Skew exactness perturbation Robin Harte and David Larson

The first author was partially supported by Enterprise Ireland grant number IC/2001/027

Abstract We offer a perturbation theory for finite ascent and descent properties of bounded operators.

There are various degrees of "skew exactness" ([10];[7] (10.9.0.1), (10.9.0.2)) between compatible pairs of operators, bounded and linear between normed spaces:

1. Definition Suppose $T : X \to Y$ and $S : Y \to Z$ are bounded and linear between normed spaces; then we may classify the pair (S,T) as left skew exact if there is inclusion

1.1
$$S^{-1}(0) \cap T(X) = \{0\}$$
,

strongly left skew exact if there is k > 0 for which

1.2
$$||T(\cdot)|| \le k ||ST(\cdot)|| ,$$

and splitting left skew exact if there is $R \in BL(Z, Y)$ for which

1.3
$$T = RST$$
.

Also we may classify the pair (S,T) as right skew exact if there is inclusion

1.4
$$S^{-1}(0) + T(X) = Y$$
,

strongly right skew exact if there is k > 0 for which: for every $y \in Y$ there is $x \in X$ for which

1.5
$$Sy = STx \text{ with } \|x\| \le k \|y\|,$$

and splitting right skew exact if there is $R \in BL(Y, X)$ for which

1.6
$$S = STR$$
.

It is easy to see that

2. Theorem In the notation of Definition 1, there is implication

$$2.1 \qquad (1.3) \Longrightarrow (1.2) \Longrightarrow (1.1)$$

and

$$2.2 \qquad (1.6) \Longrightarrow (1.5) \Longrightarrow (1.4)$$

Proof. Most of this holds slightly more generally ([7] Theorems 10.1.2, 10.1.4), with a general operator $R': X \to Z$ in place of the product ST. Note that (cf [3] (6.1)) (1.1) holds iff

2.3
$$(ST)^{-1}(0) \subseteq T^{-1}(0)$$
,

and that (1.4) holds iff

2.4
$$S(Y) \subseteq ST(X) \bullet$$

For Hilbert spaces X, Y, Z there is ([7] Theorem 10.8.1) implication (1.2) \Longrightarrow (1.3) and (1.5) \Longrightarrow (1.6).

A slightly stronger version of the condition (1.1) asks that

2.5
$$S^{-1}(0) \cap \operatorname{cl} T(X) = \{0\}$$

which says that the operator $K_M J_N$ is one one, where (cf Yang [11];[5]) $K_M : Y \to Y/M$ and $J_N : N \to Y$ are the natural quotient and injection induced by the subspaces M = cl TX and $N = S^{-1}(0)$. Stronger again is the condition that there be k > 0 for which there is implication

2.6
$$y \in S^{-1}(0) \Longrightarrow ||y|| \le k \operatorname{dist}(y, T(X))$$

which says that the same operator $K_M J_N$ is bounded below. Evidently

$$(1.2) \Longrightarrow (2.6) \Longrightarrow (2.5) \Longrightarrow (1.1)$$

if k > 0 satisfies (1.2) and if Sy = 0 then

$$||y|| \le ||y - Tx|| + ||Tx|| \le ||y - Tx|| + k||S(Tx - y)|| \le (1 + k||S||)||y - Tx|| \bullet$$

Condition (2.6), with k = 1, has been noticed by Anderson [1], who describes it by calling T(X) orthogonal to $S^{-1}(0)$. Turnsek [13] has observed that it holds for certain operators on Banach algebras:

3. Theorem If $S \in BL(Y, Y)$ then (2.6) holds with k = 1 for (S, S) provided

3.1
$$||I - S|| \le 1$$
.

