COMPACT SEMIGROUPS OF POSITIVE MATRICES

T. T. West

School of Mathematics, Trinity College Dublin

§1 Introduction

The spectral theory of compact monothetic semigroups of linear operators examined by Kaashoek and West in [1], [2] together with two block matrix theorems where the blocks are either strictly positive or zero are used to give an exposition of Perron-Frobenius theory of positive matrices. The approach in this paper is based on ideas of Smyth and West developed in [4], [5].

We consider a linear operator T in finite dimensions which has a matrix representation [T] relative to a given basis. Where there is no ambiguity we often write the matrix as T. $T \ge 0$ if $[T]_{ij} \ge 0$ ($\forall i,j$) while T > 0 if $[T]_{ij} > 0$ ($\forall i,j$). The spectrum and spectral radius of T will be denoted by $\sigma(T)$ and r(T) respectively. The trace of T (the sum of its eigenvalues) will be written as tr(T), and the peripheral spectrum will be denoted by $\pi(T) = \{\lambda \in \sigma(T); |\lambda| = r(T)\}$. The ith row and jth column of T relative to the given basis will be written row_i(T) and col_j(T) and the diagonal of T will be denoted diag(T). The spectral projection of T relative to $\pi(T)$ will be written P_{π}.

Smyth [5] has introduced a hierarchy of subsets of matrices $T \ge 0$.

Definitions. (i) T is *positive* if T > 0;

- (ii) T is *primitive* if $T^k > 0$ for some positive integer k;
- (iii) T is *connected* if \forall i,j \exists a positive integer k such that $[T^k]_{ij} > 0$;
- (iv) T is *potent* if diag $(T^k) > 0$ for some positive integer k;
- (v) T is *zero-free* if no row or column is zero;
- (vi) T has positive spectral radius.

Remarks.

The above sets are strictly ordered by inclusion. T is connected if and only if there exists a positive integer p such that $T + T^2 + \dots + T^p > 0$. It is also connected if no basis permutation results in a block representation

$$T = \left(\begin{array}{cc} U & 0 \\ V & W \end{array}\right)$$

where U and W are square blocks. If S and T are zero-free then so is ST. It follows that if T is zero-free r(T) > 0. Note also that all these subsets are invariant under a basis permutation, and that if $S \ge T$ and T is contained in any one of these sets then so is S.

The following upgrading lemma will be important.

Lemma 1. If S, $T \ge 0$, $T \ne 0$ and S is connected then ST = TS implies T is potent.

Proof. Observe that by replacing S by $S + S^2 + \dots + S^p$ for sufficiently large p we may assume that S > 0. First we show that under these conditions T is zero-free. As $T \neq 0$, $[T]_{ij} > 0$ for some i,j. Then $[ST]_{kj} \ge [S]_{ki}[T]_{ij} > 0$ ($\forall k$), therefore $[TS]_{kj} > 0$ ($\forall k$) so row_k(T) is non-zero ($\forall k$) and taking transposes gives the same result for columns.

We prove that T is potent by induction on the size of the matrix. The result is trivially true for $1 \ge 1$ matrices so assume that it holds for k x k matrices (k = 1,...., n-1).

If T (n x n) is connected the result is trivially true so assume that T is not connected. Then by a basis permutation T has lower triangular block form

$$T = \left(\begin{array}{cc} T_{11} & 0\\ T_{21} & T_{22} \end{array}\right)$$

where T_{11} and T_{22} are square blocks which must be non-zero as T is zero-free. Corresponding to this decomposition

$$S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \text{ with } S_{ij} > 0 \ (\forall i,j).$$

Since S and T commute we have $T_{11}S_{11} = S_{11}T_{11} + S_{12}T_{21}$. But $tr(T_{11}S_{11}) = tr(S_{11}T_{11})$ so $tr(S_{12}T_{21}) = 0$. By positivity $T_{21} = 0$ but now T_{11} commutes with $S_{11} > 0$ and T_{22} commutes with $S_{22} > 0$. By our induction hypothesis, these blocks are both potent hence so is T.

§2 Compact Semigroups

Page 2

Let T be connected. Then r(T) > 0 so, without loss of generality, we take r(T) = 1.

Proposition 2. If T is connected and r(T) = 1 then $||T^n|| \le M$ (n=1,2,....).

