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Abstract We offer a perturbation theory for finite ascent and descent properties of bounded operators.

There are various degrees of “skew exactness” ([10];[7] (10.9.0.1), (10.9.0.2)) between compatible pairs
of operators, bounded and linear between normed spaces:
1. Definition Suppose T : X → Y and S : Y → Z are bounded and linear between normed spaces; then
we may classify the pair (S, T ) as left skew exact if there is inclusion

1.1 S−1(0) ∩ T (X) = {0} ,

strongly left skew exact if there is k > 0 for which

1.2 ‖T (·)‖ ≤ k‖ST (·)‖ ,

and splitting left skew exact if there is R ∈ BL(Z, Y ) for which

1.3 T = RST .

Also we may classify the pair (S, T ) as right skew exact if there is inclusion

1.4 S−1(0) + T (X) = Y ,

strongly right skew exact if there is k > 0 for which: for every y ∈ Y there is x ∈ X for which

1.5 Sy = STx with ‖x‖ ≤ k‖y‖ ,

and splitting right skew exact if there is R ∈ BL(Y,X) for which

1.6 S = STR .

It is easy to see that
2. Theorem In the notation of Definition 1, there is implication

2.1 (1.3) =⇒ (1.2) =⇒ (1.1)

and

2.2 (1.6) =⇒ (1.5) =⇒ (1.4) .

Proof. Most of this holds slightly more generally ([7] Theorems 10.1.2, 10.1.4), with a general operator
R′ : X → Z in place of the product ST . Note that (cf [3] (6.1)) (1.1) holds iff

2.3 (ST )−1(0) ⊆ T−1(0) ,

and that (1.4) holds iff

2.4 S(Y ) ⊆ ST (X) •

For Hilbert spaces X,Y, Z there is ([7] Theorem 10.8.1) implication (1.2)=⇒(1.3) and (1.5)=⇒(1.6).
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A slightly stronger version of the condition (1.1) asks that

2.5 S−1(0) ∩ cl T (X) = {0} ,

which says that the operator KMJN is one one, where (cf Yang [11];[5]) KM : Y → Y/M and JN : N → Y
are the natural quotient and injection induced by the subspaces M = cl TX and N = S−1(0). Stronger
again is the condition that there be k > 0 for which there is implication

2.6 y ∈ S−1(0) =⇒ ‖y‖ ≤ k dist(y, T (X)) ,

which says that the same operator KMJN is bounded below. Evidently

2.7 (1.2) =⇒ (2.6) =⇒ (2.5) =⇒ (1.1) :

if k > 0 satisfies (1.2) and if Sy = 0 then

‖y‖ ≤ ‖y − Tx‖+ ‖Tx‖ ≤ ‖y − Tx‖+ k‖S(Tx− y)‖ ≤ (1 + k‖S‖)‖y − Tx‖ •

Condition (2.6), with k = 1, has been noticed by Anderson [1], who describes it by calling T (X)
orthogonal to S−1(0). Turnsek [13] has observed that it holds for certain operators on Banach algebras:
3. Theorem If S ∈ BL(Y, Y ) then (2.6) holds with k = 1 for (S, S) provided

3.1 ‖I − S‖ ≤ 1 .

Proof. Following the argument of Turnsek ([13] Theorem 1.1) write

S = I − U and Vn = I + U + . . .+ Un ,

so that

3.2 SVn = I − Un+1 = VnS

and we have
Sy = 0 =⇒ (n+ 1)y = Vny = (I − Un+1)x+ Vn(y − Sx)

and hence
‖y‖ ≤ 2

n+ 1
‖x‖+ ‖y − Sx‖ ;

now let n→∞ •
The argument of Theorem 3 suggests - wrongly - that we are using a weakened version of the condition

(1.3): we call the pair (S, T ) almost left skew exact if there are (Rn) in BL(Z, Y ) with

3.3 ‖T −RnST‖ → 0 and supn‖Rn‖ <∞ ,

and almost right skew exact if instead (Rn) in BL(Y,X) with

3.4 ‖S − STRn‖ → 0 and supn‖Rn‖ <∞ .

Also call (S, T ) almost strongly right skew exact if there is k > 0 for which: for every y ∈ Y there is (xn) in
X for which

3.5 ‖Sy − STxn‖ → 0 with supn‖xn‖ ≤ k‖y‖ .

