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Abstract We offer a perturbation theory for finite ascent and descent properties of bounded operators.

There are various degrees of “skew exactness” ([10];[7] (10.9.0.1), (10.9.0.2)) between compatible pairs
of operators, bounded and linear between normed spaces:

1. Definition Suppose T': X — Y and S : Y — Z are bounded and linear between normed spaces; then
we may classify the pair (S,T) as left skew exact if there is inclusion

1.1 S~H0)nT(X) = {0},

strongly left skew exact if there is k > O for which

1.2 1T < KISTOI

and splitting left skew exact if there is R € BL(Z,Y) for which

1.3 T =RST .

Also we may classify the pair (S,T) as right skew exact if there is inclusion
1.4 ST+ T(X)=Y,

strongly right skew exact if there is k > O for which: for every y € Y there is x € X for which
L5 Sy = STx with [lz|| < Kllyll ,

and splitting right skew exact if there is R € BL(Y, X)) for which

1.6 S=STR.

It is easy to see that

2. Theorem In the notation of Definition 1, there is implication

2.1 (1.3) = (1.2) = (1.1)
and
2.2 (1.6) = (1.5) = (1.4) .

Proof. Most of this holds slightly more generally ([7] Theorems 10.1.2, 10.1.4), with a general operator
R’ : X — Z in place of the product ST . Note that (cf [3] (6.1)) (1.1) holds iff

23 (ST)"'(0) C T(0) |
and that (1.4) holds iff
2.4 S(Y)CST(X) e

For Hilbert spaces X,Y, Z there is ([7] Theorem 10.8.1) implication (1.2)=-(1.3) and (1.5)=-(1.6).



A slightly stronger version of the condition (1.1) asks that
2.5 S7H0)ne T(X) = {0},

which says that the operator KsJn is one one, where (cf Yang [11};[5]) Kp : Y - Y/M and Jy : N =Y
are the natural quotient and injection induced by the subspaces M = cl TX and N = S~1(0). Stronger
again is the condition that there be k > 0 for which there is implication

2.6 y € S7H0) = [lyll < K dist(y, T(X)) ,
which says that the same operator Kj;Jy is bounded below. Evidently
2.7 (1.2) = (2.6) = (2.5) = (L.1) :
if k> 0 satisfies (1.2) and if Sy = 0 then
1yl < lly = Tl + | T2|| < lly — Tl| + K[| S(Tz — )| < A+ KISy — Tz|

Condition (2.6), with & = 1, has been noticed by Anderson [1], who describes it by calling T'(X)
orthogonal to S~1(0). Turnsek [13] has observed that it holds for certain operators on Banach algebras:

3. Theorem If S € BL(Y,Y) then (2.6) holds with k =1 for (S, S) provided

3.1 IH=S||<1.

Proof. Following the argument of Turnsek ([13] Theorem 1.1) write
S=I-UandV,=I1+U~+...4U",

so that

3.2 SVp=I-U""=V,5

and we have
Sy=0= (n+1)y=Vey=(I-U"""z+V,(y — Sz)

and hence
2

n+1

lyll < llzll + lly — Sz| ;

now let n — oo e

The argument of Theorem 3 suggests - wrongly - that we are using a weakened version of the condition
(1.3): we call the pair (S,T) almost left skew exact if there are (R,,) in BL(Z,Y) with

3.3 IT — R,ST|| — 0 and sup,,||R,|| < o0,
and almost right skew exact if instead (R,,) in BL(Y, X) with
3.4 IS — STR,|| — 0 and sup,,||R,| < oo .