Proof. $S(T) = cl\{T^n ; n \ge 1\}$ is a closed monothetic (singly generated) semigroup, further $W = R^+S(T)$ is also a semigroup and $W_1 = \{W \in W : ||W|| = 1\}$ is a closed, bounded, nonempty subset of W which is therefore compact. If $W \in W_1$ then W is potent by Lemma 1, hence r(W) > 0 for each $W \in W_1$. Further the spectral radius is norm-continuous and therefore attains its minimum μ on the compact set W_1 . Then

$$r(W) \ge \mu > 0$$
 (W \in W₁) and so $r(S) ||S||^{-1} \ge \mu$ (S \in S (T)).

But r(S) = 1 for $S \in S(T)$ hence $||S|| \le \mu^{-1}$ ($S \in S(T)$) and the monothetic semigroup S(T) is closed and bounded, therefore compact.

The structure theory for such compact monothetic semigroups [1], [2] now shows that S (T) contains a unique idempotent which is P_{π} , that all eigenvalues in π (T) are simple and that

$$\boldsymbol{\mathcal{G}}$$
 (T) = P _{π} $\boldsymbol{\mathsf{S}}$ (T) = $\boldsymbol{\mathsf{S}}$ (P _{π} T)

is a compact monothetic group with unit P_{π} consisting of all limit points of S (T). Note that $P_{\pi} \ge 0$ and that, since P_{π} commutes with T, P_{π} is potent hence diag(P_{π}) > 0.

Further if $\pi(T) = {\lambda_1, \lambda_2, ..., \lambda_k}$ then G (T) is isomorphic to the compact monothetic subgroup of C^k cl $\{\kappa_1^n, \kappa_2^n, ..., \kappa_k^n; n \not \mu 1\}$. By hypothesis T is potent hence diag $(T^p) > 0$ for some positive integer p. It follows now by [4], Proposition 2 that $\pi(T^p) = \{1\}$ hence the peripheral eigenvalues of T are all pth roots of unity. It follows at once by the above isomorphism for G (T) that G (T) is a finite cyclic group generated by T. Put R = P_{π}T. Obviously R ≥ 0 and, since T is connected, $T_p = \sum_{n=1}^p T^n > 0$ for sufficiently large p. Further

 $R_p = \sum_{n=1}^p R^n = PT_p.$ Now since diag(P) > 0, $[R_p]_{ij} = [PT_p]_{ij} \ge [P]_{ii}[T_p]_{ij} > 0 \quad (\forall i, j)$ so $R_p > 0$ and R is connected.

Consider the simple case in which $\pi(T) = \{1\}$. Then by the isomorphism \boldsymbol{G} (T) consists of one element P_{π} so $T^n \to P$ ($n \to \infty$). Thus for a general connected T as we have seen $\pi(T^p) = \{1\}$ for a positive integer p so \boldsymbol{G} (T) is a finite cyclic group and $(T^p)^n = T^{pn} \to P_{\pi}$ ($n \to \infty$).

We now use these results to characterise primitive matrices. Note that if $T^k > 0$ then $T^{k+1} = T^kT$ is the product of a positive with a zero-free matrix which is therefore positive. Hence $T^{k+n} > 0$ for all positive integers n.

Proposition 3. Let $T \ge 0$ with r(T) = 1. Then the following are equivalent :

(i) *T* is primitive ; (ii) *T* is connected and $\pi(T) = \{1\}$; (iii) *T* is connected and $T^n \rightarrow P_{\pi}$; (iv) *T* is connected and **G** (T) = $\{P_{\pi}\}$.

Proof. (i) \Leftrightarrow (ii). Assume that T is primitive. Then T is connected. Now $T^k > 0$ for some k hence diag $(T^k) > 0$ therefore $T^{kn} \to P_{\pi} (n \to \infty)$ so $T^k P_{\pi} = P_{\pi}$.

