
Touché Rouché
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Abstract There seems to be a love-hate relationship between Brouwer’s fixed point theorem and the fun-

damental theorem of algebra; in this note we offer one more tweak at it, and give a version of Rouchés

theorem.

1



Brouwer’s theorem [1],[3],[6], in its simplest form, says that every continuous function on the closed unit
disc D ⊆ C has a fixed point:

0.1 f ∈ C(D,D) =⇒ ∃λ ∈ D, f(λ) = λ.

The disc D is an example of a contractible space:

1. Definition Continuous mappings f : X → Y and g : X → Y are said to be homotopic if there exists a

continuous mapping (t, x) 7→ ht(x) : [0, 1]×X → Y for which

1.1 h0 = f and h1 = g.

f : X → Y is said to be contractible if it is homotopic to a constant mapping. A space X is said to be

contractible if the identity I : X → X is a contractible mapping.

It is easily checked that products of contractible mappings are contractible; indeed if f : X → Y and
g : Y → Z are continuous then

1.2 f contractible or g contractible =⇒ g ◦ f contractible.

Thus contractible mappings form a two-sided ideal in the category of continuous mappings. The reader can
easily check that R, C and D are each contractible; the status of the circle

1.3 S = ∂D = e2πiR ∼= R/Z

is not immediately clear. Notice however that if one point is removed then the circle becomes contractible:
isomorphism S \ {−1} ∼= ]− 1

2 ,
1
2 [ ∼= R is given by the mappings

1.4 exπ : R → S ; lgπ : S \ {−1} → R

defined by setting

1.5 exπ(θ) = e2πiθ if θ ∈ R ; lgπ(e2πiθ) = θ if − 1
2 < θ < 1

2 .

Contractibility on the circle can be tested by extension and by lifting ([5] Theorem 7.10.6; [6] Theorem
1.6, Lemma 3.14):

2. Lemma If ϕ ∈ C(S, X) then necessary and sufficient for ϕ to be contractible is that

2.1 ϕ has a continuous extension ϕ∧ : D → X.

If instead ϕ ∈ C(X,S) with compact X then necessary and sufficient for ϕ to be contractible is that

2.2 ϕ has a continuous lift ϕ∨ : X → R.

Proof. Sufficiency is clear in each case from (1.2). For necessity in (2.1) suppose that (ht)0≤t≤1 is a homotopy
in C(S, X): we claim

2.3 ∃h∧0 ∈ C(D, X) =⇒ ∃h∧1 ∈ C(D, X).

Specifically define for each θ ∈ R and each r ∈ [0, 1]

2.4 h∧1 (re2πiθ) = h∧0 (2re2πiθ) (0 ≤ r ≤ 1
2 ) , = h2r−1(e

2πiθ) ( 1
2 ≤ r ≤ 1).

Intuitively we construct h∧1 : D → Y → X with Y = (D × {0}) ∪ (S × [0, 1]), where the embedding of D

in Y is achieved by pasting the interior of the disc across the top of the open cylinder down the sides and
across the bottom; klingfilm and a tin of beans would be a mental image.
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If instead (ht)0≤t≤1 is a homotopy in C(X,S) we claim

2.5 ∃h∨0 ∈ C(X,R) =⇒ ∃h∨1 ∈ C(X,R).

By the compactness of [0, 1] there is a partition (tj)
n
j=0 with 0 = t0 ≤ t1 ≤ . . . ≤ tn = 1 for which

supx∈X |htj
(x)− htj−1

(x)| < 2 for each j = 1, 2, . . . , n; if we now define

gj(x) =
htj

(x)

htj−1
(x)

for each x ∈ X , j = 1, 2, . . . , n

then gj(X) ⊆ S \ {−1} for each j, while for each x ∈ X we have h1(x) = h0(x)g1(x)g2(x) . . . gn(x). Thus we
can lift h1 by taking

2.6 h∨1 (x) = h∨0 (x) +

n
∑

j=1

lgπ(gj(x)) for each x ∈ X,

where lgπ is given by (1.5) •

Lemma 2 enables us to define the “winding number” or degree of a continuous mapping on the circle:

3. Definition If ϕ ∈ C(S,S) then

3.1 degree(ϕ) = ϕ∗(1)− ϕ∗(0),

where

3.2 ϕ∗ = ψ∨ : R → R is a continuous lift for ψ = ϕ ◦ exπ : R → S;

explicitly

3.3 e2πiϕ∗(θ) = ϕ(e2πiθ) for each θ ∈ R.

