Touché Rouché Robin Harte and Gary Keogh School of Mathematics, Trinity College, Dublin Computer Applications, Dublin City University

Abstract There seems to be a love-hate relationship between Brouwer's fixed point theorem and the fundamental theorem of algebra; in this note we offer one more tweak at it, and give a version of Rouchés theorem. Brouwer's theorem [1],[3],[6], in its simplest form, says that every continuous function on the closed unit disc $\mathbf{D} \subseteq \mathbf{C}$ has a fixed point:

0.1
$$f \in C(\mathbf{D}, \mathbf{D}) \Longrightarrow \exists \lambda \in \mathbf{D}, f(\lambda) = \lambda.$$

The disc \mathbf{D} is an example of a *contractible* space:

1. Definition Continuous mappings $f : X \to Y$ and $g : X \to Y$ are said to be homotopic if there exists a continuous mapping $(t, x) \mapsto h_t(x) : [0, 1] \times X \to Y$ for which

1.1
$$h_0 = f \text{ and } h_1 = g.$$

 $f: X \to Y$ is said to be contractible if it is homotopic to a constant mapping. A space X is said to be contractible if the identity $I: X \to X$ is a contractible mapping.

It is easily checked that products of contractible mappings are contractible; indeed if $f: X \to Y$ and $g: Y \to Z$ are continuous then

1.2
$$f$$
 contractible or g contractible $\Longrightarrow g \circ f$ contractible.

Thus contractible mappings form a two-sided ideal in the category of continuous mappings. The reader can easily check that \mathbf{R} , \mathbf{C} and \mathbf{D} are each contractible; the status of the circle

1.3
$$\mathbf{S} = \partial \mathbf{D} = e^{2\pi i \mathbf{R}} \cong \mathbf{R} / \mathbf{Z}$$

is not immediately clear. Notice however that if one point is removed then the circle becomes contractible: isomorphism $\mathbf{S} \setminus \{-1\} \cong \left] - \frac{1}{2}, \frac{1}{2}\right[\cong \mathbf{R}$ is given by the mappings

1.4
$$ex_{\pi} : \mathbf{R} \to \mathbf{S} ; lg_{\pi} : \mathbf{S} \setminus \{-1\} \to \mathbf{R}$$

defined by setting

1.5
$$ex_{\pi}(\theta) = e^{2\pi i\theta} \text{ if } \theta \in \mathbf{R} ; \ lg_{\pi}(e^{2\pi i\theta}) = \theta \text{ if } -\frac{1}{2} < \theta < \frac{1}{2}.$$

Contractibility on the circle can be tested by extension and by lifting ([5] Theorem 7.10.6; [6] Theorem 1.6, Lemma 3.14):

2. Lemma If $\varphi \in C(\mathbf{S}, X)$ then necessary and sufficient for φ to be contractible is that

2.1
$$\varphi$$
 has a continuous extension $\varphi^{\wedge} : \mathbf{D} \to X$

If instead $\varphi \in C(X, \mathbf{S})$ with compact X then necessary and sufficient for φ to be contractible is that

2.2
$$\varphi$$
 has a continuous lift $\varphi^{\vee} : X \to \mathbf{R}$.

Proof. Sufficiency is clear in each case from (1.2). For necessity in (2.1) suppose that $(h_t)_{0 \le t \le 1}$ is a homotopy in $C(\mathbf{S}, X)$: we claim

2.3
$$\exists h_0^{\wedge} \in C(\mathbf{D}, X) \Longrightarrow \exists h_1^{\wedge} \in C(\mathbf{D}, X).$$

Specifically define for each $\theta \in \mathbf{R}$ and each $r \in [0, 1]$

2.4
$$h_1^{\wedge}(re^{2\pi i\theta}) = h_0^{\wedge}(2re^{2\pi i\theta}) \ (0 \le r \le \frac{1}{2}) \ , \ = h_{2r-1}(e^{2\pi i\theta}) \ (\frac{1}{2} \le r \le 1).$$

Intuitively we construct $h_1^{\wedge} : \mathbf{D} \to Y \to X$ with $Y = (\mathbf{D} \times \{0\}) \cup (\mathbf{S} \times [0, 1])$, where the embedding of **D** in Y is achieved by pasting the interior of the disc across the top of the open cylinder down the sides and across the bottom; klingfilm and a tin of beans would be a mental image.

