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§1    Introduction 

 

The spectral theory of compact monothetic semigroups of linear operators examined by 

Kaashoek and West in [1], [2] together with two block matrix theorems where the blocks are 

either strictly positive or zero are used to give an exposition of Perron-Frobenius theory of 

positive matrices. The approach in this paper is based on ideas of Smyth and West developed 

in [4], [5].  

 

We consider a linear operator T in finite dimensions which has a matrix representation [T] 

relative to a given basis. Where there is no ambiguity we often write the matrix as T. T ≥ 0 if 

[T]ij ≥ 0  (∀ i,j) while T > 0 if [T]ij > 0 (∀ i,j). The spectrum and spectral radius of T will be 

denoted by σ(T) and r(T) respectively. The trace of T (the sum of its eigenvalues) will be 

written as tr(T), and the peripheral spectrum will be denoted by π(T) = {λ ∈ σ(T); |λ| = r(T)}. 

The ith row and jth column of T relative to the given basis will be written rowi(T) and colj(T) 

and the diagonal of T will be denoted diag(T). The spectral projection of T relative to π(T) 

will be written Pπ . 

 

Smyth [5] has introduced a hierarchy of subsets of matrices T ≥ 0.  

 

Definitions. (i) T is positive if T > 0;  

  (ii) T is primitive if Tk > 0 for some positive integer k;  

  (iii) T is connected if ∀ i,j ∃ a positive integer k such that [Tk]ij > 0;  

  (iv) T is potent if diag(Tk) > 0 for some positive integer k;  

  (v) T is zero-free if no row or column is zero;  

  (vi) T has positive spectral radius.  
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Remarks. 

 

The above sets are strictly ordered by inclusion. T is connected if and only if there exists a 

positive integer p such that  T + T2 + ..... + Tp > 0. It is also connected if no basis permutation 

results in a block representation 

     
T = U 0

V W  

where U and W are square blocks. If S and T are zero-free then so is ST. It follows that if T is 

zero-free r(T) > 0. Note also that all these subsets are invariant under a basis permutation, and 

that if S ≥ T and T is contained in any one of these sets then so is S.   

 

The following upgrading lemma will be important. 

 

Lemma 1.      If S, T ≥ 0, T ≠  0 and S is connected then ST = TS  implies T is potent.  

 

Proof.     Observe that by replacing S by S + S2 + ...... + Sp for sufficiently large p we may 

assume that S > 0. First we show that under these conditions T is zero-free. As T ≠ 0, [T]ij > 0 

for some i,j. Then [ST]kj ≥ [S]ki[T]ij > 0 (∀ k), therefore [TS]kj > 0 (∀ k) so rowk(T) is non-

zero (∀ k) and taking transposes gives the same result for columns.  

We prove that T is potent by induction on the size of the matrix. The result is trivially true for 

1 x 1 matrices so assume that it holds for k x k matrices (k = 1,....., n-1).  

If T (n x n) is connected the result is trivially true so assume that T is not connected. Then by 

a basis permutation T has lower triangular block form   

     
T = T11 0

T21 T22  

where T11 and T22 are square blocks which must be non-zero as T is zero-free. Corresponding 

to this decomposition 

     
S = S11 S12

S21 S22   with Sij > 0 (∀ i,j). 

Since S and T commute we have T11S11 = S11T11 + S12T21 . But tr(T11S11) = tr(S11T11) so 

tr(S12T21) = 0. By positivity T21 = 0 but now T11 commutes with S11 > 0 and T22 commutes 

with S22 > 0. By our induction hypothesis, these blocks are both potent hence so is T.     z  

§2    Compact Semigroups 
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Let T be connected. Then r(T) > 0 so, without loss of generality, we take r(T) = 1.  

 

 

Proposition 2.       If T is connected and r(T) = 1 then ||Tn|| ≤ M  (n=1,2,......). 

 

Proof.   6 (T) = cl{Tn ; n ≥ 1} is a closed monothetic (singly generated) semigroup, further

:  = 5 +6 (T) is also a semigroup and : 1 = {W ∈
�

: ||W|| = 1} is a closed, bounded, non-

empty subset of :  which is therefore compact. If W ∈ : 1 then W is potent by Lemma 1, 

hence r(W) > 0 for each W ∈ : 1. Further the spectral radius is norm-continuous and 

therefore attains its minimum µ on the compact set : 1 . Then 

 r(W) ≥ µ > 0   (W ∈ : 1)   and so   r(S)||S||-1  ≥  µ  (S ∈6 (T)).  

But r(S) = 1 for S ∈6 (T) hence  ||S|| ≤ µ-1   (S ∈6 (T)) and the monothetic semigroup 6 (T) is 

closed and bounded, therefore compact.   z 

 

 

The structure theory for such compact monothetic semigroups [1], [2] now shows that 6 (T) 

contains a unique idempotent which is Pπ , that all eigenvalues in π(T) are simple and that  

    � (T) = Pπ6 (T) = 6 (PπΤ)  

is a compact monothetic group with unit Pπ consisting of all limit points of 6 (T).  Note that 

Pπ ≥ 0 and that, since Pπ commutes with T, Pπ is potent hence diag(Pπ) > 0.   

