 1/d
and hence a first order phase transition. However,
the determination of the lattice size above which
FSS sets in is, by necessity, somewhat arbitrary.
Indeed, when one extends the analysis to higher
index zeroes one finds that when corrections are
ignored, no two-parameter fit gives an acceptable
result.

Our analysis of the density of zeroes begins with
Figure 1. The excellent data collapse for various
L and j indicates that (3) is the correct form for
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Fig. 2. Distribution of zeroes for the four dimensional
abelian surface gauge model which has a second order tran-
sition. The 2 and d correspond to the j = 1 and j = 2
index zeroes respectively.

the density of zeroes. Fitting (7) to the L = 16–
64, j = 1–4 data points gives a2 = 1.10(1) and
a3 = 0.00004(1), a strong indication of a first order
phase transition. Fixing a3 = 0, a2 = 1 and apply-
ing a single parameter fit close to the origin yields
a slope corresponding to latent heat ∆e = 0.698(2)
which compares well with the exact value 0.6961.

The d = 4, Abelian Surface Gauge Model: This is
a model dual to the d = 4 Ising model, which, up
to logarithmic corrections has mean field critical
exponents [9]. One therefore expects the surface
gauge model also to be characterised by mean field
exponents with α = 0, ν = 1/2.

The first two Fisher zeroes for lattices of size
L = 3 to 12 are listed in [10] where a conventional
analysis applied to the first index zero yields the
best estimate of ν = 0.469(17) from the two largest
lattices. Inclusion of the smaller lattices worsens
the fit driving ν away from 1/2. Also, a bimodal
structure in the energy histograms appears as a
spurious indication of a first order transition [10].

A fit of the data to (7) yields a2 incompatible
with unity (see Figure 2), with a fit near the ori-
gin yielding a2 = 1.90(9). This corresponds to α =
0.10(9), compatible with zero. Note that only the
region near the origin in Figure 2 is of interest.
The slope there is not compatible with a first order
transition and the bimodal structure of the energy
histograms observed in [10] can only be an unex-
plained finite size effect.
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Fig. 3. Distribution of Lee-Yang zeroes for the two dimen-
sional XY model at β = 1.113 (for L = 32 − 256). The
symbols ×, +,4,3, and 2 correspond to j = 1, 2, 3, 4, and
5 respectively.

The d = 2 XY Model: Here we demonstrate that
the density technique is also applicable in the Lee-
Yang case. The first few Lee-Yang zeroes for the
d = 2 XY model with L = 32–256 were deter-
mined for various temperatures in [11]. Figure 3
depicts the distribution of these zeroes for β =
1/kT = 1.113 which is the critical point (here k is
the Boltzman constant). From (6), and with η =
1/4 (the value of the anomalous dimension in this

model), one expects GL(hj) ∼ h
16/15
j . A three pa-

rameter fit to (7) gives a3 = 0 indicating that crit-
icality has indeed been reached at this tempera-
ture. A two parameter fit now yields a2 = 1.063(3),
compatable with expectation. One notes that log-
arithmic corrections are present in this model as
shown in [11,12].

4. Conclusions

We have presented a new method to extract
the (continuous) density of zeroes from (discrete)
finite-size data and demonstrated how this can be
used to distinguish between phase transitions of
first and second order as well as to measure their
strengths. The method meets with a high degree of
success in statistical physics and lattice field theory
and lends new insights into the origins of finite-size
scaling.
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Schüttler (Springer, Berlin, 1998); p. 224; Comp. Phys.
Comm. 121 (1999) 26; R. Burioni, D. Cassi, and L.
Donetti, J. Phys. A 32 (1999) 5017.

[4] W. Janke and R. Kenna, J. Stat. Phys. 102 (2001)
1211.

[5] C.N. Yang and T.D. Lee, Phys. Rev. 87 (1952) 404;
ibid. 410.

[6] P. Butera, M. Comi, G. Marchesini, and E. Onofri,
Nucl. Phys. B 326 (1989) 758; P.H. Damgaard and
U.M. Heller, Nucl. Phys. B 410 (1993) 494; K.-C. Lee.
Phys. Rev. Lett. 73 (1994) 2801; V. Matveev and R.
Shrock, Phys. Lett. A 204 (1995) 353; M. Gürtler, E.-
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