Next we show that $P_{\pi} > 0$. Suppose not, then $[P_{\pi}]_{ij} = 0$ for some i, j hence $[T^kP_o]_{ij} = \sum_{m=1}^{n} [T^k]_{im} [P_o]_{mj} = 0$, thus, using positivity, $[P_{\pi}]_{mj} = 0$ ($\forall m$), that is $col_j(P_{\pi}) = 0$ contradicting the fact that $diag(P_{\pi}) > 0$. Hence $P_{\pi} > 0$ hence $rank(P_{\pi}) = 1$ therefore $\pi(T) = \{1\}$. Conversely let T be connected with $\pi(T) = \{1\}$. Then $T^n \to P_{\pi}$ ($n \to \infty$) so $T^nP_{\pi} = P_{\pi}T^n = P_{\pi}$ ($\forall n$). Suppose $[P_{\pi}]_{ij} = 0$ for some i, j. Since T is connected $[T^k]_{ij} > 0$ for some k, therefore $0 = [P_{\pi}]_{ij} \ge [T^k]_{ij} [P_{\pi}]_{jj}$ so $[P_{\pi}]_{jj} = 0$ which contradicts the fact that $diag(P_{\pi}) > 0$. Hence $P_{\pi} > 0$ and because $T^n \to P_{\pi}$ ($n \to \infty$) it now follows that $T^m > 0$ for some m.

(ii) \Leftrightarrow (iii). The preceding remarks show that if $\pi(T) = \{1\}$ then $T^n \to P_{\pi}$. Conversely if $T^n \to P_{\pi}$ then $\pi(T^n) \to \pi(P_{\pi}) = \{1\}$ $(n \to \infty)$ which implies $\pi(T) = \{1\}$.

(ii) \Leftrightarrow (iv). It is clear from our remarks prior to Proposition 3 that, if T is connected and r(T) = 1, then $\pi(T) = \{1\} \Leftrightarrow \boldsymbol{G}(T) = \{P_{\pi}\}$.

§3 Block Matrix Representations

The following block representation of a zero-free idempotent $P \ge 0$ is well known ([3], Lemma 5.1.9).

Proposition 4. Let $P \ge 0$ be a zero-free idempotent matrix of rank h then via a basis permutation P has the block matrix representation

P –	$ \left(\begin{array}{c} P_{11}\\ 0 \end{array}\right) $	0 P ₂₂	 	0 0	
-			••		
	0	0		\mathbf{P}_{hh}	J

where all the off diagonal blocks are zero, the diagonal blocks are square and $P_{ii} > 0$ is an idempotent of rank 1 (i = 1,...,h).

Proof. If P is connected then P > 0, h = 1 and the result holds. Assume then that via a basis rearrangement P has the block representation $P = \begin{pmatrix} U & 0 \\ V & W \end{pmatrix}$ As $P^2 = P > 0$ hence $U^2 = U \ge 0$, and $W^2 = W \ge 0$ and VU + WV = V thus WVU + WV = WV, so WVU = 0. Now as P is zero-free U has no zero rows and W has no zero columns then V = 0. Then U and W are both $P = \begin{pmatrix} U & 0 \\ 0 & W \end{pmatrix}$ is zero-free hence so are U and W. The result follows by further reduction until the diagonal blocks are all connected idempotents and therefore > 0.

(For a general block representation of ≥ 0 idempotent matrices see [3], Lemma 5.1.9)

Now let $T \ge 0$ be connected with r(T) = 1. If $P_{\pi}T = R$ then $\boldsymbol{G}(T) = \boldsymbol{S}(R)$ is a finite cyclic group and we can find $S \in \boldsymbol{S}(R)$ such that $P_{\pi}R = RP_{\pi} = R$, $P_{\pi}S = SP_{\pi} = S$, $SR = P_{\pi} = RS$.

Further R, $S \ge 0$ and R is connected, also R, S are zero-free since P_{π} is, so each block row of the block matrix R (and S) corresponding to the block representation of P will have at least one non-zero block.

Suppose that R_{ij} is a block which is not zero. Then we have s, t such that $[R_{ij}]_{st} > 0$. Now R=PRP and the blocks P_{ii} , $P_{jj} > 0$ ($\forall i, j$) so, for every compatible pair m, n, $[R_{ij}]_{mn} \ge [P_{ii}]_{ms}[R_{ij}]_{st}[P_{jj}]_{tn} > 0$, thus the block $R_{ij} > 0$.

We now generalise a well known result for ≥ 0 invertible matrices.

Proposition 5. Let R, S, P be as above and such that RS = P = SR. Then R (and S) have exactly one block in each row or column which is > 0 and the remaining blocks are zero.

Proof. Since P is zero-free so are R and S so they both have (at least) one non-zero block in each row or column. Suppose $R_{1k} > 0$, then RS = P so the block $P_{1i} = (RS)_{1i} = \sum_{j=1}^{h} R_{1j}S_{ji} = 0$ ($\forall i > 1$). Taking j = k gives $S_{ki} = 0$ ($\forall i > 1$), by positivity, that is blockrow_k(S) has exactly one non-zero block S_{kl} and $S_{kl} > 0$. Reversing the order and taking transposes gives the required result.