Also call (S,T) almost strongly right skew exact if there is k > 0 for which: for every y € Y there is (z,) in
X for which

3.5 1Sy — ST, — 0 with sup, ea| < Kl
Evidently (cf [10] Theorem 10.1.2)

3.6 (1.3) = (3.3) = (1.2)

and

3.7 (1.6) = (3.4) = (3.5) ;

thus (3.3) implies (2.6). We do not however derive (3.3) for (.5, S) from the condition (3.1). We also remark
that, whenever the space Z is complete, there is implication

3.8 (1.4) = (3.5) :
this ([2];[4] Theorem 1.1; [7] Theorem 10.5.5) uses Baire’s theorem.
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Under certain circumstances the “left” and “right” skew exactnesses are equivalent; we begin (cf [3]
Lemma 6.2) by extending the finite ascent/descent characterizations:

4. Theorem Suppose, under the conditions of Definition 1, that W C X with T(W) C S~1(0), and that
V CY with T(X) C S™Y(V). Then each of the following conditions is equivalent to (1.1):

4.1 TV : X/T70) — Y/S™(0) one one ;

4.2 SN :T(X)— V is one one .
Also each of the following conditions is equivalent to the condition (1.4):

4.3 SN T(X)— S(Y) onto ;

4.4 TV : X/W — Y/S7(0) is onto .

Proof. The equivalences (1.1)<=-(4.1) and (1.4)<=(4.3) are clear. We claim that (1.1) is equivalent to
(4.2) with V = Z, and that this in turn is equivalent to (4.2) for arbitrary V for which T(X) C S~!'V. The
second equivalence is clear; for the first note that for arbitrary x € X there is implication

S(Tz) € S™H0) <= STz =0.

We also claim that (1.4) is equivalent to (4.4) with W = {0}, and that this in turn is equivalent to (4.4) for
arbitrary W for which T(W) C S71(0). The second equivalence is clear; for the first note that for arbitrary
y € Y there is implication

yeSH0)+T(X) <= Syec S(TX) e

If in particular X =Y = Z and ST = T'S then (4.2) applies with V = T'(X), and (4.4) applies with
W = S~1(0). We apply this in particular with S = T* for some k € N:

5. Theorem If X =Y = Z and S =T*:Y — Y, with T in the “commutative closure” of the invertibles,
in the sense that there are (Ry,) in BL(X, X) with

5.1 R, €BL 'X,X); R,T=TR,; |R,—T| —0,
then the following are equivalent:

5.2 (ST)"1(0) C T71(0) and T(X) = cl T(X) ;

5.3 S(Y) C ST(X) and T(X) = ¢l T(X) .

Proof. We recall ([5];[7] Theorem 3.5.1) that for bounded linear operators T': X — Y between (possibly
incomplete) normed spaces

5.4 T bounded below and a limit of dense = T almost open ,
and hence ([5];[7] Theorem 5.5.6) by duality
5.5 T almost open and a limit of bounded below = T bounded below .

Now if R,, commutes with 7" then it leaves both T'(X) and S~!(0) invariant, and if R,, is invertible then (cf
[7] Theorem 3.11.1) its restriction R} to T(X) will be bounded below and its quotient on Y/S~1(0) will be
onto. Thus if we assume (5.2) then by (4.1) and closed range TV will be bounded below and the limit of
onto R/, therefore onto, giving (5.3). If instead we assume (5.3) then by (4.3) S” will be onto and by closed
range almost open, and the limit of bounded below (RF)", therefore bounded below, giving (5.2) e
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(5.2) and (5.3) are together equivalent to the condition that T' € BL(X, X) is polar ([7] Definition
7.5.2), in the sense that 0 € C is at worst a pole of the resolvent function (21 —T')~!. If we relax the closed
range condition we can still [12] get one of the implications, provided we further tighten the approximation
by commuting invertible operators:

6. Theorem Suppose that S = T* and that 0 ¢ int o(T). If the finite descent condition (1.4) holds then
so also does the finite ascent condition (5.2), including closed range.

Proof. This is shown on Hilbert space ([12] Lemma 2.5) by Herrero, Larson and Wogen. Alternatively, since
we are assuming that 0 is at worst on the boundary of the spectrum then we can take the approximating
invertible operators R,, = T — A\, I to be scalar perturbations of the operator T. Now if (1.4) holds, then
the quotient operator TV on X/S~1(0) is (4.5) onto, and the limit of operators (7' — A, 1)V, which we claim
are invertible. As in Theorem 5 it is clear that the quotient (7'— A, I)Y is onto: we claim it is also one one.
To see this recall that the operator T'— A, I is one-one and the restriction (T" — A\, 1) = (=\,I1)" to the
subspace T~1(0) is onto, so that ([4] Theorem 3.11.2) the induced quotient is also one one. For the closed
range note that 7'(X) now has a closed complement, and appeal to the “Lemma of Neuberger” ([7] Theorem
4182) e