If instead $(h_t)_{0 \le t \le 1}$ is a homotopy in $C(X, \mathbf{S})$ we claim

2.5
$$\exists h_0^{\vee} \in C(X, \mathbf{R}) \Longrightarrow \exists h_1^{\vee} \in C(X, \mathbf{R}).$$

By the compactness of [0,1] there is a partition $(t_j)_{j=0}^n$ with $0 = t_0 \le t_1 \le \ldots \le t_n = 1$ for which $\sup_{x \in X} |h_{t_j}(x) - h_{t_{j-1}}(x)| < 2$ for each $j = 1, 2, \ldots, n$; if we now define

$$g_j(x) = \frac{h_{t_j}(x)}{h_{t_{j-1}}(x)}$$
 for each $x \in X$, $j = 1, 2, ..., n$

then $g_j(X) \subseteq \mathbf{S} \setminus \{-1\}$ for each j, while for each $x \in X$ we have $h_1(x) = h_0(x)g_1(x)g_2(x) \dots g_n(x)$. Thus we can lift h_1 by taking

2.6
$$h_1^{\vee}(x) = h_0^{\vee}(x) + \sum_{j=1}^n lg_{\pi}(g_j(x)) \text{ for each } x \in X,$$

where lg_{π} is given by (1.5) •

Lemma 2 enables us to define the "winding number" or degree of a continuous mapping on the circle: **3. Definition** If $\varphi \in C(\mathbf{S}, \mathbf{S})$ then

3.1
$$\operatorname{degree}(\varphi) = \varphi_*(1) - \varphi_*(0)$$

where

3.2
$$\varphi_* = \psi^{\vee} : \mathbf{R} \to \mathbf{R} \text{ is a continuous lift for } \psi = \varphi \circ ex_{\pi} : \mathbf{R} \to \mathbf{S}_{\pi}$$

explicitly

3.3
$$e^{2\pi i\varphi_*(\theta)} = \varphi(e^{2\pi i\theta})$$
 for each $\theta \in \mathbf{R}$.

The degree is well defined, and an integer, since if X is connected then any two lifts for a continuous function $\varphi : X \to \mathbf{S}$ must differ by a constant. The degree picks out the contractible continuous functions on the circle ([5] Theorem 7.10.7):

4. Theorem If $\varphi : \mathbf{S} \to \mathbf{S}$ is continuous then the following are equivalent:

4.1
$$\varphi$$
 is contractible;

4.2
$$\varphi$$
 has a continuous extension $\varphi^{\wedge} : \mathbf{D} \to \mathbf{S};$

4.3
$$\varphi$$
 has a continuous lift $\varphi^{\vee} : \mathbf{S} \to \mathbf{R};$

4.4
$$\operatorname{degree}(\varphi) = 0.$$

Proof. The equivalence of the first three conditions is Lemma 2. If $(h_t)_{0 \le t \le 1}$ is a homotopy in $C(\mathbf{S}, \mathbf{S})$ then we claim

4.5
$$\operatorname{degree}(h_0) = \operatorname{degree}(h_1).$$

This is because the mapping $t \mapsto \text{degree}(h_t)$ is continuous and maps the connected interval [0, 1] into the discrete integers **Z**. Since the winding number of a constant is zero we have proved that (4.1) implies (4.4). Conversely if (4.4) holds then so does (4.3): for we may define φ^{\vee} by setting $\varphi^{\vee}(e^{2\pi i\theta}) = \varphi_*(\theta)$ if $0 \le \theta \le 1$.

5. Corollary The circle S is not contractible.

Proof. For each $n \in \mathbf{Z}$ we have evidently

5.1
$$\operatorname{degree}(z^n) = n,$$

where $z^n(\lambda) = \lambda^n$ for each $\lambda \in \mathbf{S}$. When n = 1 we have the identity map z = I, whose winding number is not zero \bullet

It is clear from Theorem 4 that there can be no extension of $z^n : \mathbf{S} \to \mathbf{S}$ to a continuous mapping of the disc into the circle. An alternative way to see this would be to look at "fundamental groups": the fundamental group of the circle turns out to be the integer group \mathbf{Z} , while that of the disc (or any contractible space) is the trivial group \mathbf{O} . Of course much of the proof that the fundamental group of the circle is \mathbf{Z} is in Theorem 4.

The Brouwer fixed point theorem says that if $f : \mathbf{D} \to \mathbf{D}$ is continuous then the function $f - z : \lambda \mapsto f(\lambda) - \lambda$ vanishes somewhere in **D**. Here is a "tweaked" version:

6. Theorem Suppose $f \in C(\mathbf{D}, \mathbf{D})$ is continuous, and that $\varphi \in C(\mathbf{D}, \mathbf{D})$ is continuous and also satisfies

6.1
$$\varphi(\mathbf{S}) \subseteq \mathbf{S}$$
.