Proof. Following the argument of Turnsek ([13] Theorem 1.1) write

$$S = I - U$$
 and $V_n = I + U + \ldots + U^n$

so that

3.2

$$Sy = 0 \Longrightarrow (n+1)y = V_n y = (I - U^{n+1})x + V_n(y - Sx)$$

 $SV_n = I - U^{n+1} = V_n S$

and hence

$$||y|| \le \frac{2}{n+1} ||x|| + ||y - Sx||;$$

now let $n \to \infty \bullet$

The argument of Theorem 3 suggests - wrongly - that we are using a weakened version of the condition (1.3): we call the pair (S,T) almost left skew exact if there are (R_n) in BL(Z,Y) with

3.3
$$||T - R_n ST|| \to 0 \text{ and } \sup_n ||R_n|| < \infty$$

and almost right skew exact if instead (R_n) in BL(Y, X) with

3.4
$$||S - STR_n|| \to 0 \text{ and } \sup_n ||R_n|| < \infty$$

Also call (S, T) almost strongly right skew exact if there is k > 0 for which: for every $y \in Y$ there is (x_n) in X for which

3.5
$$||Sy - STx_n|| \to 0 \text{ with } \sup_n ||x_n|| \le k ||y||$$

Evidently (cf [10] Theorem 10.1.2)

$$3.6 \tag{1.3} \Longrightarrow (3.3) \Longrightarrow (1.2)$$

and

$$3.7 \qquad (1.6) \Longrightarrow (3.4) \Longrightarrow (3.5) ;$$

thus (3.3) implies (2.6). We do not however derive (3.3) for (S, S) from the condition (3.1). We also remark that, whenever the space Z is complete, there is implication

$$3.8 \tag{1.4} \Longrightarrow (3.5) :$$

this ([2];[4] Theorem 1.1; [7] Theorem 10.5.5) uses Baire's theorem.

Under certain circumstances the "left" and "right" skew exactnesses are equivalent; we begin (cf [3] Lemma 6.2) by extending the finite ascent/descent characterizations:

4. Theorem Suppose, under the conditions of Definition 1, that $W \subseteq X$ with $T(W) \subseteq S^{-1}(0)$, and that $V \subseteq Y$ with $T(X) \subseteq S^{-1}(V)$. Then each of the following conditions is equivalent to (1.1):

4.1
$$T^{\vee}: X/T^{-1}(0) \to Y/S^{-1}(0)$$
 one one;

4.2
$$S^{\wedge}: T(X) \to V \text{ is one one }.$$

Also each of the following conditions is equivalent to the condition (1.4):

4.3
$$S^{\wedge}: T(X) \to S(Y) \text{ onto };$$

4.4
$$T^{\vee}: X/W \to Y/S^{-1}(0)$$
 is onto .

Proof. The equivalences $(1.1) \iff (4.1)$ and $(1.4) \iff (4.3)$ are clear. We claim that (1.1) is equivalent to (4.2) with V = Z, and that this in turn is equivalent to (4.2) for arbitrary V for which $T(X) \subseteq S^{-1}V$. The second equivalence is clear; for the first note that for arbitrary $x \in X$ there is implication

$$S(Tx) \in S^{-1}(0) \iff STx = 0$$
.

We also claim that (1.4) is equivalent to (4.4) with $W = \{0\}$, and that this in turn is equivalent to (4.4) for arbitrary W for which $T(W) \subseteq S^{-1}(0)$. The second equivalence is clear; for the first note that for arbitrary $y \in Y$ there is implication

$$y \in S^{-1}(0) + T(X) \iff Sy \in S(TX) \bullet$$

If in particular X = Y = Z and ST = TS then (4.2) applies with V = T(X), and (4.4) applies with $W = S^{-1}(0)$. We apply this in particular with $S = T^k$ for some $k \in \mathbb{N}$:

5. Theorem If X = Y = Z and $S = T^k : Y \to Y$, with T in the "commutative closure" of the invertibles, in the sense that there are (R_n) in BL(X, X) with

5.1
$$R_n \in BL^{-1}(X, X) ; R_n T = TR_n ; ||R_n - T|| \to 0$$
,

then the following are equivalent:

5.2
$$(ST)^{-1}(0) \subseteq T^{-1}(0) \text{ and } T(X) = \operatorname{cl} T(X);$$

5.3
$$S(Y) \subseteq ST(X) \text{ and } T(X) = \operatorname{cl} T(X)$$
.

