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Dedicated to Goldie Hawn, on her birthday
Abstract We attempt to deconstruct the Arens-Royden Theorem.

Suppose A is a Banach algebra (by default complex, with identity 1): we shall write

0.1 A−1 = {a ∈ A : 1 ∈ Aa∩aA}

for the open subgroup of invertible elements, and A−1
0 for the connected component of the identity in A−1:

it turns out ([8], [11] Theorem 7.11.4) that

0.2 A−1
0 = Exp(A) = {ec1ec2 . . . eck : k ∈ N, c ∈ Ak}

coincides with the generalized exponentials, the subgroup generated by the exponentials. Exp(A) is open,
relatively closed in A−1, connected and a normal subgroup: thus we can form the quotient group,

0.3 κ(A) = A−1/Exp(A),

the abstract index group [4];[13] of A. Now we can state [2];[4];[6];[18];[20];[21];[22]
1. Theorem (Arens-Royden Mark I) If A is commutative then

1.1 κ(A) ∼= H1(σ(A),Z),

the first Cech cohomology group of the “maximal ideal space” of A.

Specifically we shall interpret elements of the maximal ideal space σ(A) ⊆ A∗ as bounded multiplicative
linear functionals on A; this includes sending 1 ∈ A to 1 ∈ C. We offer no formal definition of Cech
cohomology: but if we believe the Arens-Royden theorem Mark I then it must apply to the algebra C(σ(A))
of continuous functions on σ(A), which has of course the same maximal ideal space

1.2 σ C(σ(A)) ∼= σ(A) ,

and whose abstract index group therefore offers an interpretation of the Cech cohomology. We arrive at
2. Theorem (Arens-Royden Mark II) If A is commutative then

2.1 κ(A) ∼= κ C(σ(A)).

We can sharpen the statement a little more: the isomorphism is not any old isomorphism (remember
the James space !), but a specific isomorphism derived from the Gelfand mapping. Stepping back a little,
suppose T : A → B is a bounded multiplicative linear mapping of Banach algebras: in particular, for
arbitrary a, a′ ∈ A,

2.2 T (a′a)− T (a′)T (a) = 0 = T (1)− 1.

For example if B = C then T ∈ σ(A). It is clear - whether or not T is bounded - that

2.3 T (A−1) ⊆ B−1;

if T is also bounded (or not [17]!) then T (A−1
0 ) ⊆ B−1

0 and also - of course the same thing -

2.4 T Exp(A) ⊆ Exp(B).

Thus T : A→ B induces a mapping of abstract index groups,

2.5 κ(T ) : κ(A)→ κ(B) :

κ god bless it is a functor. All this applies in particular to the Gelfand mapping: we define

2.6 ΓA : A→ C(σ(A))

by setting - whether or not A is commutative -

2.7 ΓA(a)(ϕ) = ϕ(a) (ϕ ∈ σ(A), a ∈ A).

It is this sort of thing that gives abstract linear analysis a bad name!
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If σ(A) is empty we will not trouble ourselves about the interpretation of (2.7) - take C(∅) = O?. Our sharp-
ened version of the Arens-Royden theorem says that the isomorphism is induced by the Gelfand mapping:
3. Theorem (Arens-Royden Mark III) If A is commutative then

3.1 κ(ΓA) : κ(A)→ κ C(σ(A)) is one-one onto.

Stepping back again, suppose T : A→ B is a homomorphism of Banach algebras. From (2.3) it follows
that there is inclusion

3.2 A−1 ⊆ T−1(B−1) ⊆ A.

It is natural - think of the Calkin homomorphism and Atkinson’s theorem - to describe ([9];[10];[11] Definition
7.6.1) T−1(B−1) ⊆ A as the T -Fredholm elements of A. We are tempted to make a definition: we shall say
that a homomorphism T : A→ B has the Gelfand property ([11] (9.6.0.1)) iff

3.3 T−1(B−1) ⊆ A−1.

Thus Gelfand’s theorem can be succinctly stated:
4. Theorem (Gelfand) If A is commutative then ΓA : A→ C(σ(A)) has the Gelfand property.