If degree(φ) $\neq 0$ then there is $\lambda \in \mathbf{D}$ with $f(\lambda) = \varphi(\lambda)$.

Proof. If to the contrary $f - \varphi$ is nonvanishing on **D** then we can construct an extension $\varphi^{\wedge} : \mathbf{D} \to \mathbf{S}$ by taking, for each $\lambda \in \mathbf{D}$, the point $\varphi^{\wedge}(\lambda)$ to be the point where the line from $f(\lambda)$ through $\varphi(\lambda)$ meets the circle **S** •

Theorem 6 applies in particular when $\varphi : \mathbf{D} \to \mathbf{D}$ has the "antipodal property" [6],[7]:

7. Theorem If $\varphi : \mathbf{S} \to \mathbf{S}$ is continuous and contractible then it cannot possibly have the antipodal property,

7.1
$$\varphi(-z) = -\varphi(z) \text{ on } \mathbf{S},$$

and there must be $\lambda \in \mathbf{S}$ for which

7.2
$$\varphi(-\lambda) = \varphi(\lambda).$$

Proof. We claim that the antipodal property (7.1) is incompatible with the lifting property (4.3): for then we would have

7.3
$$\varphi^{\vee}(-z) = \varphi^{\vee}(z) + \frac{1}{2} + N$$

for some fixed $N \in \mathbf{N}$, which taking z = 1 and z = -1 gives 2N + 1 = 0. Now (7.2), the "Borsuk-Ulam lemma" ([6] Corollary 6.29;[7]), follows: for if there were no such λ then $(\varphi(z) - \varphi(-z))/|\varphi(z) - \varphi(-z)|$ - easily checked to be conractible - would have the antipodal property (7.1) •

Theorem 6 applies most famously when $\varphi = z$ is the identity function: this is the "fixed point theorem". If we take more generally $\varphi = z^n$ then we have (*cf* [6] Theorem 3.19) a nice derivation of the "fundamental theorem of algebra": 8. Theorem If $p = a_n z^n + \ldots + a_1 z + a_0$ is a non constant polynomial, with $n \in \mathbb{N}$ and $a_j \in \mathbb{C}$ with $a_n \neq 0$, then there is $\lambda \in \mathbb{C}$ for which $p(\lambda) = 0$.

Proof. Put $q(z) = p(kz)/a_n k^n$ with

$$|a_0| + |a_1|k + \ldots + |a_{n-1}|k^{n-1} < |a_n|k^n$$
:

thus $q = b_n z^n + \ldots + b_1 z + b_0$ with

8.2
$$|b_0| + |b_1| + \ldots + |b_{n-1}| < 1 = b_n,$$

and now

8.1

8.3
$$f = z^n - q \Longrightarrow f(\mathbf{D}) \subseteq \mathbf{D}.$$

By Theorem 6 there is $\mu \in \mathbf{D}$ for which $q(\mu) = \mu^n - f(\mu) = 0$, and hence $\lambda = k\mu \in \mathbf{C}$ for which $p(\lambda) = 0 \bullet$

The fundamental theorem of algebra is equally valid with the complex conjugate \overline{z} in place of z. We have a curious extension if we notice that, whenever $m \neq n$, the winding number of $z^n \overline{z}^m$ is non-zero: Theorem 8 remains valid with

8.4
$$p = \sum_{j=0}^{n} \sum_{k=0}^{m} a_{jk} z^{j} \overline{z}^{k} \text{ with } m \neq n \text{ and } a_{mn} \neq 0.$$

Theorem 6 offers an alternative derivation of a version of Rouchés theorem [8]:

9. Theorem If $g \in C(\mathbf{D})$ and $h \in A(\mathbf{D})$ satisfy

9.1
$$|g(\cdot)| \le |h(\cdot)| \text{ on } \mathbf{S}$$

then

9.2
$$h^{-1}(0) \neq \emptyset \Longrightarrow (g-h)^{-1}(0) \neq \emptyset$$

Proof. Here $A(\mathbf{D}) \subseteq C(\mathbf{D})$ are the continuous functions on \mathbf{D} which are holomorphic on the interior $\mathbf{D} \setminus \mathbf{S}$. If h vanishes anywhere on \mathbf{S} then by (9.1) g and hence g - h vanish there too: thus we may suppose

$$h^{-1}(0) \cap \mathbf{S} = \emptyset$$

Define then $\varphi : \mathbf{S} \to \mathbf{S}$ as the normalised restriction of $h : \mathbf{D} \to \mathbf{C}$: for all $\theta \in \mathbf{R}$

$$|h(e^{2\pi i\theta})|\varphi(e^{2\pi i\theta}) = h(e^{2\pi i\theta}).$$

We claim

9.3
$$\operatorname{degree}(\varphi) = 0 \Longleftrightarrow h^{-1}(0) = \emptyset:$$

indeed by the "argument principle" ([4] Theorem 3.7; cf [6] Exercise 3.12), for sufficiently large r < 1,