Proof. We recall ([5];[7] Theorem 3.5.1) that for bounded linear operators $T : X \to Y$ between (possibly incomplete) normed spaces

5.4 T bounded below and a limit of dense $\implies T$ almost open,

and hence ([5]; [7] Theorem 5.5.6) by duality

5.5 T almost open and a limit of bounded below $\implies T$ bounded below .

Now if R_n commutes with T then it leaves both T(X) and $S^{-1}(0)$ invariant, and if R_n is invertible then (cf [7] Theorem 3.11.1) its restriction R_n^{\wedge} to T(X) will be bounded below and its quotient on $Y/S^{-1}(0)$ will be onto. Thus if we assume (5.2) then by (4.1) and closed range T^{\vee} will be bounded below and the limit of onto R_n^{\vee} , therefore onto, giving (5.3). If instead we assume (5.3) then by (4.3) S^{\wedge} will be onto and by closed range almost open, and the limit of bounded below $(R_n^k)^{\wedge}$, therefore bounded below, giving (5.2) •

(5.2) and (5.3) are together equivalent to the condition that $T \in BL(X, X)$ is polar ([7] Definition 7.5.2), in the sense that $0 \in \mathbb{C}$ is at worst a pole of the resolvent function $(zI - T)^{-1}$. If we relax the closed range condition we can still [12] get one of the implications, provided we further tighten the approximation by commuting invertible operators:

6. Theorem Suppose that $S = T^k$ and that $0 \notin \text{int } \sigma(T)$. If the finite descent condition (1.4) holds then so also does the finite ascent condition (5.2), including closed range.

Proof. This is shown on Hilbert space ([12] Lemma 2.5) by Herrero, Larson and Wogen. Alternatively, since we are assuming that 0 is at worst on the boundary of the spectrum then we can take the approximating invertible operators $R_n = T - \lambda_n I$ to be scalar perturbations of the operator T. Now if (1.4) holds, then the quotient operator T^{\vee} on $X/S^{-1}(0)$ is (4.5) onto, and the limit of operators $(T - \lambda_n I)^{\vee}$, which we claim are invertible. As in Theorem 5 it is clear that the quotient $(T - \lambda_n I)^{\vee}$ is onto: we claim it is also one one. To see this recall that the operator $T - \lambda_n I$ is one-one and the restriction $(T - \lambda_n I)^{\wedge} = (-\lambda_n I)^{\wedge}$ to the subspace $T^{-1}(0)$ is onto, so that ([4] Theorem 3.11.2) the induced quotient is also one one. For the closed range note that T(X) now has a closed complement, and appeal to the "Lemma of Neuberger" ([7] Theorem 4.8.2) •

Theorem 6 does not reverse:

7. Example If

7.1
$$S = I - \lambda U \text{ or } S = I - \lambda V \text{ or } S = \lambda W$$
,

where $|\lambda| = 1$, U and V are the forward and backward shifts on ℓ_2 , and W the standard weight,

7.2
$$(Ux)_1 = 0$$
, $(Ux)_{n+1} = x_n$; $(Vx)_n = x_{n+1}$; $(Wx)_n = (1/n)x_n$,

then S is one one and not onto, therefore of finite descent and not of finite ascent, while

7.3
$$||I - S|| = 1$$
 so that $0 \notin int \sigma(S)$.