Evidently (cf [10] Theorem 10.1.2)

3.6 (1.3) =⇒ (3.3) =⇒ (1.2)

and

3.7 (1.6) =⇒ (3.4) =⇒ (3.5) ;

thus (3.3) implies (2.6). We do not however derive (3.3) for (S, S) from the condition (3.1). We also remark
that, whenever the space Z is complete, there is implication

3.8 (1.4) =⇒ (3.5) :

this ([2];[4] Theorem 1.1; [7] Theorem 10.5.5) uses Baire’s theorem.
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Under certain circumstances the “left” and “right” skew exactnesses are equivalent; we begin (cf [3]
Lemma 6.2) by extending the finite ascent/descent characterizations:
4. Theorem Suppose, under the conditions of Definition 1, that W ⊆ X with T (W ) ⊆ S−1(0), and that
V ⊆ Y with T (X) ⊆ S−1(V ). Then each of the following conditions is equivalent to (1.1):

4.1 T∨ : X/T−1(0)→ Y/S−1(0) one one ;

4.2 S∧ : T (X)→ V is one one .

Also each of the following conditions is equivalent to the condition (1.4):

4.3 S∧ : T (X)→ S(Y ) onto ;

4.4 T∨ : X/W → Y/S−1(0) is onto .

Proof. The equivalences (1.1)⇐⇒(4.1) and (1.4)⇐⇒(4.3) are clear. We claim that (1.1) is equivalent to
(4.2) with V = Z, and that this in turn is equivalent to (4.2) for arbitrary V for which T (X) ⊆ S−1V . The
second equivalence is clear; for the first note that for arbitrary x ∈ X there is implication

S(Tx) ∈ S−1(0)⇐⇒ STx = 0 .

We also claim that (1.4) is equivalent to (4.4) with W = {0}, and that this in turn is equivalent to (4.4) for
arbitrary W for which T (W ) ⊆ S−1(0). The second equivalence is clear; for the first note that for arbitrary
y ∈ Y there is implication

y ∈ S−1(0) + T (X)⇐⇒ Sy ∈ S(TX) •

If in particular X = Y = Z and ST = TS then (4.2) applies with V = T (X), and (4.4) applies with
W = S−1(0). We apply this in particular with S = T k for some k ∈ N:
5. Theorem If X = Y = Z and S = T k : Y → Y , with T in the “commutative closure” of the invertibles,
in the sense that there are (Rn) in BL(X,X) with

5.1 Rn ∈ BL−1(X,X) ; RnT = TRn ; ‖Rn − T‖ → 0 ,

then the following are equivalent:

5.2 (ST )−1(0) ⊆ T−1(0) and T (X) = cl T (X) ;

5.3 S(Y ) ⊆ ST (X) and T (X) = cl T (X) .

Proof. We recall ([5];[7] Theorem 3.5.1) that for bounded linear operators T : X → Y between (possibly
incomplete) normed spaces

5.4 T bounded below and a limit of dense =⇒ T almost open ,

and hence ([5];[7] Theorem 5.5.6) by duality

5.5 T almost open and a limit of bounded below =⇒ T bounded below .

Now if Rn commutes with T then it leaves both T (X) and S−1(0) invariant, and if Rn is invertible then (cf
[7] Theorem 3.11.1) its restriction R∧n to T (X) will be bounded below and its quotient on Y/S−1(0) will be
onto. Thus if we assume (5.2) then by (4.1) and closed range T∨ will be bounded below and the limit of
onto R∨n , therefore onto, giving (5.3). If instead we assume (5.3) then by (4.3) S∧ will be onto and by closed
range almost open, and the limit of bounded below (Rkn)∧, therefore bounded below, giving (5.2) •
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(5.2) and (5.3) are together equivalent to the condition that T ∈ BL(X,X) is polar ([7] Definition
7.5.2), in the sense that 0 ∈ C is at worst a pole of the resolvent function (zI − T )−1. If we relax the closed
range condition we can still [12] get one of the implications, provided we further tighten the approximation
by commuting invertible operators:
6. Theorem Suppose that S = T k and that 0 6∈ int σ(T ). If the finite descent condition (1.4) holds then
so also does the finite ascent condition (5.2), including closed range.

Proof. This is shown on Hilbert space ([12] Lemma 2.5) by Herrero, Larson and Wogen. Alternatively, since
we are assuming that 0 is at worst on the boundary of the spectrum then we can take the approximating
invertible operators Rn = T − λnI to be scalar perturbations of the operator T . Now if (1.4) holds, then
the quotient operator T∨ on X/S−1(0) is (4.5) onto, and the limit of operators (T − λnI)∨, which we claim
are invertible. As in Theorem 5 it is clear that the quotient (T − λnI)∨ is onto: we claim it is also one one.
To see this recall that the operator T − λnI is one-one and the restriction (T − λnI)∧ = (−λnI)∧ to the
subspace T−1(0) is onto, so that ([4] Theorem 3.11.2) the induced quotient is also one one. For the closed
range note that T (X) now has a closed complement, and appeal to the “Lemma of Neuberger” ([7] Theorem
4.8.2) •

Theorem 6 does not reverse:
7. Example If

7.1 S = I − λU or S = I − λV or S = λW ,

where |λ| = 1, U and V are the forward and backward shifts on `2, and W the standard weight,

7.2 (Ux)1 = 0 , (Ux)n+1 = xn ; (V x)n = xn+1 ; (Wx)n = (1/n)xn ,

then S is one one and not onto, therefore of finite descent and not of finite ascent, while

7.3 ‖I − S‖ = 1 so that 0 6∈ int σ(S) .