It is now tempting to try and deconstruct the Arens-Royden theorem, and - with their permission - to
divide the statement into an “Arens theorem” and a “Royden theorem”. Let us - tentatively - suggest that
a homomorphism T : A→ B have the Arens property if the index mapping κ(T ) is one-one, and the Royden
property if κ(T ) is onto. Thus we say that T : A→ B has the Arens property provided there is inclusion

4.1 A−1
∩T
−1Exp(B) ⊆ Exp(A),

and that T : A→ B has the Royden property provided

4.2 B−1 ⊆ T (A−1) · Exp(B).

The Arens-Royden theorem therefore says that if A is commutative then the Gelfand mapping has both the
Arens and the Royden properties.
5. Example A = Holo(S) ⊆ C(S) = B the algebra of functions holomorphic in a neighbourhood of the
circle S = ∂D, embedded T : A→ B in the continuous functions.

It is familiar ([15];[11] Theorem 7.10.7) that the abstract index group κ(B) ∼= Z is essentially the integers.
Now the “Arens condition” (4.1) says that if a function b ∈ B invertible on S is holomorphic near S and has
a continuous logarithm on S then that logarithm is holomorphic there.

In contrast the “Royden condition” (4.2) says that every continuous function b ∈ B−1 invertible on the
circle has holomorphic functions in its coset bExp(B). Indeed if b ∈ B−1 we can take a = zn with n ∈ Z
given by the topological degree or “winding number” of b/|b| : S→ S.
6. Example The Calkin homomorphism T : A → B, where A = B(X) is the bounded operators on a
Banach space and B = B(X)/K(X) is its quotient by the ideal of compact operators.

Generally if T : A→ B is onto there is ([8];[21] §4.8;[11] Theorem 7.11.5) equality

6.1 T Exp(A) = Exp(B);

for such T the “Arens condition” (4.1) takes the form

6.2 A−1
∩(Exp(A) + T−1(0)) ⊆ Exp(A),

while the “Royden condition” reduces to

6.3 B−1 ⊆ T (A−1).

For example if A = B(X) for a Hilbert space X then Kuiper’s theorem ([5] Theorem I.6.1) says that the
invertible group of A = B(X) is connected: A−1 = Exp(A). This makes the “Arens property” (4.1) a
triviality. The “Royden property” in this case reduces to the connectedness of B−1, which never happens. If
instead B−1 = Exp(B) is connected then the “Royden property” (4.2) becomes a triviality, and the “Arens
property” only happens when A−1 is also connected.
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The original Arens-Royden theorem has an extension to operator matrices [3],[21]: if A is commutative
and T = ΓA is the Gelfand homomorphism then

6.4 κ(Tn×n) : κ(An×n)→ κ(Cσ(A)n×n)

is an isomorphism. Gonzalez and Aiena [1],[7] have used operator matrices to throw light on one way in
which the invertible group of Banach space operators can fail to be connected:

7. Theorem If G =
(
A M
N B

)
is a Banach algebra with blocks then

7.1 1−MN ⊆ A−1 and 1−NM ⊆ B−1

if and only if there is equality

7.2 G−1 =
(
A−1 M
N B−1

)
,

in which case

7.3 Exp(G) ⊆
(

Exp(A) M
N Exp(B)

)
.

Proof. Recall [12] that for G to be a Banach algebra the diagonal blocks A and B must also be Banach
algebras while the off diagonals M and N must be A B bimodules; products MN and NM lie in A and B
respectively. Now if 1−MN ⊆ A−1 and 1−NM ⊆ B−1 then(

1 m
n 1

)(
1 −m
−n 1

)
=
(

1−mn 0
0 1− nm

)
=
(

1 −m
−n 1

)(
1 m
n 1

)
and then(

a m
n b

)(
a−1 0
0 b−1

)
=
(

1 mb−1

na−1 1

)
;
(
a−1 0
0 b−1

)(
a m
n b

)
=
(

1 a−1m
b−1n 1

)
;

also (
a m
n b

)
∈ G−1 =⇒

(
a 0
0 b

)
=
(
a m
n b

)
+
(

0 −m
−n 0

)

∈
(
a m
n b

)(( 1 0
0 1

)
+
(
A M
N B

)(
0 −m
−n 0

))
=
(
a m
n b

)(
1−Mn −Am
−Bn 1−Nm

)
⊆
(
A M
N B

)−1

.