Proof. This is easily checked: note that, extended to all sequences, there is equivalence, for arbitrary $x \in X^{\mathbf{N}}$,

7.4
$$x \in (I - \lambda U)^{-1} \iff x \in (I - \overline{\lambda}V)^{-1} \iff x = x_1(1, \lambda, \lambda^2, \ldots) \bullet$$

We need some auxiliary subspaces:

8. Definition If $T \in BL(X, X)$ write

8.1
$$T^{-\infty}(0) = \bigcup_{n=1}^{\infty} T^{-n}(0) \text{ and } T^{\infty}(X) = \bigcap_{n=1}^{\infty} T^{n}(X)$$

for the hyperkernel and the hyperrange of T, and

8.2
$$E_X(T) = \sum_{\lambda \in \mathbf{C}} (T - \lambda I)^{-\infty}(0) \text{ and } F_X(T) = \bigcap_{\lambda \in \mathbf{C}} (T - \lambda I)^{\infty}(X) .$$

Each of the subspaces in Definition 8 is linear, not necessarily closed, and hyperinvariant under T. We recall that $T \in BL(X, X)$ is called algebraic if there is a nontrivial polynomial $0 \neq p \in Poly$ for which

$$p(T) = 0 ;$$

more generally T is said to be *locally algebraic* if

8.4
$$X = \bigcup \{ p(T)^{-1}(0) : 0 \neq p \in \text{Poly} \}$$

For the record

9. Theorem If $T \in BL(X, X)$ for a Banach space X then

9.1 T locally algebraic $\implies T$ algebraic.

Necessary and sufficient for T to have finite descent is that

9.2
$$E_X(T) + T(X) = X$$

Proof. The first part of this is known as *Kaplansky's Lemma*; the proof [9] is a combination of Baire's theorem and the Euclidean algorithm for polynomials. The Euclidean algorithm also gives equality

9.3
$$E_X(T) = \bigcup \{ p(T)^{-1}(0) : 0 \neq p \in \text{Poly} \} = \{ x \in X : \dim \text{Poly}(T) \\ x < \infty \} ,$$

and dually

9.4
$$F_X(T) = \bigcap \{ p(T)(X) : 0 \neq p \in \text{Poly} \} .$$

Then again with a combination of Baire's theorem and the Euclidean algorithm, if $T \in BL(X, X)$ there is ([12] Lemma 2.4) $k \in \mathbb{N}$ for which

9.5
$$E_X(T) + T(X) = T^{-\infty}(0) + T(X) = T^{-k}(0) + T(X) \bullet$$

Dually, using the Euclidean algorithm, we get half way:

9.6
$$F_X(T) \cap T^{-1}(0) = T^{\infty}(X) \cap T^{-1}(0) .$$

For the essence of a possible spectral mapping theorem (cf [10]), we have

10. Theorem If $S, T \in BL(X, X)$ satisfy ST = TS and either

10.1
$$S \in \{T^k : k \in \mathbf{N}\}$$

or

10.4

10.2
$$VS - TU = I \text{ with } \{U, V\} \subseteq \operatorname{comm}(S, T) ,$$

then there is equivalence

10.3
$$ST$$
 of finite ascent $\iff S$, T of finite ascent

and equivalence

$$ST$$
 of finite descent $\iff S$, T of finite descent

Proof. The backward implications are easy ([7] Theorem 7.9.2): if S and T commute and satisfy $S^{-k}(0) = S^{-k-1}(0)$ and $T^{-k}(0) = T^{-k-1}(0)$ then

$$(ST)^{-k}(0) = S^{-k}T^{-k}(0) = S^{-k}T^{-k-1}(0) = T^{-k-1}S^{-k}(0) = T^{-k-1}S^{-k-1}(0) = (ST)^{-k-1}(0) ,$$

if instead ST = TS with $S^k X = S^{k+1} X$ and $T^k X = T^{k+1} X$ then

$$(ST)^{k}X = S^{k}T^{k}(X) = S^{k}T^{k+1}X = T^{k+1}S^{k}X = T^{k+1}S^{k+1}X = (ST)^{k+1}X .$$

Also the forward implications are clear when (10.1) $S = T^k$ is a power of T; if instead we assume (10.2) then we argue