Proof. This is easily checked: note that, extended to all sequences, there is equivalence, for arbitrary x ∈ XN,

7.4 x ∈ (I − λU)−1 ⇐⇒ x ∈ (I − λV )−1 ⇐⇒ x = x1(1, λ, λ2, . . .) •

We need some auxiliary subspaces:
8. Definition If T ∈ BL(X,X) write

8.1 T−∞(0) =
∞⋃
n=1

T−n(0) and T∞(X) =
∞⋂
n=1

Tn(X)

for the hyperkernel and the hyperrange of T , and

8.2 EX(T ) =
∑
λ∈C

(T − λI)−∞(0) and FX(T ) =
⋂
λ∈C

(T − λI)∞(X) .

Each of the subspaces in Definition 8 is linear, not necessarily closed, and hyperinvariant under T . We recall
that T ∈ BL(X,X) is called algebraic if there is a nontrivial polynomial 0 6= p ∈ Poly for which

8.3 p(T ) = 0 ;

more generally T is said to be locally algebraic if

8.4 X =
⋃
{p(T )−1(0) : 0 6= p ∈ Poly} .

For the record
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9. Theorem If T ∈ BL(X,X) for a Banach space X then

9.1 T locally algebraic =⇒ T algebraic .

Necessary and sufficient for T to have finite descent is that

9.2 EX(T ) + T (X) = X .

Proof. The first part of this is known as Kaplansky’s Lemma; the proof [9] is a combination of Baire’s
theorem and the Euclidean algorithm for polynomials. The Euclidean algorithm also gives equality

9.3 EX(T ) =
⋃
{p(T )−1(0) : 0 6= p ∈ Poly} = {x ∈ X : dim Poly(T )x <∞} ,

and dually

9.4 FX(T ) =
⋂
{p(T )(X) : 0 6= p ∈ Poly} .

Then again with a combination of Baire’s theorem and the Euclidean algorithm, if T ∈ BL(X,X) there is
([12] Lemma 2.4) k ∈ N for which

9.5 EX(T ) + T (X) = T−∞(0) + T (X) = T−k(0) + T (X) •

Dually, using the Euclidean algorithm, we get half way:

9.6 FX(T ) ∩ T−1(0) = T∞(X) ∩ T−1(0) .

For the essence of a possible spectral mapping theorem (cf [10]), we have
10. Theorem If S, T ∈ BL(X,X) satisfy ST = TS and either

10.1 S ∈ {T k : k ∈ N}

or

10.2 V S − TU = I with {U, V } ⊆ comm(S, T ) ,

then there is equivalence

10.3 ST of finite ascent ⇐⇒ S , T of finite ascent ,

and equivalence

10.4 ST of finite descent ⇐⇒ S , T of finite descent .

Proof. The backward implications are easy ([7] Theorem 7.9.2): if S and T commute and satisfy S−k(0) =
S−k−1(0) and T−k(0) = T−k−1(0) then

(ST )−k(0) = S−kT−k(0) = S−kT−k−1(0) = T−k−1S−k(0) = T−k−1S−k−1(0) = (ST )−k−1(0) ,

if instead ST = TS with SkX = Sk+1X and T kX = T k+1X then

(ST )kX = SkT k(X) = SkT k+1X = T k+1SkX = T k+1Sk+1X = (ST )k+1X .

Also the forward implications are clear when (10.1) S = T k is a power of T ; if instead we assume (10.2) then
we argue

10.5 (ST )−1(0) ⊆ T−1(0) + T (X) and (ST )X ⊇ T−1(0) ∩ T (X) ,

while if (U, V ) satisfies (10.2) then for arbitrary k ∈ N

10.6 VkS
k − T kUk = I with {Uk, Vk} ⊆ comm(Sk, T k) .

To verify (10.5) argue

STx = 0 =⇒ x+ TUx = V Sx ∈ T−1(0) ;T (Tx) = 0 =⇒ Tx = TV Sx− TUTx = (ST )(V x) .