This shows that (7.1) implies (7.2); conversely(
1−mn 0

0 1− nm

)
=
(

1 m
n 1

)(
1 −m
−n 1

)
∈
(
A M
N B

)−1

=⇒ 1−mn ∈ A−1 , 1− nm ∈ B−1.

Now if
(
a m
n b

)
is in Exp(G) then there is

(
at mt

nt bt

)
(0≤t≤1)

connecting
(
a m
n b

)
to
(

1 0
0 1

)
, so

that (at) and (bt) connect a ∈ A−1 and b ∈ B−1 to 1 ∈ A and 1 ∈ B, giving (7.3) •
In fact each of the two conditions in (7.1) implies the other, and one of the inclusions in (7.2) implies

the other. It is also clear from (7.1) that

7.4 1−MN ⊆ Exp(A) and 1−NM ⊆ Exp(B);

thus also (cf [18]!) each of the two conditions in (7.4) implies the other.
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These arguments can be used to show (cf [16]) that the invertible group on certain Banach spaces is not
connected:
8. Example If X = Y × Z with Y = `p and Z = `q with q 6= p then

8.1 T =
(
u w
0 v

)
∈ BL−1(X,X) \ Exp BL(X,X),

where u and v are the forward and backward shifts on Y and Z respectively and w : Z → Y is the rank one
projection on the first co-ordinate.

Proof. If u′ and v′ are the forward and backward shifts on Z and Y respectively and w′ : Y → Z the same
projection then

8.2 v′u = 1 6= uv′ = 1− ww′ and vu′ = 1 6= u′v = 1− w′w,

so that T is invertible with

8.3 T−1 =
(
v′ 0
w′ u′

)
.

At the same time [1],[7] the whole of BL(Y,Z) and of BL(Z, Y ) consist of inessential operators. By Theorem 7
therefore, for the Calkin quotient of T to be in the connected component of the identity it would be necessary
for the Calkin quotients of u and v to be generalized exponentials, and hence in particular for

8.4 index(u) = index(v) = 0.

Since this is not the case T cannot be a generalized exponential •
Alternatively the Calkin mapping

Φ : BL(X,X) =
(
A′ M ′

N ′ B′

)
→
(
A M
N B

)
has the property that for arbitrary a′ ∈ A′ = BL(Y, Y ), b′ ∈ B′ = BL(Z,Z) there is ([10];[14];[11] Theorem
7.6.2) implication

8.5 Φ(a′) ∈ Exp(A) =⇒ a′ ∈ a′(A′)−1a′ , Φ(b′) ∈ Exp(B) =⇒ b′ ∈ b′(B′)−1b′ ,

and now ([10];[14];[11] (9.3.4.3)) a left invertible element with an invertible generalized inverse must also be
right invertible.

Going back to the inclusion (3.2), observe

8.6 A−1 ⊆ A−1 + T−1(0) ⊆ T−1(B−1);

we call ([9];[10];[11] Definition 7.6.1) A−1 + T−1(0) the T -Weyl elements of A: when T is a Calkin homo-
morphism these are the Fredholm operators of index zero. Thus we can enlarge the abstract index group
and form [13] the quotient

8.7 κT (A) = (A−1 + T−1(0))/Exp(A) :

we can interpret this either as left cosets as right cosets, which may or may not be the same. Now there is
inclusion T (A−1(0) + T−1(0)) ⊆ B−1 and hence extension

8.8 κ(T ) : κT (A)→ κ(B).
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We can also consider separately left and right invertible elements:

8.9 A−1
left = {a ∈ A : 1 ∈ Aa} ; A−1

right = {a ∈ A : 1 ∈ aA}.