10.5
$$(ST)^{-1}(0) \subseteq T^{-1}(0) + T(X) \text{ and } (ST)X \supseteq T^{-1}(0) \cap T(X)$$
,

while if (U, V) satisfies (10.2) then for arbitrary $k \in \mathbf{N}$

10.6
$$V_k S^k - T^k U_k = I \text{ with } \{U_k, V_k\} \subseteq \operatorname{comm}(S^k, T^k) .$$

To verify (10.5) argue

$$STx = 0 \Longrightarrow x + TUx = VSx \in T^{-1}(0)$$
; $T(Tx) = 0 \Longrightarrow Tx = TVSx - TUTx = (ST)(Vx)$

For (10.6) note that for arbitrary $k \in \mathbf{N}$

$$VS - TU = I \Longrightarrow V^{k+1}S^{k+1} - TU(I + VS + \dots + V^kS^k) = I \bullet$$

For an induced "spectrum" to be a closed set we have

11. Theorem $T \in BL(X, X)$ is of finite descent then so is $T - \lambda I$ for sufficiently small $\lambda \in \mathbb{C}$.

Proof. This has been shown on Hilbert space by Han/Larson/Pan ([11] Lemma 2.2, Theorem 2.4). It is clear from the open mapping theorem (applied to the condition (4.4) with $W = \{0\}$) that if the condition (1.4) holds then also

$$S^{-1}(0) + (T - U)(X) = Y$$

whenever $T - U \in BL(X, Y)$ is sufficiently close to $T \in BL(X, Y)$: the problem is that we must also perturb S. However if $S = T^k$ and $U = \lambda I$, so that $E_X(T - U) = E_X(T)$, then we can argue

$$E_X(T-U) + (T-U)(X) = E_X(T) + (T-U)(X) \supseteq S^{-1}(0) + (T-U)(X) = X \bullet$$

The subspaces of Definition 8 lead to certain special kinds of operator:

12. Definition We shall call $T \in BL(X, X)$ triangular if the subspace $E_X(T)$ is dense:

12.1
$$\operatorname{cl} E_X(T) = X$$

Dually $T \in BL(X, X)$ is co-triangular if the subspace $F_X(T)$ is trivial:

12.2
$$F_X(T) = \{0\}$$

The shifts of Example 7 are either triangular or co-triangular:

13. Example On each of the spaces c_0 and ℓ_p $(1 \le p < \infty)$, the forward shift U is triangular, the backward shift V is co-triangular and the standard weight W is both triangular and co triangular.

Proof. The hyperkernel of the backward shift is dense, since it includes all the "terminating" sequences:

$$V^{-\infty}(0) \supseteq c_{00} .$$

Thus

13.2
$$E(V) \supseteq V^{-\infty}(0)$$
 is dense

and also

13.3
$$F(V) = \bigcap_{|\lambda|=1} (V - \lambda I)^{\infty}(X) \supseteq \sum_{|\lambda|<1} (V - \lambda I)^{-\infty}(0) \supseteq V^{-\infty}(0) \text{ is dense }.$$

Since $U - \lambda I$ is one one for every $\lambda \in \mathbf{C}$ we have

13.4
$$E(U) = \{0\} \text{ is trivial}$$

and also

13.5
$$F(U) \subseteq U^{\infty}(X) = \{0\} \text{ is trivial }.$$

Finally we notice that the weight W commutes with the projection UV, and more generally

13.6
$$WU^nV^n = U^nV^nW \ (n \in \mathbf{N}) ;$$

also for each $n \in \mathbf{N}$

13.7
$$\left(\frac{1}{n}I - W\right)^{-1}(0) = U^{n-1}(I - UV)V^{n-1}(X) \text{ and } \left(\frac{1}{n}I - W\right)(X) = \left(U^{n-1}(I - UV)V^{n-1}\right)^{-1}(0),$$

so that E(W) is dense and F(W) is trivial \bullet

Triangularity and Fredholmness co-operate to generate finite ascent or descent: **14. Theorem** If $T \in BL(X, X)$ then

14.1
$$T$$
 upper semi-Fredholm and co-triangular \implies T of finite ascent

and

14.2
$$T$$
 lower semi-Fredholm and triangular \implies T of finite descent.