For (10.6) note that for arbitrary k ∈ N

V S − TU = I =⇒ V k+1Sk+1 − TU(I + V S + . . .+ V kSk) = I •

5



For an induced “spectrum” to be a closed set we have
11. Theorem T ∈ BL(X,X) is of finite descent then so is T − λI for sufficiently small λ ∈ C.

Proof. This has been shown on Hilbert space by Han/Larson/Pan ([11] Lemma 2.2, Theorem 2.4). It is
clear from the open mapping theorem (applied to the condition (4.4) with W = {0}) that if the condition
(1.4) holds then also

S−1(0) + (T − U)(X) = Y

whenever T −U ∈ BL(X,Y ) is sufficiently close to T ∈ BL(X,Y ): the problem is that we must also perturb
S. However if S = T k and U = λI, so that EX(T − U) = EX(T ), then we can argue

EX(T − U) + (T − U)(X) = EX(T ) + (T − U)(X) ⊇ S−1(0) + (T − U)(X) = X •

The subspaces of Definition 8 lead to certain special kinds of operator:
12. Definition We shall call T ∈ BL(X,X) triangular if the subspace EX(T ) is dense:

12.1 cl EX(T ) = X .

Dually T ∈ BL(X,X) is co-triangular if the subspace FX(T ) is trivial:

12.2 FX(T ) = {0} .

The shifts of Example 7 are either triangular or co-triangular:
13. Example On each of the spaces c0 and `p (1 ≤ p <∞), the forward shift U is triangular, the backward
shift V is co-triangular and the standard weight W is both triangular and co triangular.

Proof. The hyperkernel of the backward shift is dense, since it includes all the “terminating” sequences:

13.1 V −∞(0) ⊇ c00 .

Thus

13.2 E(V ) ⊇ V −∞(0) is dense

and also

13.3 F (V ) =
⋂
|λ|=1

(V − λI)∞(X) ⊇
∑
|λ|<1

(V − λI)−∞(0) ⊇ V −∞(0) is dense .

Since U − λI is one one for every λ ∈ C we have

13.4 E(U) = {0} is trivial

and also

13.5 F (U) ⊆ U∞(X) = {0} is trivial .

Finally we notice that the weight W commutes with the projection UV , and more generally

13.6 WUnV n = UnV nW (n ∈ N) ;

also for each n ∈ N

13.7 (
1
n
I −W )−1(0) = Un−1(I − UV )V n−1(X) and (

1
n
I −W )(X) = (Un−1(I − UV )V n−1)−1(0) ,

so that E(W ) is dense and F (W ) is trivial •

6



Triangularity and Fredholmness co-operate to generate finite ascent or descent:
14. Theorem If T ∈ BL(X,X) then

14.1 T upper semi-Fredholm and co-triangular =⇒ T of finite ascent

and

14.2 T lower semi-Fredholm and triangular =⇒ T of finite descent .

Proof. If T ∈ BL(X,X) is upper semi-Fredholm then the finite ascent condition can be written in the form

14.3 FX(T ) ∩ T−1(0) = {0} .

Indeed since ([7] Theorem 6.12.2) each power Tm is also upper semi-Fredholm then T−m(0) is finite dimen-
sional for each m ∈ N and Tm(X) is closed; thus if for each m ∈ N we have Tm(X) ∩ T−1(0) 6= {0} then
there is (xm) in X for which

‖Tm(xm)‖ = 1 and Tm+1xm = 0 .

By local compactness there is a subsequence

(ym) = Tφ(m)(xφ(m))→ y∞ ∈ Tφ(m)(X) ,

using the closedness of all the ranges, so that ‖y∞‖ = 1 and y∞ ∈ FX(T ) ∩ T−1(0) . This proves (14.1);
towards (14.2) we claim that for subspaces Y, Z ⊆ X

14.4 Y closed of finite codimension and Z dense =⇒ Y + Z = X :

because if dim(X/Y ) = n find successively e1, e2, . . . , en with ej+1 ∈ Z \ (Y + Ce1 + Ce2 + . . . + Cej).
Applying this with Y = T (X) and Z = EX(T ) gives (14.2) •

It is clear that in (14.1) we can replace the “co-triangular” condition (12.2) by the weaker condition
(14.3); dually in (14.2) we can replace the triangular condition (12.1) by the weaker condition

14.5 cl EX(T ) + T (X) = X .

For operators which are both upper semi Fredholm and of finite ascent, or lower semi Fredholm of finite
descent (“semi Browder” in the sense of [7] Definition 7.9.1) the conditions of Theorem 11 can be replaced
by simple commutivity ([7] Theorem 7.9.2) .
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