The degree is well defined, and an integer, since if X is connected then any two lifts for a continuous
function ϕ : X → S must differ by a constant. The degree picks out the contractible continuous functions
on the circle ([5] Theorem 7.10.7):

4. Theorem If ϕ : S → S is continuous then the following are equivalent:

4.1 ϕ is contractible;

4.2 ϕ has a continuous extension ϕ∧ : D → S;

4.3 ϕ has a continuous lift ϕ∨ : S → R;

4.4 degree(ϕ) = 0.

Proof. The equivalence of the first three conditions is Lemma 2. If (ht)0≤t≤1 is a homotopy in C(S,S) then
we claim

4.5 degree(h0) = degree(h1).

This is because the mapping t 7→ degree(ht) is continuous and maps the connected interval [0, 1] into the
discrete integers Z. Since the winding number of a constant is zero we have proved that (4.1) implies (4.4).
Conversely if (4.4) holds then so does (4.3): for we may define ϕ∨ by setting ϕ∨(e2πiθ) = ϕ∗(θ) if 0 ≤ θ ≤ 1 •
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5. Corollary The circle S is not contractible.

Proof. For each n ∈ Z we have evidently

5.1 degree(zn) = n,

where zn(λ) = λn for each λ ∈ S. When n = 1 we have the identity map z = I , whose winding number is
not zero •

It is clear from Theorem 4 that there can be no extension of zn : S → S to a continuous mapping
of the disc into the circle. An alternative way to see this would be to look at “fundamental groups”: the
fundamental group of the circle turns out to be the integer group Z, while that of the disc (or any contractible
space) is the trivial group O. Of course much of the proof that the fundamental group of the circle is Z is
in Theorem 4.

The Brouwer fixed point theorem says that if f : D → D is continuous then the function f − z : λ 7→
f(λ)− λ vanishes somewhere in D. Here is a “tweaked” version:

6. Theorem Suppose f ∈ C(D,D) is continuous, and that ϕ ∈ C(D,D) is continuous and also satisfies

6.1 ϕ(S) ⊆ S.

If degree(ϕ) 6= 0 then there is λ ∈ D with f(λ) = ϕ(λ).

Proof. If to the contrary f − ϕ is nonvanishing on D then we can construct an extension ϕ∧ : D → S by
taking, for each λ ∈ D, the point ϕ∧(λ) to be the point where the line from f(λ) through ϕ(λ) meets the
circle S •

Theorem 6 applies in particular when ϕ : D → D has the “antipodal property” [6],[7]:

7. Theorem If ϕ : S → S is continuous and contractible then it cannot possibly have the antipodal property,

7.1 ϕ(−z) = −ϕ(z) on S,

and there must be λ ∈ S for which

7.2 ϕ(−λ) = ϕ(λ).

Proof. We claim that the antipodal property (7.1) is incompatible with the lifting property (4.3): for then
we would have

7.3 ϕ∨(−z) = ϕ∨(z) + 1
2 +N

for some fixed N ∈ N, which taking z = 1 and z = −1 gives 2N + 1 = 0. Now (7.2), the “Borsuk-Ulam
lemma” ([6] Corollary 6.29;[7]), follows: for if there were no such λ then (ϕ(z) − ϕ(−z))/|ϕ(z) − ϕ(−z)| -
easily checked to be conractible - would have the antipodal property (7.1) •

Theorem 6 applies most famously when ϕ = z is the identity function: this is the “fixed point theorem”.
If we take more generally ϕ = zn then we have (cf [6] Theorem 3.19) a nice derivation of the “fundamental
theorem of algebra”:
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8. Theorem If p = anz
n + . . .+a1z+a0 is a non constant polynomial, with n ∈ N and aj ∈ C with an 6= 0,

then there is λ ∈ C for which p(λ) = 0.