Proof. If $T \in BL(X, X)$ is upper semi-Fredholm then the finite ascent condition can be written in the form

14.3
$$F_X(T) \cap T^{-1}(0) = \{0\}$$
.

Indeed since ([7] Theorem 6.12.2) each power T^m is also upper semi-Fredholm then $T^{-m}(0)$ is finite dimensional for each $m \in \mathbb{N}$ and $T^m(X)$ is closed; thus if for each $m \in \mathbb{N}$ we have $T^m(X) \cap T^{-1}(0) \neq \{0\}$ then there is (x_m) in X for which

$$||T^m(x_m)|| = 1$$
 and $T^{m+1}x_m = 0$.

By local compactness there is a subsequence

$$(y_m) = T^{\phi(m)}(x_{\phi(m)}) \to y_\infty \in T^{\phi(m)}(X)$$

using the closedness of all the ranges, so that $||y_{\infty}|| = 1$ and $y_{\infty} \in F_X(T) \cap T^{-1}(0)$. This proves (14.1); towards (14.2) we claim that for subspaces $Y, Z \subseteq X$

14.4 Y closed of finite codimension and Z dense \implies Y + Z = X :

because if $\dim(X/Y) = n$ find successively e_1, e_2, \ldots, e_n with $e_{j+1} \in Z \setminus (Y + \mathbb{C}e_1 + \mathbb{C}e_2 + \ldots + \mathbb{C}e_j)$. Applying this with Y = T(X) and $Z = E_X(T)$ gives (14.2) •

It is clear that in (14.1) we can replace the "co-triangular" condition (12.2) by the weaker condition (14.3); dually in (14.2) we can replace the triangular condition (12.1) by the weaker condition

14.5 cl
$$E_X(T) + T(X) = X$$
.

For operators which are both upper semi Fredholm and of finite ascent, or lower semi Fredholm of finite descent ("semi Browder" in the sense of [7] Definition 7.9.1) the conditions of Theorem 11 can be replaced by simple commutivity ([7] Theorem 7.9.2).

References

- 1. J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1983) 136-140.
- 2. M.R. Embry, Factorization of operators on Banach spaces, Proc. Amer. Math. Soc. 38 (1973) 587-590.
- 3. S. Grabiner, Generalizations of Fredholm operators, Banach algebras 97 pp 170-187, de Gruyter 1998.
- R.E. Harte, Berberian-Quigley and the ghost of a spectral mapping theorem, Proc. Royal Irish Acad. 78A (1978) 63-68.
- R.E. Harte, Almost open mappings between normed spaces, Proc. Amer. Math. Soc. 90 (1984) 243-249.
- 6. R.E. Harte, Almost exactness between normed spaces, Proc. Amer. Math. Soc. 100 (1987) 257-265.
- 7. R.E. Harte, Invertibility and singularity, Dekker New York 1988.
- 8. R.E. Harte, Eine Kleine Gapmusik, PanAmerican Jour. 2 (1992) 101-102.
- 9. R.E. Harte, Taylor exactness and Kaplansky's lemma, Jour. Op. Th. 25 (1991) 399-416.
- R.E. Harte, Exactness plus skew exactness equals invertibility, Proc. Royal Irish Acad. 97A (1997) 15-18.
- 11. D. Han, D.R. Larson and Z. Pan, The triangular extension spectrum and algebraic extensions of operators, preprint.
- D.A. Herrero, D.R. Larson and W.R. Wogen, Semitriangular operators, Houston Jour. Math. 17 (1991) 477-499.
- 13. A. Turnsek, Elementary operators and orthogonality, Linear Alg. Anal. 317 (2000) 207-216.
- 14. K.W. Yang, Index of Fredholm operators, Proc. Amer. Math. Soc. 41 (1973) 329-330.