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We report on a new method to extract thermodynamic properties from the density of partition function zeroes

on finite lattices. This allows direct determination of the order and strength of phase transitions numerically.

Furthermore, it enables efficient distinguishing between first- and second-order transitions, elucidates crossover

between them and illuminates the origins of finite-size scaling. The power of the method is illustrated in typical

applications for both Fisher and Lee-Yang zeroes.

1. INTRODUCTION

The characterisation of phase transitions, in
particular of their order and strength, is among
the hard numerical problems that are common
to lattice field theory and spin model physics.
Frequently applied techniques focus either on the
finite-size scaling (FSS) behaviour of thermody-
namic functions such as the specific heat, suscep-
tibility or Binder parameter, or somewhat more
“microscopically” on the limiting shape of the
underlying probability densities of energy and
magnetization as the thermodynamic limit is ap-
proached. A related and increasingly popular al-
ternative approach are FSS analyses of zeroes of
the partition function [1].

If t = T/Tc − 1 denotes the reduced temper-
ature and h the external field, then the FSS of
the jth complex partition function zero for a d-
dimensional system of linear extent L is given by

tj(L) ∼
(

j/Ld
)1/νd

, (1)

hj(L) ∼
(

j/Ld
)(d+2−η)/2d

, (2)

where ν and η are the standard critical exponents.
In (1) we assume h = 0 and tj(L) are called Fisher
zeroes. Conversely, in (2), t = 0 is assumed and
hj(L) are the Lee-Yang zeroes. The standard ap-
proach to FSS of zeroes is to fix the index to j = 1
and extract an estimate for the critical exponents
from a range of lattice sizes.

In recent years, however, there have also been
some attempts [2] to extract the density of zeroes

(a continuous function) from their (discrete) dis-
tribution for a finite and numerically accessible
lattice. In view of the increasing importance at-
tached to this approach, we recently suggested an
appropriate way this should be done [3].

2. DENSITY OF ZEROES

The partition function for finite L is ZL(z) ∝
∏

j (z − zj(L)), where z is an appropriate func-
tion of temperature or field. We assume the
zeroes, zj , are on a line impacting on to the
real axis at the critical point, zc. Parameteris-
ing zeroes on this line by zj = zc + rj exp (iϕ)
we may define the density of zeroes as gL(r) =
L−d

∑

j δ(r − rj(L)). The cumulative distribu-

tion function of zeroes is then GL(r) =
∫ r

0 gL(s)ds

which is j/Ld if r ∈ (rj , rj+1). At a zero one may
assume the cumulative density is given by the av-
erage GL(rj) = (2j − 1)/2Ld.

For a first-order phase transition this inte-
grated density of zeroes is, in the thermodynamic
limit, given by

G∞(r) = g∞(0)r , (3)

so that the density is non-vanishing at the real
axis [4]. The slope at the origin in (3) is related
to the latent heat (magnetization) in the Fisher
(Lee-Yang) case via [4] g∞(0) ∝ ∆e.

For a second-order transition the corresponding
expressions for Fisher and Lee-Yang zeroes are [5]

G∞(r) ∝ r2−α and G∞(r) ∝ r2d/(d+2−η) . (4)
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Traditional FSS emerges quite naturally from
this density approach. Equating GL(rj) to (4) in
the second-order Fisher case, gives the usual FSS
formula for fixed index zeroes, rj(L) ∼ L−1/ν ,
where rj may be taken to be the imaginary
part of the jth zero. Similarly, in the Lee-Yang
case, one recovers the fixed index FSS formula
hj(L) ∼ L−(d+2−η)/2. Moreover, considering (3)
gives rj(L) ∼ L−d, explaining also the usual iden-
tification of ν with 1/d for a first-order tempera-
ture driven phase transition.

A plot of GL(rj) against rj(L) should thus (i)
go through the origin, (ii) display L- and j- col-
lapse and (iii) reveal the order and strength of
the phase transition by its slope near the origin.