Theorem 6 does not reverse:
7. Example If

7.1 S=I—-XUorS=1—-XVorS=\WV,

where |\| =1, U and V are the forward and backward shifts on {5, and W the standard weight,

7.2 Uz)1 =0, Uz)py1 =xn; V), =2p41; W), =(1/n)z, ,

then S is one one and not onto, therefore of finite descent and not of finite ascent, while

7.3 I — S| =1 so that 0 ¢ int o(S) .

Proof. This is easily checked: note that, extended to all sequences, there is equivalence, for arbitrary x € XN,

7.4 re(I-MN)te=maec(I-AN) " e=ao=o(1,\\..) e

We need some auxiliary subspaces:
8. Definition If T' € BL(X, X) write

8.1 T=°°(0) = fj T="(0) and T(X) = ﬁ " (X)

for the hyperkernel and the hyperrange of T, and

8.2 Ex(T) =Y (T = A)~>(0) and Fx(T) = (| (T = M)®(X) .
reC reC

Each of the subspaces in Definition 8 is linear, not necessarily closed, and hyperinvariant under T'. We recall
that T'€ BL(X, X) is called algebraic if there is a nontrivial polynomial 0 # p € Poly for which

8.3 p(T)=0;
more generally T is said to be locally algebraic if
8.4 X = Jp(T)7'(0) : 0 # p € Poly} .

For the record



9. Theorem IfT € BL(X, X) for a Banach space X then

9.1 T locally algebraic = T algebraic .
Necessary and sufficient for T to have finite descent is that

9.2 Ex(TY+T(X)=X.

Proof. The first part of this is known as Kaplansky’s Lemma; the proof [9] is a combination of Baire’s
theorem and the Euclidean algorithm for polynomials. The Euclidean algorithm also gives equality

9.3 Ex(T) = J{p(T)~'(0) : 0 # p € Poly} = {x € X : dim Poly(T)x < oo} ,
and dually
9.4 Fx(T) = {p(T)(X): 0 # p € Poly} .

Then again with a combination of Baire’s theorem and the Euclidean algorithm, if T'€ BL(X, X) there is
([12] Lemma 2.4) k € N for which

9.5 Ex(T)+T(X)=T"0)+T(X)=T"0)+T(X) e
Dually, using the Euclidean algorithm, we get half way:
9.6 Fx(T)NT~1(0) =T>(X)NnT*0) .

For the essence of a possible spectral mapping theorem (cf [10]), we have
10. Theorem If S,T € BL(X, X) satisfy ST = T'S and either

10.1 Se{Th: keN}
or
10.2 VS —TU = I with {U,V} C comm(S,T) ,

then there is equivalence

10.3 ST of finite ascent <= S, T of finite ascent ,
and equivalence

10.4 ST of finite descent <= S , T of finite descent .

Proof. The backward implications are easy ([7] Theorem 7.9.2): if S and T' commute and satisfy S=%(0) =
S=+=1(0) and T7%(0) = T=*~1(0) then

(ST)7k(0) = S~FT=%(0) = S~*T~*=1(0) = T-*"157%(0) = T=*~18~*~1(0) = (ST)*~1(0) ,
if instead ST = T'S with S*X = §¥+1X and T*X = T*+1 X then
(ST)kX _ Ska(X) — Ska+1X — Tk+1st _ Tk+15k+1X _ (ST)k+1X )

Also the forward implications are clear when (10.1) S = T* is a power of T} if instead we assume (10.2) then
we argue

10.5 (ST)"10) C T71(0) + T(X) and (ST)X DT~ 1(0)NT(X) ,
while if (U, V) satisfies (10.2) then for arbitrary k € N
10.6 ViS* — T*U, = T with {Uy, Vi.} € comm(S*, T%) .