Further if  π(T) = {λ1, λ2, ... , λk} then � (T) is isomorphic to the compact monothetic 

subgroup of � k  cl κ1
n, κ2

n, ......, κk
n ; n µ 1 . By hypothesis T is potent hence diag(Tp) > 0 for 

some positive integer p. It follows now by [4], Proposition 2 that π(Tp) = {1} hence the 

peripheral eigenvalues of T are all pth roots of unity. It follows at once by the above 

isomorphism for � (T) that � (T) is a finite cyclic group generated by T. Put R = PπΤ. 

Obviously R ≥ 0 and, since T is connected,  Tp = Σn=1
p Tn

  > 0 for sufficiently large p. Further

 Rp = Σn=1
p Rn = PTp.    Now since diag(P) > 0,  [Rp]ij = [PTp]ij ≥[P]ii[Tp]ij > 0  (∀ i, j) 

so Rp > 0 and R is connected.  
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Consider the simple case in which π(T) = {1}. Then by the isomorphism * (T) consists of 

one element Pπ so Tn → P (n → ∞). Thus for a general connected T as we have seen π(Tp) = 

{1} for a positive integer p so * (T) is a finite cyclic group and (Tp)n = Tpn → Pπ    (n → ∞).  

 

We now use these results to characterise primitive matrices. Note that if Tk > 0 then Tk+1 = 

TkT is the product of a positive with a zero-free matrix which is therefore positive. Hence 

Tk+n > 0 for all positive integers n.  

 

Proposition 3.    Let T ≥  0 with r(T) = 1. Then the following are equivalent :  

  (i)   T is primitive ; 

  (ii)  T is connected and π (T) = {1} ; 

  (iii)  T is connected and Tn → Pπ ; 

  (iv)  T is connected and * (T) = {Pπ}.  

 

Proof.  (i) ⇔ (ii). Assume that T is primitive. Then T is connected. Now Tk > 0 for some k 

hence diag(Tk) > 0 therefore Tkn → Pπ (n → ∞) so TkPπ = Pπ .  

 

Next we show that Pπ > 0. Suppose not, then  [Pπ]ij = 0  for some i, j hence  

[TkPο ] ij = Σm=1
n [Tk]im[Pο]mj = 0 , thus, using positivity, [Pπ]mj = 0 (∀ m), that is colj(Pπ) = 0 

contradicting the fact that diag(Pπ) > 0. Hence Pπ > 0 hence rank(Pπ) = 1 therefore π(T) = {1}.  

Conversely let T be connected with π(T) = {1}. Then Tn → Pπ (n → ∞)  so  TnPπ = PπΤn = Pπ  

(∀n).  Suppose [Pπ]ij = 0 for some i, j.  Since T is connected [Tk]ij > 0 for some k, therefore  

0 = [Pπ]ij ≥ [Tk]ij [Pπ]jj  so  [Pπ]jj = 0 which contradicts the fact that diag(Pπ) > 0. Hence Pπ > 0 

and because Tn → Pπ (n → ∞) it now follows that Tm > 0 for some m.  

 

(ii) ⇔ (iii).    The preceding remarks show that if π(T) = {1} then  Tn → Pπ .    Conversely if 

Tn → Pπ  then  π(Tn)  →  π(Pπ) = {1}  (n → ∞)  which implies  π(T) = {1}. 

 

(ii) ⇔ (iv).    It is clear from our remarks prior to Proposition 3 that, if T is connected and 

r(T) = 1, then π(T) = {1} ⇔ * (T) = {Pπ}.    z

 



 
Page  5 

 

§3    Block Matrix Representations 

 

The following block representation of a zero-free idempotent P ≥ 0 is well known ([3], 

Lemma 5.1.9).  

 

Proposition 4.     Let P ≥  0 be a zero-free idempotent matrix of rank h then via a basis 

permutation P has the block matrix representation  

 

     

P =

P11 0 .. 0
0 P22 .. 0
.. .. .. ..
0 0 .. Phh  

 

where all the off diagonal blocks are zero, the diagonal blocks are square and Pii > 0 is an 

idempotent of rank 1 (i = 1,......,h).  