Replacing each positive block of R with the number one and each zero block with the number zero gives an h x h permutation matrix, which, since R is connected must be a single cycle. A basis permutation then ensures that R has an h x h block representation of the form

 $R = \begin{pmatrix} R_{1h} \\ R_{21} \\ . R_{32} . . . \\ R_{h,h-1} \end{pmatrix}$ where R_{1h} and all blocks R_{i,i-1} > 0; all others are zero.

Consider the equivalent h x h block representation T. For each i, j block $R_{ij} = (TP)_{ij} \ge T_{ij}P_{jj}$. Since $P_{jj} > 0$ we deduce that $R_{ij} = 0$ implies that $T_{ij} = 0$. Thus the block representation T is subservient to that of R, in the sense that its non-zero blocks can only occur in positions i, j in which $R_{ij} > 0$. Finally observe that by [1], [2] if $|\lambda| = 1$ and P($\lambda; R$) denotes the spectral projection of the point λ associated with the linear operator R that $n^{-1} \sum_{k=1}^{n} \kappa^{-k} R^k \delta P(\kappa; R)$ $(n \delta \equiv)$ where P($\lambda; R$) $\neq 0$ if and only if $\lambda \in \pi(R)$. But since $R^{h+1} = R$ choosing λ such that $\lambda^h = 1$ gives $h^{-1} \sum_{k=1}^{h} \kappa^{-k} R^k = P(\kappa; R)$. To show that every h^{th} root of unity is an eigenvalue of R observe that, from our h x h block representation of R, diag(R^k) = 0 (k = 1,...., h-1); but that diag(R^h) = diag(P) > 0. Thus P($\lambda; R$) $\neq 0$ if, and only if, $\lambda^h = 1$.

With this block matrix representation for T let D be the block diagonal matrix

$$D = diag(e^{i\omega}I_1, e^{2i\omega}I_2, \dots, e^{hi\omega}I_h)$$

where $\omega = 2\pi/h$. Then $DTD^{-1} = e^{i\omega}T$ and the whole spectral theory of T is invariant under rotations by multiples of ω .

Now recall that the trace of T^n is given by $tr(T^n) = \sum_{i=1}^p \kappa_i^n$ where $\sigma(T) = \{\lambda_i; 1 \le i \le p\}$.

Proposition 6. If $T \ge 0$ and r(T) = 1 then T is primitive \Leftrightarrow T is connected and $tr(T^n) \rightarrow 1 \quad (n \rightarrow \infty).$

Proof. Let T be primitive. Then by Proposition 3(iii) $T^n \to P_{\pi}$ so $tr(T^n) \to tr(P_{\pi}) = 1$.

Conversely let T be connected and, as before, set $P_{\pi}T = R$. The above discussion shows that the eigenvalues of R are precisely the hth roots of unity for some positive integer h and therefore $tr(R^n) = h$ whenever n is divisible by h, otherwise $tr(R^n) = 0$. However $\pi(T) = \pi(R)$ and as $n \to \infty$ the nth powers of $\sigma(T) \setminus \pi(T)$ go to zero. Hence $tr(T^n) - tr(R^n) \to 0$ as $n \to \infty$ so $tr(T^n)$ is convergent if and only if h = 1 and the limit in this particular case is always 1

Corollary. If $T \ge 0$ and r(T) = 1 then T is primitive \Leftrightarrow T is connected and $\{tr(T^n)\}_1^{\infty}$ is a convergent sequence.

REFERENCES

- 1. M.A.Kaashoek and T.T.West, Locally compact monothetic semialgebras, *Proc. London Math. Soc.* 18(1968), 428-438.
- 2. M.A.Kaashoek and T.T.West, *Locally Compact Semi-Algebras with applications to* Spectral Theory of Positive Operators, Amsterdam, 1974.
- 3. H.Radjavi and P.Rosenthal, Simultaneous Triangularisation, New York, 2000.
- 4. M.R.F.Smyth and T.T.West, The minimum diagonal element of a positive matrix, *Studia Math* 131(1) 1998, 95-99.
- 5. M.R.F.Smyth, A spectral theoretic proof of Perron-Frobenius, *Proc. Roy. Irish Acad.* (to appear).