3. APPLICATIONS

Superimposing the behaviour (3) and (4) at
first- and second-order transitions, the ansatz for
the cumulative density can be written as

G(r) = a1r
a2 + a3 , (5)

where we also introduced an additional parameter
a3 signalising the absence of a phase transition:
if a3 > 0 the zeroes have already crossed the real
axis (broken phase scenario) while for a3 < 0 the
zeroes have not yet reached the real axis (sym-
metric phase). For Fisher zeroes, a first-order
transition is indicated if a2 ∼ 1 for small r, in
which case the latent heat is proportional to the
slope a1. A value of a2 larger than 1 signals a
second-order transition whose strength is given
by α = 2− a2.
2D 10-State Potts Model: This is the
paradigm for models exhibiting a strong first-
order transition. Using the first six Fisher ze-
roes for L = 4–64 as listed in [6] we find the
distribution of zeroes depicted in Fig. 1(a). The
excellent data collapse for various L and j indi-
cates that the interpolated GL(rj) is the proper
choice. Fitting (5) to the L = 16–64, j = 1–4 data
points gives a2 = 1.10(1) and a3 = 0.00004(1), a
strong indication of a first-order transition. Fix-
ing a3 = 0, a2 = 1, a single-parameter fit close to
the origin yields a slope corresponding to latent
heat ∆e = 0.698(2) which compares well with the
exact value of 0.6961.
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Figure 1. Distribution of partition function ze-
roes. (a) 2D 10-state Potts model and (b) 3D
Lt = 4 SU(3) lattice gauge theory.

(a)

(b)

3D SU(3) Lattice Gauge Theory: Here we
consider the deconfinement transition for LtL
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lattices. The lowest Fisher zeroes for Lt = 4
and spatial extent L = 4–24 are given in [7].
Applying standard FSS analysis to the L ≥ 14
data only yields ν = 0.35(2), compatible with
1/d = 0.33 and thus indicative of a first-order
transition, while fits for L ≤ 8 suggest a continu-
ous transition. Figure 1(b) shows the distribution
of zeroes for all lattices, and the insert highlights
L ≥ 14. The figure, clearly supportive of a non-
zero slope through the origin, justifies restricting
the analysis to the largest lattices and thereby
elucidating the procedure of deciding where FSS
sets in. This slope is 0.0121(3), implying a latent
heat of 0.0760(19) in agreement with the estimate
0.0758(14) using standard methods [7].
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Figure 2. 4D Abelian surface gauge model.

4D Abelian Surface Gauge Model: Being the
dual of the 4D Ising model one expects for this
model, up to logarithmic corrections, mean-field
critical exponents α = 0, ν = 1/2. The first two
Fisher zeroes for lattices of size L = 3–12 are
listed in [8] where a conventional analysis applied
to the first index zero yields the best estimate of
ν = 0.469(17) from the two largest lattices. A
fit of (5) to the distribution in Fig. 2 yields a2

incompatible with unity. Using the data near the
origin gives a2 = 1.90(9) or α = 0.10(9), compat-
ible with zero.
2D XY Model: Here we demonstrate that the
density technique is also applicable in the Lee-
Yang case. Figure 3 depicts the distribution of
these zeroes for the 2D XY model at the criti-
cal point, βc = 1.113, obtained for lattice sizes
L = 32–256 [9]. From (4), and with η = 1/4,
one expects G(r) ∼ r16/15. A three-parameter fit
(5) gives a3 = 0, indicating that criticality has
indeed been reached. A two-parameter fit now
yields a2 = 1.063(3), compatible with expectation
(taking logarithmic corrections into account).

4. CONCLUSIONS

We have discussed a new method to extract
the (continuous) density of zeroes from (discrete)
finite-size data and demonstrated how this can be
used to distinguish between phase transitions of
first and second order as well as to measure their
strengths. The method meets with a high degree
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Figure 3. 2D XY model (Lee-Yang case).

of success in lattice field theory and statistical
physics and lends new insights into the origins of
finite-size scaling.
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