9.4
$$\operatorname{degree}(\varphi) = \frac{1}{2\pi i} \int_{r\mathbf{S}} \frac{h'}{h} dz$$

counts with multiplicity the number of zeroes of h in $\mathbf{D} \setminus \mathbf{S}$. To bring Theorem 6 to bear we need to extend φ to \mathbf{D} and normalise g: set for $0 \le r \le 1$ and $\theta \in \mathbf{R}$

$$|h(e^{2\pi i\theta})|\varphi(re^{2\pi i\theta}) = \zeta(r)h(re^{2\pi i\theta})$$

and

$$|h(e^{2\pi i\theta})|f(re^{2\pi i\theta}) = \zeta(r)g(re^{2\pi i\theta})$$

adjusting continuous $\zeta: [0,1] \to [0,1]$, with $\zeta(1) = 1$, so that both φ and f take **D** into **D**. Now finally

$$h^{-1}(0) \neq \emptyset \Longrightarrow \operatorname{degree}(\varphi) \neq 0 \Longrightarrow (g-h)^{-1}(0) = (f-\varphi)^{-1}(0) \neq \emptyset \bullet$$

Naturally (9.3) need not work for general continuous h: for example h = |z| vanishes at $0 \in \mathbf{D}$ but has restriction $\varphi = 1$ to \mathbf{S} .

In higher dimensions the structure of $\mathbf{S}_{n-1} = \partial \mathbf{D}_n \subseteq \mathbf{R}^n$ is more complicated: for example there does not exist a group structure on \mathbf{S}_2 . However the "special linear group" of orthogonal matrices acts transitively: there is topological isomorphism

9.5
$$SO(n+1) / \begin{pmatrix} SO(n) & 0\\ 0 & 1 \end{pmatrix} \cong \mathbf{S}_n,$$

with correspondence $\mathbf{T} + \begin{pmatrix} SO(n) & 0 \\ 0 & 1 \end{pmatrix} \leftrightarrow \xi$ given by

9.6 $\mathbf{T}\begin{pmatrix}0\\\cdots\\0\\1\end{pmatrix} = \xi.$

There is then a further mapping exp : $SO(n) \rightarrow so(n)$ into a Lie algebra. It is clear from the argument for (2.1) that necessary and sufficient for $\varphi \in C(\mathbf{S}_{n-1}, X)$ to be contractible is that

9.7
$$\varphi$$
 has a continuous extension $\varphi^{\wedge} : \mathbf{D}_n \to X;$

it would be nice to adapt the argument of (2.2) to show that it is necessary or sufficient for $\varphi \in C(X, \mathbf{S}_{n-1})$, with compact X, to be contractible that

9.8
$$\varphi$$
 has a continuous lift $\varphi^{\vee} : X \to so(n)$.

Since the Lie algebra so(n) is a contractible space the condition is certainly sufficient. On the other hand the analogue of "degree(φ)" for continuous mappings $\varphi : \mathbf{S}_{n-1} \to \mathbf{S}_{n-1}$ is [2],[6] notoriously complicated.

References

- B.H. Arnold, A topological proof of the fundamental theorem of algebra, Amer. Math. Monthly 56 (1954) 465-466.
- B. Booss and D.D. Bleecker, Topology and analysis: the Atiyah-Singer formula and gauge-theoretic physics, Springer Verlag 1985.
- 3. B. Fine and G. Rosenberger, The fundamental theorem of algebra, Springer Verlag 1997.
- 4. J.B. Conway, Functions of one complex variable, Springer 1978.
- 5. R.E. Harte, Invertibility and singularity, Dekker 1988.
- 6. J.J. Rotman, An introduction to algebraic topology, Springer Verlag 1988.
- F.E. Su, Borsuk-Ulam implies Brouwer, a direct construction, Notices Amer. Math. Soc. 104 (1997) 855-859.
- A. Tsarpalias, A version of Rouchés theorem for continuous functions, Amer. Math. Monthly 96 (1989) 911-913.