Proof. Put q(z) = p(kz)/ank
n with

8.1 |a0|+ |a1|k + . . .+ |an−1|k
n−1 < |an|k

n :

thus q = bnz
n + . . .+ b1z + b0 with

8.2 |b0|+ |b1|+ . . .+ |bn−1| < 1 = bn,

and now

8.3 f = zn − q =⇒ f(D) ⊆ D.

By Theorem 6 there is µ ∈ D for which q(µ) = µn − f(µ) = 0, and hence λ = kµ ∈ C for which p(λ) = 0 •

The fundamental theorem of algebra is equally valid with the complex conjugate z in place of z. We have
a curious extension if we notice that, whenever m 6= n, the winding number of znzm is non-zero: Theorem
8 remains valid with

8.4 p =

n
∑

j=0

m
∑

k=0

ajkz
jzk with m 6= n and amn 6= 0.

Theorem 6 offers an alternative derivation of a version of Rouchés theorem [8]:

9. Theorem If g ∈ C(D) and h ∈ A(D) satisfy

9.1 |g(·)| ≤ |h(·)| on S

then

9.2 h−1(0) 6= ∅ =⇒ (g − h)−1(0) 6= ∅.

Proof. Here A(D) ⊆ C(D) are the continuous functions on D which are holomorphic on the interior D \ S.
If h vanishes anywhere on S then by (9.1) g and hence g − h vanish there too: thus we may suppose

h−1(0) ∩ S = ∅.

Define then ϕ : S → S as the normalised restriction of h : D → C: for all θ ∈ R

|h(e2πiθ)|ϕ(e2πiθ) = h(e2πiθ).

We claim

9.3 degree(ϕ) = 0 ⇐⇒ h−1(0) = ∅ :

indeed by the “argument principle” ([4] Theorem 3.7; cf [6] Exercise 3.12), for sufficiently large r < 1,

9.4 degree(ϕ) =
1

2πi

∫

rS

h′

h
dz

counts with multiplicity the number of zeroes of h in D \ S. To bring Theorem 6 to bear we need to extend
ϕ to D and normalise g: set for 0 ≤ r ≤ 1 and θ ∈ R

|h(e2πiθ)|ϕ(re2πiθ) = ζ(r)h(re2πiθ)

and
|h(e2πiθ)|f(re2πiθ) = ζ(r)g(re2πiθ),

adjusting continuous ζ : [0, 1] → [0, 1], with ζ(1) = 1, so that both ϕ and f take D into D. Now finally

h−1(0) 6= ∅ =⇒ degree(ϕ) 6= 0 =⇒ (g − h)−1(0) = (f − ϕ)−1(0) 6= ∅ •

Naturally (9.3) need not work for general continuous h: for example h = |z| vanishes at 0 ∈ D but has
restriction ϕ = 1 to S.
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In higher dimensions the structure of Sn−1 = ∂Dn ⊆ Rn is more complicated: for example there does
not exist a group structure on S2. However the “special linear group” of orthogonal matrices acts transitively:
there is topological isomorphism

9.5 SO(n+ 1)/

(

SO(n) 0
0 1

)

∼= Sn,

with correspondence T +

(

SO(n) 0
0 1

)

↔ ξ given by

9.6 T







0
. . .
0
1






= ξ.

There is then a further mapping exp : SO(n) → so(n) into a Lie algebra. It is clear from the argument for
(2.1) that necessary and sufficient for ϕ ∈ C(Sn−1, X) to be contractible is that

9.7 ϕ has a continuous extension ϕ∧ : Dn → X ;

it would be nice to adapt the argument of (2.2) to show that it is necessary or sufficient for ϕ ∈ C(X,Sn−1),
with compact X , to be contractible that

9.8 ϕ has a continuous lift ϕ∨ : X → so(n).

Since the Lie algebra so(n) is a contractible space the condition is certainly sufficient. On the other hand
the analogue of “degree(ϕ)” for continuous mappings ϕ : Sn−1 → Sn−1 is [2],[6] notoriously complicated.
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