Evidently the invertibles are the intersection of the left and the right invertibles, which each form open sub
semigroups; what is interesting ([13] Theorem 7) is that there is now a relationship between left and right
cosets, while the generalized exponentials continue to be the connected component of the identity:
9. Theorem If a ∈ A−1

left there is inclusion

9.1 aExp(A) ⊆ Exp(A)a.

The right cosets

9.2 κleft(A) = A−1
left/Exp(A) = {Exp(A)a : a ∈ A−1

left}

form a multiplicative semigroup.

Proof. Suppose a′a = 1 ∈ A: then if 0 6= λ ∈ C

9.3 aA−1a′ ⊆ A−1 + λ(1− aa′) ⊆ a′A−1a

and

9.4 aExp(A)a′ ⊆ Exp(A) + λ(1− aa′) ⊆ a′Exp(A)a.

For (9.3) observe that if b ∈ A−1 then the inverse of aba′ − λ(1 − aa′) is ab−1a′ − λ−1(1 − aa′); to convert
this to (9.1) note (cf [21] §4.2; [11] (9.11.3.4))

9.5 aeca′ + 1− aa′ = eaca
′
.

Now if a′a = 1 then (9.3) gives inclusion aA−1 ⊆ A−1a, and (9.5) gives (9.4) and hence (9.1). From (9.3)
we can unambiguously multiply right cosets

9.6 (A−1a)(A−1b) ⊆ A−1(A−1a)b,

and (9.1) enables us to do the same for right cosets modulo Exp(A) •
Finally if a ∈ AX is a system of Banach algebra elements, indexed by a set X, we can [13] extend the

idea of left invertibles A−1
left to systems

9.7 A−Xleft = {a ∈ AX : 1 ∈
∑
x∈X

Aax},

and replace the “abstract left index semigroup” by the following object:

9.8 κXleft(A) = A−Xleft/Exp(A) = {Exp(A)a : a ∈ A−Xleft}.

It is clear that homomorphisms T : A→ B induce mappings

9.9 κXleft(T ) : κXleft(A)→ κXleft(B),

and we can now investigate separately “simultaneous” left and right Arens, Royden and indeed Gelfand
properties.

5



References
1. P. Aiena and M. Gonzalez, Essentially incomparable Banach spaces and Fredholm theory, Proc. Royal

Irish Acad. 93A (1993) 49-59.
2. R. Arens, The groups of invertible elements in a commutative Banach algebra, Studia math. 1 (1963)

21-23.
3. R. Arens, To what extent does the space of maximal ideals determine the algebra?, pp 164-168 Function

algebras, ed. F.T. Birtel, Scott-Foresman 1966.
4. R.G. Douglas, Banach algebra techniques in operator theory, Academic Press 1972.
5. B. Booss and D.D. Bleeker, Topology and analysis, Springer 1985.
6. T.W. Gamelin, Uniform algebras, Prentice Hall 1969.
7. M. Gonzalez, On essentially incomparable Banach spaces, Math. Zeit. 215 (1994) 621-629.
8. R.E. Harte, The exponential spectrum in Banach algebras, Proc. Amer. Math. Soc. 58 (1976) 114-118.
9. R.E. Harte, Fredholm theory relative to a Banach algebra homomorphism, Math. Zeit. 179 (1982)

431-436.
10. R.E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. 85A (1985) 151-176.
11. R.E. Harte, Invertibility and singularity, Dekker 1988.
12. R.E. Harte, Block diagonalization in Banach algebras, Proc. Amer. Math. Soc. 129 (2001) 181-190.
13. R.E. Harte, On spectral pictures, preprint TCDMath 00-11 2000.
14. R.E. Harte and H. Raubenheimer, Fredholm, Weyl and Browder theory III, Proc. Royal Irish Acad.

95A (1995) 11-16.
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