To verify (10.5) argue
STe=0=2+TUz=VSzcT '0);T(Tz) =0 = Tox =TVSx —TUTxz = (ST)(Vz) .
For (10.6) note that for arbitrary k € N
VS —TU =1 = V*ISH! _TU[T+VS+...+VS*) =Te



For an induced “spectrum” to be a closed set we have
11. Theorem T € BL(X, X) is of finite descent then so is T — AI for sufficiently small X € C.

Proof. This has been shown on Hilbert space by Han/Larson/Pan ([11] Lemma 2.2, Theorem 2.4). It is
clear from the open mapping theorem (applied to the condition (4.4) with W = {0}) that if the condition
(1.4) holds then also

STHO)+(T-U)X)=Y

whenever T'—U € BL(X,Y) is sufficiently close to T' € BL(X,Y): the problem is that we must also perturb
S. However if S = T* and U = M, so that Ex(T — U) = Ex(T), then we can argue

Ex(T-U)+(T-U)X)=Ex(T)+(T-U)X)2S ' 0)+(T-U)(X)=X e

The subspaces of Definition 8 lead to certain special kinds of operator:
12. Definition We shall call T € BL(X, X) triangular if the subspace Ex(T) is dense:

12.1 dEx(T)=X.
Dually T € BL(X, X) is co-triangular if the subspace Fx (T') is trivial:

12.2 Fx(T)={0} .

The shifts of Example 7 are either triangular or co-triangular:

13. Example On each of the spaces co and ¢, (1 < p < 00), the forward shift U is triangular, the backward
shift V' is co-triangular and the standard weight W is both triangular and co triangular.

Proof. The hyperkernel of the backward shift is dense, since it includes all the “terminating” sequences:

13.1 V=22(0) 2 coo -

Thus

13.2 E(V) 2 V~=°°(0) is dense

and also

13.3 F(V)= [ (V=AD>(X)2 Y (V=X)">(0) 2 V"(0) is dense .
[A|=1 |Al<1

Since U — AI is one one for every A € C we have

13.4 E(U) = {0} is trivial
and also
13.5 F(U) CU*(X) = {0} is trivial .

Finally we notice that the weight W commutes with the projection UV, and more generally

13.6 wurvt =U""V*"W (n e N) ;

also for each n € N

13.7 (%I ~ W) H0)=U"""I - UV)V"(X) and (%I -W)(X) =Wt -UuV)V*HH0),

so that E(W) is dense and F(W) is trivial e



Triangularity and Fredholmness co-operate to generate finite ascent or descent:
14. Theorem If T € BL(X, X)) then

14.1 T upper semi-Fredholm and co-triangular —> T of finite ascent
and
14.2 T lower semi-Fredholm and triangular = T of finite descent .

Proof. If T € BL(X, X) is upper semi-Fredholm then the finite ascent condition can be written in the form
14.3 Fx(T)nT~'(0) = {0} .

Indeed since ([7] Theorem 6.12.2) each power T™ is also upper semi-Fredholm then 7-"*(0) is finite dimen-
sional for each m € N and T™(X) is closed; thus if for each m € N we have T™(X) N T~1(0) # {0} then
there is () in X for which

IT™(zm)|| = 1 and T™ 2, =0 .

By local compactness there is a subsequence
(ym) = T¢(m) (-r¢(m)) — Yoo € T¢(m) (X) s

using the closedness of all the ranges, so that ||ys| = 1 and yoo € Fx(T) N T~(0) . This proves (14.1);
towards (14.2) we claim that for subspaces Y, Z C X

14.4 Y closed of finite codimension and Z dense — Y + 7 =X :

because if dim(X/Y) = n find successively ei,eq,..., e, with e;41 € Z\ (Y 4+ Cey + Cez + ... + Ce;j).
Applying this with Y = T(X) and Z = Ex(T) gives (14.2) o

It is clear that in (14.1) we can replace the “co-triangular” condition (12.2) by the weaker condition
(14.3); dually in (14.2) we can replace the triangular condition (12.1) by the weaker condition

14.5 ol Ex(T)+T(X)=X .

For operators which are both upper semi Fredholm and of finite ascent, or lower semi Fredholm of finite
descent (“semi Browder” in the sense of [7] Definition 7.9.1) the conditions of Theorem 11 can be replaced
by simple commutivity ([7] Theorem 7.9.2) .
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