 

Proof.   If P is connected then P > 0, h = 1 and the result holds. Assume then that via a basis 

rearrangement P has the block representation  
P = U 0

V W   As P2 = P > 0 hence U2 = U ≥ 0 , 

and W2 = W ≥ 0 and  VU + WV = V thus WVU + WV = WV , so WVU = 0. Now as P is 

zero-free U has no zero rows and W has no zero columns then V = 0. Then U and W are both 

idempotents ≥ 0.    
P = U 0

0 W    is zero-free hence so are U and W. The result follows by 

further reduction until the diagonal blocks are all connected idempotents and therefore > 0. z 

 

(For a general block representation of ≥ 0 idempotent matrices see [3], Lemma 5.1.9)  

 

Now let T ≥ 0 be connected with r(T) = 1. If PπΤ = R then * (T) = 6 (R) is a finite cyclic 

group and we can find  S ∈6 (R) such that PπR = RPπ = R , PπS = SPπ = S , SR = Pπ = RS .  

Further R, S ≥ 0 and R is connected, also R, S are zero-free since Pπ is, so each block row of 

the block matrix R (and S) corresponding to the block representation of P will have at least 

one non-zero block.   
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Suppose that Rij is a block which is not zero. Then we have s, t such that [Rij]st > 0. Now 

R=PRP and the blocks Pii , Pjj > 0  (∀ i, j) so, for every compatible pair m, n,  

[Rij]mn ≥ [Pii]ms[Rij]st[Pjj]tn > 0, thus the block Rij > 0.  

 

 

We now generalise a well known result for ≥ 0 invertible matrices.  

 

 

Proposition 5.      Let R, S, P be as above and such that RS = P = SR. Then R (and S) have 

       exactly one block in each row or column which is > 0 and the remaining blocks are zero.  

Proof.  Since P is zero-free so are R and S so they both have (at least) one non-zero block in 

each row or column. Suppose R1k > 0 , then RS = P so the block  P1i = (RS)1i = Σj=1
h R1jSji = 0 

(∀ i > 1). Taking j = k gives Ski = 0  (∀ i > 1), by positivity, that is blockrowk(S) has exactly 

one non-zero block Skl and Skl > 0. Reversing the order and taking transposes gives the 

required result.   z 

 

 

Replacing each positive block of R with the number one and each zero block with the number 

zero gives an h x h permutation matrix, which, since R is connected must be a single cycle. A 

basis permutation then ensures that R has an h x h block representation of the form  

 

R =

. . . . R1h

R21 . . . .
. R32 . . .
. . . . .
. . ... Rh,h−1 .   where R1h and all blocks Ri,i-1 > 0; all others are zero.  

 

 

Consider the equivalent h x h block representation T. For each i, j block Rij = (TP)ij ≥TijPjj . 

Since Pjj > 0 we deduce that Rij = 0 implies that Tij = 0. Thus the block representation T is 

subservient to that of R, in the sense that its non-zero blocks can only occur in positions i, j in 

which Rij > 0.  

 



 
Page  7 

 

Finally observe that by [1], [2] if |λ| = 1 and P(λ;R) denotes the spectral projection of the 

point λ associated with the linear operator R that  n
−1 Σk=1

n κ−kRk δ P(κ;R) (n δ ≡ ) where 

P(λ;R) ≠ 0 if and only if λ ∈ π(R). But since Rh+1 = R choosing λ such that  λh = 1 gives 

h−1 Σk=1
h κ−kRk = P(κ;R) . To show that every hth root of unity is an eigenvalue of R observe 

that, from our h x h block representation of R, diag(Rk) = 0  (k = 1,....., h-1);   but that 

diag(Rh) = diag(P) > 0. Thus P(λ;R) ≠ 0  if, and only if,  λh = 1.  

 

 

With this block matrix representation for T let D be the block diagonal matrix  

   D = diag(eiωI1, e
2iωI2, ......... , e

hiωIh) 

where ω = 2π/h. Then  DTD-1 = eiωT  and the whole spectral theory of T is invariant under 

rotations by multiples of ω.  

 

 

Now recall that the trace of  Tn  is given by  tr(Tn) = Σi=1
p κi

n
  where  σ(T) = {λi ; 1 ≤   i ≤  p}. 

 

 

Proposition 6.     If  T ≥  0  and  r(T) = 1  then  T is primitive   ⇔    T  is connected and  

tr(Tn) →  1   (n → ∞ ).  

 

Proof.    Let T be primitive. Then by Proposition 3(iii)  Tn → Pπ  so tr(Tn) → tr(Pπ) = 1.  

Conversely let T be connected and, as before, set  PπT = R.  The above discussion shows that 

the eigenvalues of R are precisely the  hth  roots of unity for some positive integer  h  and 

therefore  tr(Rn) = h whenever n is divisible by h, otherwise tr(Rn) = 0. However π(T) = π(R) 

and as n → ∞  the nth powers of σ(T)\π(T) go to zero. Hence tr(Tn) - tr(Rn) → 0  as  n → ∞  

so tr(Tn) is convergent if and only if  h = 1  and the limit in this particular case is always 1    

z 

 

 

Corollary.    If  T ≥  0  and  r(T) = 1  then  T  is primitive   ⇔     T  is connected and 
{tr(Tn)}1

∞  is a convergent sequence.  
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